
FLOW BASED DYNAMIC LOAD BALANCING FOR PASSIVE NETWORK
MONITORING

Uichin Lee, Joon-Sang Park, M. Y. Sanadidi, Mario Gerla
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

email:{uclee, jspark, medy, gerla}@cs.ucla.edu

ABSTRACT
Cluster based packet capturing is a way of overcoming the
speed of a slow disk to tap a high-speed network. Most
cluster-based architectures, however, do not consider load
balancing as an important issue. In order to perform mon-
itoring at full line speed without losing packets, we accept
that the balance among back-end servers must be main-
tained. Conventional methods rely on fixed or random rout-
ing where a ”source-destination” address pair is used as a
unit for load balancing. Instead of using such a coarse grain
unit, we use a flow, a ”source-destination-port” pair. In ad-
dition, we adaptively balance loads of back-end servers us-
ing a flow load estimation technique. The proposed meth-
ods have been validated by performing a trace-based sim-
ulation. Compared to the existing routing approaches, our
method balances load of back-end servers. From a simula-
tion, we find that for protocols having a transient load with
a small variance in flow length, we may use simple meth-
ods of load balancing such as round-robin, but for those
having a persistent load with a large variance, we need to
use a flow estimation technique.

KEY WORDS
Passive Network Monitoring, Cluster of Packet Monitors,
Load Balancing

1 Introduction

To improve the performance of network and network proto-
cols, it is important to analyze popular applications by uti-
lizing passively gathered data which is usually collected by
tapping a router. For instance, to analyze web servers and
study a large-scale user access pattern, we can use passively
gathered data to characterize both web servers and clients.
The strengths of passive network monitoring techniques are
well understood, and have been comprehensively described
in many previous works [5][7].

Used for capturing data on the network,tcpdump [2],
a de-facto standard tool for monitoring packets, has become
a popular tool. But with its low level protocol analysis by
only dumping raw packets into a disk, researchers need to
write their own version of a packet analyzer. To provide
higher level packet analysis, a stackable tool, Pandora[6]
was developed. These approaches, however, heavily de-

pend on dumping captured data into a disk, which was not
a problem until high speed network became ubiquitous.

To solve this problem, most recent monitoring sys-
tem designs aim to keep pace with today’s network band-
width [3][5]. Recent approaches reduce data size by ac-
tively extracting the required data without loss due to over-
load. These systems are typically deployed with a cluster of
commodity hardware. This cluster structure reveals quite
similar architecture to a web server farm in that a front
packet snooper grasps packets from a line and distributes
them among back-end processing nodes.

Much work has been done to balance the loads
among back-end servers using an admission control mecha-
nism [10]. Before discussing details, we first examine how
the architecture of a cluster-based packet capturer is orga-
nized. Fig. 1 shows a layout of the architecture. Basically
the front end dispatcher taps packets from the mirror port
of the router and dispatches a packet to an analysis node,
and then the analysis node processes the packet and save
the result to a disk. Unlike a web server farm, packets are
typically routed using a manually configured static rout-
ing table. However, without dynamic a routing method,
it is possible that a single server will be overwhelmed by
the speed of packets generated by several clients in a few
minutes.

Front End

Dispatcher


N

e


t
w

o


r
k



Analysis

Node 0


Analysis

Node 1


Analysis

Node n


Figure 1. Cluster Based Packet Capturing System

Much work has focused on how to implement such
a system using a cluster of servers, but relatively little has
been done to distribute packets among back-end servers.
In this paper, we propose flow based dynamic load balanc-
ing where a flow is defined by ”source-destination-ports”
instead of using ”source-destination.” In fact, flow based
load balancing extends on-going research and shows feasi-
bility of implementing a new routing scheme. Using flow
information is quite natural in that most of servers spend



time reconstructing flow streams and reassembling packets
to generate actual data that the client and server exchange.
In our scheme, a front-end dispatcher maintains flow infor-
mation, and based on this information incoming packets are
routed. We use a flow as a unit for load balancing and mea-
sure the expected load using flow statistics over a period of
time.

Our trace based simulation shows that, compared to a
fixed IP routing scheme, flow based load balancing main-
tains the balance of back-end packet processing servers.
From the simulation, we find that for protocols having a
transient load with a small variance in flow length, we may
use simple methods of load balancing such as round-robin,
but for those having a persistent load with a large variance,
we need to use a flow estimation technique.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes related work. In section 3 of this paper
we describe flow based load balancing, and in section 4 we
present simulation results to test and verify our method. Fi-
nally, we briefly explain future works and draw conclusion.

2 Related Work

Tcpdump [2] was the first widely used software to pas-
sively gather data. Its output is quite well understood and
invaluable for simple network monitoring. It also offers to
dump a trace of complete packet content for off-line analy-
sis. However, this approach may not be possible where the
line speed is fast and dumping to disk is slow, a situation
which incurs packet losses. Unliketcpdump, Pandora [6]
is a stacked monitoring platform. It allows us to use a stack-
able monitoring filter, a protocol specific packet analysis
layer, thus providing us a flexible network monitoring. For
example, it provides several monitoring components such
as HTTP and DNS. However, such a stackable approach
where packet grasping and processing happen concurrently
in a single machine makes it hard to tap a high speed net-
work.

To deal with such problems, one approach that re-
searchers have tried is to streamline an operating system
kernel. For example, Linuxflow [1] and Nprobe [5] use full
kernel support to perform this time critical task. Linuxflow
has redesigned packet capture protocol stack from scratch
and made LFEP (LinuxFlow Export Protocol) inside the
Linux kernel. Another approach is to use a cluster of ma-
chines. For instance, Nprobe and MOT [3] makes use of a
cluster of machines to overcome such problem by dispatch-
ing snooped packets to back-end machines.

MOT dispatches packets using a semi-static greedy
method of generating a routing table. A routing table is
not fixed but varying every 12 hours since fixed table may
harm flow construction. The algorithm updates a routing
table based on the statistics gathered during a period of 12
hours. However, a 12 hour period is so long that during
this period, due to load imbalance, back-end servers could
overflow.

Category Packets (%) Bytes (%) Flows (%)

Web 27.98 32.95 17.13
File Sharing 20.44 20.85 28.84

FTP 0.72 1.34 0.23
Email 2.70 2.15 2.22

Streaming 3.97 6.17 2.48
DNS 3.49 0.78 8.37

Games 0.15 0.03 0.07
Others 40.56 35.74 40.65

Table 1. Application Breakdown

For its part, NProbe uses multiple machines to split
traffic by XORing the two addresses of the IP host-host
pair as the input to the filter of a monitor. The filter is
implemented in the firmware of the monitor’s NIC. If the
required throughput is exceeded, the authors suggest that
multiple monitors be deployed by forming multiple moni-
toring systems. However, the authors do not propose any
method to dynamically route packets among multiple mon-
itoring systems.

3 Flow Based Load Balancing

3.1 Feasibility of Flow Based Load Balanc-
ing

As an IP address is a basic unit for making decision where
to route in the router, we can make use of flow informa-
tion to forward packets to the back-end servers. The criti-
cal issues for deciding whether this approach is possible or
not are the number of active flows at a certain moment and
the overall cost of managing flows at the dispatcher. If the
number of active flows is high, it is too expensive to main-
tain flow information of every incoming packet. Before we
discuss details of our method, we first state the feasibil-
ity of flow based load balancing by examining real traffic
data from Sprint IP network [11] and measuring the cost of
managing flows at the dispatcher.

Traffic Analysis: The data is collected from a 2.5
Gbps link of Sprint IP network for three hours beginning
from Feb 6, 2004 17:00 GMT. According to the statistics,
TCP and UDP take up 96.64% and 2.55% of the traffic vol-
ume, respectively, and other protocols take up the rest of
the percentage. Table 2 shows the statistics of active flows
which is gathered by counting a number of all possible TCP
and UDP flows every second. On the average, there are
33K flows which is a moderate number of flows. This re-
sults suggest that even if the speed of the network is high,
the number of active flows is reasonable enough to exploit
the benefit of flow based routing.

Flow Management Overhead:In the cluster based
monitoring architecture, a packet is forwarded to a back-
end server in three steps: 1) a packet is snooped 2) a flow is
looked up and its state is updated 3) a packet is dispatched



min 5-%ile median average 95-%ile max

Flows (K) 5 32 33 33 34 37

Table 2. Active Flow Distribution

to a back-end server. To measure CPU time of each step,
we use the following environment. The dispatcher has a
Pentium 4 1.4Ghz with 512MB RAM and is equipped with
Tulip 100 Mbit/s PCI Ethernet controller. We first mea-
sure the cost of processing a single flow with a fixed size
of 64 bytes. On average, snooping and sending a packet
take 803 ns and 620 ns respectively and forwarding each
packet costs 1400 ns, a total time of 2823ns. About 50%
of the time is spent by the flow forwarding. Like snooping
and sending a packet, forwarding takes a constant time of
hashing and updating information. However, the memory
size required to keep flow information is proportional to the
number of flows. Given the current memory price, this will
not prevent our approach.

To see how many flows the dispatcher can sustain, we
set up the following scenario. We connect four dummy
servers into a single router where the dispatcher is con-
nected. Two dummy servers send packets to the others.
Each flow sends 64B packets with 10 packets/s. The over-
all processing power of the dispatcher can be measured
based on the maximum loss-free forwarding rate called
(MLFFR) [14]. To measure MLFFR, we linearly increase
the number of flows until loss happens. Our measurement
shows that the dispatcher can forward up to 410,000 64B
packets per second. In our example, this is roughly 41K
flows. Comparing this number with previous flow statistics
from Sprint, we can conclude that flow based forwarding is
a feasible approach of load balancing.

3.2 Considering Characteristics of Protocol
Category

It is often important to capture and analyze popular appli-
cations such as web and file sharing. Table 1 shows the
breakdown based on application protocol category from the
same trace used in the above section. HTTP and file sharing
are the most popular applications. For each application cat-
egory we can identify characteristics such as access pattern
and flow length distribution. Here, flow or session length
means the period in between the creation and termination
of a flow. As we can see int the later section, when the
average flow length is short and the flows have transient
load, simple allocation methods such as round-robin do not
severely affect the balance of back-end servers. However,
if the average length is long with its large variance, some
flows which is mis-allocated will severely affect the back-
end server. While Web and DNS belong to a short session
category, FTP and streaming can be categorized as a long
session category

Fig.2 illustrates a flow length distribution of HTTP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

4

Session Length (sec)

N
um

be
r 

of
 F

lo
w

s

Figure 2. HTTP Session Length Distribution

observed on March 14, 2004 from 1PM to 1:30PM in the
CS department at UCLA. HTTP shows a very short flow
length as about 80% of the flow took less than 1 second.
From this graph we can deduce that even though current
web servers follow HTTP1.1 protocol, most of them do
not allow persistent connection and most of the commercial
web servers send an RST packet to terminate a TCP con-
nection as soon as they respond to a requested page from
clients. Interestingly, the graph shows that there are quite a
few flows around the 60 second mark. Upon manually ex-
amining the data, we found that it is because of the Internet
Explorer web browser which keeps waiting user requests
and finally sends an RST to the server after 60 seconds for
those web sites that allow a persistent connection. This im-
plies that real world traffic is affected by how to interpret
and implement a protocol.

As you can see from the graph, we can derive the dis-
tribution of flow length of each protocol of interest from
the measured data. In the following subsection, we propose
methods of estimating flow density and use such additional
information when we allocate a route to a new incoming
flow.

3.3 Flow Estimation and Load Balancing

There are two ways of allocating a new incoming flow to a
server. One is to allocate a server which currently has the
lightest load and the other is to allocate a server which will
have the lightest load in the future.

To estimate the lightest loaded server in the future,
we use a fact that when a user sends a request, the response
comes along with a sequence of packets. Most of the time,
the size of request is small compared to that of response.
If we exclude the service time of the server, the time be-
tween connection establishment and actual response arrival
is around Round Trip Time (RTT). During RTT, other flows
can send data back and forth. If we know the arrival rate of
a flow, we can estimate how many packets will be arrived
during RTT of a new connection. Eq.(1) shows how we se-
lect the best serverk amongM available servers. Serveri

has totalni flows assigned and the estimated load after RTT



is calculated by summing all estimated number of packets
from each flow.

k = argmax
1≤i≤M

(Ri −

ni∑

j=1

tRTT · rj · pj) (1)

Here we have 4 parameters:tRTT : Round Trip Time
of a new flow,Ri: Residual capacity of serveri, pj : Busy
probability of flow j, andrj : Arrival rate of flow j. To
simplify the model we assume that we know the residual
capacity. For a given flow, we measure round trip time,
busy probability and arrival rate.

Round Trip Time:While maintaining each flow, we
are able to measure RTT for the incoming TCP connections
that flow through a network link. As proposed in [4] we
can use a TCP caller-to-callee flow that is based on the 3-
way handshake message. A handshake starts with one (or
more in the case of losses) SYN packet and followed by
an ACK from the caller to the callee. Note that the trace
may not include the SYN-ACK packet from the caller to the
callee because that packet is sent in the reverse-direction
flow. The basic idea of estimating RTT is that the RTT can
be estimated from the time interval between the last-SYN
and the first-ACK that the caller sends to the callee. The
time period is shown in Fig.3.

S
Y
N


A
C
K


S
Y
N
-
A
C
K


Monitor
Caller
 Callee


RTT


time
 time


Figure 3. SYN-ACK RTT Estimation

Arrival Rate and Busy Probability:After receiving a
packet, we can update the arrival rate of a flow by taking
account of both new and old value as in Eq.(2), thus using
exponential averaging to estimate the rate of a flow [13].
Let tki andℓk

i be the arrival time and length of thekth packet
of flow i. The estimated rate of flowi, ri, is updated every
time a new packet is received:

rnew
i = (1 − e−T k

i )
ℓk
i

T k
i

+ e−T k

i ri,old, (2)

whereT k
i = tki − tk−1

i andK is a constant. The choice
of K in the above expression presents an issue of adaption.
While a smallerK make the system responsive to rapid
rate fluctuations, a largerK filters noise and makes the rate
stable. The delay-jitter changes the packets’ inter-arrival
pattern thus resulting an increased discrepancy between the
estimated rate and the real rate. As a rule of thumb, we
chooseK that is one order of magnitude larger than the
delay-jitter experienced by a flow. In our experiment, we
choseK as 200 ms.

When estimating the arrival rate, we can also calcu-
late the busy probability. If we observe a period of the
idle time greater thanN · RTT values, we assume it must
go into the idle period and set the busy probability to the
fraction of busy time over the period of time as of a syn-
chronized point. The choice ofN may be different from
the characteristics of a flow. When we are measuring a
specific application, we can estimate based on this. In the
case of monitoring mixed traffic, we can use an average
value. Similar method to that of inter-arrival rate estima-
tion is used to update the busy probability as in Eq.(2), i.e.
for every synchronized point, the old value decays expo-
nentially.

4 Experiment

4.1 Simulation Environment

To test and verify that flow based routing is effective in bal-
ancing back-end servers, we perform a trace based simula-
tion. The trace data we gathered is from the Computer Sci-
ence Department at UCLA on March 14, 2004 from 1PM
to 1:30PM. We tapped a 100Mbps mirroring port in the
department router to generate trace. We usedtcpdump to
gather trace and the size of data is about 1GB. We fully
captured a whole packet by setting its snarf length as 1500
bytes. To usetcpdump packet, we implemented simulator
based on top oftcpdump. Our simulator useslibpcap li-
brary, and it also has a function to replay the store packet as
if it were from a real line. We use Intel P4 1.40 GHz with
512MB RAM.

To simulate a back-end server, we used a token-bucket
model. We assume that it takes a fixed amount of time to
process a packet by setting deterministic service time of
50ms. Every time a server processes a packet, it generates a
token and each incoming packet consumes a token. We use
a total of 3 servers with each server has 1,000,000 tokens.

We measure four different schemes: Fixed IP
(FIXED IP), Round-Robin (FBRR), Flow Based with
Least Loaded Server (FBLEAST) and Flow Based with
Load Estimation (FBEST). In the case of FIXEDIP, we
manually configured the routing table after carefully ex-
amining the load, and host distribution along category C:
131.179.0-64 (S1), 65-150 (S2), 151-255 (S3). The rea-
son why we allocate only 64 machines to S1 is that it
does contain many clients even though it has small range
compared to others. In contrast, other schemes all rely on
flow information. FBRR just selects a server in a round-
robin fashion. FBLEAST selects the least loaded server
by choosing a server that has the largest residual capac-
ity and FBEST selects the least likely loaded server after
RTT. From the above description, FBLEAST allocates a
server which currently has the lightest load while FBEST
allocates a server which will have the lightest load in the
future.



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000  1200  1400

F
re

qu
en

cy

Time (sec)

Server #1
Server #2
Server #3

(a) Server load with fixed IP al-
loc.(FB FIXED)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000  1200  1400

F
re

qu
en

cy

Time (sec)

Server #1
Server #2
Server #3

(b) Server load with round-robin al-
loc.(FB RR)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000  1200  1400

F
re

qu
en

cy

Time (sec)

Server #1
Server #2
Server #3

(c) Server load with least loaded al-
loc.(FB LEAST)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000  1200  1400

F
re

qu
en

cy

Time (sec)

Server #1
Server #2
Server #3

(d) Server load with estimated flow
alloc.(FB EST)

Figure 4. Server Load with Different Configuration

4.2 Load Balancing on Back-end Servers

Fig. 4 shows the server utilization in terms of time. The
graph indicates that flow based load balancing balances
load of back-end servers compared to fixed and round-
robin routing. While fixed routing fluctuates and diverges
depending on traffic, flow based routing keeps pace with
each server. There are small bumps along with flow based
schemes. We manually look at the data and find that there
were very fast and short data transmissions. Our proposed
load estimation scheme, FBEST shows marginal advan-
tage over FBLEAST. Unlike FB FIXED, FB RR performs
reasonably well with such a very simple scheme. But note
that the reason why FBRR, FB LEAST and FBEST have
almost the same distribution is that the average flow length
of HTTP is short and its variance is small.

In contrast, there are other protocols such as FTP and
file sharing protocols where the file size distribution fol-
lows the power-law distribution and has relatively large
variance in flow length. In this case, the flow estimation
performs much better. For the sake of the test, we create a
pathological situation with HTTP usingwget to download
a number of big files. As a result, the average flow length
and its variance are increased. According to our simple
test, SBLEAST and FBRR fail to balance loads of back-
end servers, but FBEST performs well in this case as well
by using estimating load information.

5 Conclusion and Future Work

In this paper, we described and evaluated a flow based load
balancing that balances back-end servers by using load esti-
mation and the average session length distribution of proto-
cols. We showed that using the real trace, protocols show-

ing transient load and having relatively short average flow
length, can be routed using a simple method such as round-
robin, but for other protocols with large flow length vari-
ance we need to use flow estimation to balance load. To
estimate load, we used estimated RTT, packet inter-arrival
time and busy probability. Trace based simulation shows
that compared to fixed IP based packet routing, flow based
routing balances loads of the back-end servers. FBEST
has marginal advantage over FBLEAST due to short flow
length, but in the case that flows exhibits long average flow
length with a large variance, FBEST performs better than
FB RR and FBLEAST.

We are planning to collect real-world trace data for
other protocols than HTTP such as FTP, file sharing and
analyze those protocols to confirm that our claim is actu-
ally true in the real-world. Another possibility for future
work would be to implement this scheme in real environ-
ment. In this paper, we assume that we know back-end
server loads exactly, but in the real environment, admit-
tedly which is hard. Therefore, future work could focus on
gathering server load periodically and using an estimated
load as a factor when we predict server load.

One caveat of our approach is that there might be a
small number of flows that take up the most of bandwidth,
thus diminishing the advantage of using finer granularity
information. In the routing literature [12], this is referred
as heavy hitter phenomenon where the flow is defined as
”source-destination IP” pair. Even though we divide this
”source-destination” traffic into ”source-destination-ports”
flows, there might be cases where a single flow takes up
most of the bandwidth. In this pathological case, our
scheme suffers the heavy-hitter phenomenon. But assum-
ing a typical client’s behavior and protocol characteristics,
we believe that such a case seldom happens.

Acknowledgement

We are grateful to Christine Holten for her sincere support
in reviewing this paper. This research was supported in
part by Korea Research Foundation Grant M06-2003-000-
10008-0.

References

[1] Z. C. Li, H. Zhang, Y You, T. He, ”Linuxflow: A High
SpeedBackbone Measurement Facility,” InProc. Pas-
sive and Active Measure-ment Workshop, April 2003

[2] V. Jocobson,www.tcpdump.org, Lastest release v3.8

[3] Y. Mao, K. Chen, D. Wang, W. Zheng and X. Deng,
”MOT: Memory Online Tracing of Web Information
System”, inProc. IEEE International Conference on
Web Information System Engineering, Dec. 2001

[4] H. Jiang and C. Dovrolis, ”Passive Estimation of TCP
Round-Trip Times”,ACM SIGCOMM Review 2002,
vol 32, pp. 75-88, July 2002



[5] A. Moore, J. Hall, E. Harris, C. Kreibech and I. Pratt,
”Architecture of a Network Monitor”, inProc. Pas-
sive and Active Measurement Workshop, April 2003

[6] S. Patarin and M. Makpangou, ”Pandora: A Flexi-
ble Network Monitoring Platform”, inUSENIX Ann.
Techn. Conf., June 2000

[7] A. Feldmann. ”BLT: Bi-Layer Tracing of HTTP and
TCP/IP”, Computer Networks, 33(1-6) pp. 321-335,
2000

[8] H.K. Choi, J. O. Limb, ”A Behavioral Model of Web
Traffic”, In Proc. Annual International Conference on
Network Protocols, Toronto, Canada, Oct. 1999

[9] V. Paxson and S. Floyd, ”Wide-Area Traffic: The
Failure of Poisson Modeling,”ACM Transactions on
Networking, Vol. 3 No. 3, pp. 226-244, June 1995

[10] L. Cherkasova and P. Phaal, ”Session Based Admis-
sion Control: A Mechanism For Improving Perfor-
mance of Commercial Web Sites,” InProc. Interna-
tional Workshop on Quality of Service, London, UK.,
31 M, pp. 226-235, 1998

[11] IP Monitoring Project (IPMON),
http://ipmon.sprint.com/packstat/packetoverview.php,
Sprint Co.

[12] K. Papagiannaki, N. Taft and C. Diot. ”Impact
of Flow Dynamics on Traffic Engineering Design
Principles,” In Proc.IEEE INFOCOM, Hong-Kong,
March, 2004.

[13] I. Stoica, S. Shenker, H. Zhang, ”Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth
Allocations in High Speed Networks,” InProc. SIG-
COMM’98, Vancouver, Canada, 1998.

[14] J. C. Mogul and K. K. Ramakrishnan. ”Eliminat-
ing Receive Livelock in an Interrupt-Driven Kernel,”
ACM Transactions on Computer Systems, 15(3):217–
252, 1997.


