
882 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

Dissemination and Harvesting of Urban Data
Using Vehicular Sensing Platforms

Uichin Lee, Eugenio Magistretti, Mario Gerla, Paolo Bellavista, Senior Member, IEEE, and
Antonio Corradi, Member, IEEE

Abstract—Recent advances in vehicular communications make
it possible to realize vehicular sensor networks, i.e., collaborative
environments where mobile vehicles that are equipped with sen-
sors of different nature (from toxic detectors to still/video cameras)
interwork to implement monitoring applications. In particular,
there is an increasing interest in proactive urban monitoring,
where vehicles continuously sense events from urban streets, au-
tonomously process sensed data (e.g., recognizing license plates),
and, possibly, route messages to vehicles in their vicinity to achieve
a common goal (e.g., to allow police agents to track the move-
ments of specified cars). This challenging environment requires
novel solutions with respect to those of more-traditional wireless
sensor nodes. In fact, unlike conventional sensor nodes, vehicles
exhibit constrained mobility, have no strict limits on processing
power and storage capabilities, and host sensors that may generate
sheer amounts of data, thus making already-known solutions for
sensor network data reporting inapplicable. This paper describes
MobEyes, which is an effective middleware that was specifically
designed for proactive urban monitoring and exploits node mo-
bility to opportunistically diffuse sensed data summaries among
neighbor vehicles and to create a low-cost index to query moni-
toring data. We have thoroughly validated the original MobEyes
protocols and demonstrated their effectiveness in terms of index-
ing completeness, harvesting time, and overhead. In particular,
this paper includes 1) analytic models for MobEyes protocol
performance and their consistency with simulation-based results,
2) evaluation of performance as a function of vehicle mobility,
3) effects of concurrent exploitation of multiple harvesting agents
with single/multihop communications, 4) evaluation of network
overhead and overall system stability, and 5) performance vali-
dation of MobEyes in a challenging urban tracking application
where the police reconstruct the movements of a suspicious driver,
e.g., by specifying the license number of a car.

Index Terms—Middleware, opportunistic communications,
urban monitoring, vehicular communications, vehicular sensor
networks.

Manuscript received February 21, 2007; revised October 19, 2007, April 16,
2008, and June 27, 2008. First published July 22, 2008; current version
published February 17, 2009. This work was supported in part by the Inter-
national Technology Alliance through the U.S. Army Research Laboratory,
the U.K. Ministry of Defense under Agreement W911NF-06-3-0001, and the
U.S. Army Multidisciplinary University Research Initiative under Funding
W911NF0510246. The review of this paper was coordinated by Prof. X. Shen.

U. Lee and M. Gerla are with the Department of Computer Science,
University of California at Los Angeles, Los Angeles, CA 90095 USA (e-mail:
uclee@cs.ucla.edu; gerla@cs.ucla.edu).

E. Magistretti is with the Department of Electrical and Computer Engineer-
ing, Rice University, Houston, TX 77251-1892 USA (e-mail: emagistretti@
rice.edu).

P. Bellavista and A. Corradi are with the Department of Electronics, Com-
puter Sciences and Systems, University of Bologna, 40126 Bologna, Italy
(e-mail: pbellavista@deis.unibo.it; acorradi@deis.unibo.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2008.928899

I. INTRODUCTION

V EHICULAR ad hoc networks (VANETs) are acquiring
commercial relevance because of recent advances in in-

tervehicular communications and decreasing costs of related
equipment. This situation stimulates a brand new family of
visionary services for vehicles, i.e., from entertainment applica-
tions to tourist/advertising information, and from driver safety
to opportunistic transient connectivity to the fixed Internet
infrastructure [1]–[4]. In particular, vehicular sensor networks
(VSNs) are emerging as a new tool for effectively monitoring
the physical world, particularly in urban areas where a high con-
centration of vehicles that are equipped with onboard sensors is
expected [5]. Vehicles are typically not affected by strict energy
constraints and can easily be equipped with powerful process-
ing units, wireless transmitters, and sensing devices, even of
some complexity, cost, and weight [e.g., Global Positioning
System (GPS), chemical spill detectors, still/video cameras,
vibration sensors, and acoustic detectors]. VSNs represent a
significantly novel and challenging deployment scenario, which
is considerably different from more traditional wireless sensor
network environments, thus requiring innovative specific solu-
tions. In fact, unlike wireless sensor nodes, vehicles usually
exhibit constrained mobility patterns due to street layouts,
junctions, and speed limitations. In addition, they usually have
no strict limits on processing power and storage capabilities.
Most importantly, they can host sensors that may generate huge
amounts of data (e.g., multimedia video streams), thus making
the instantaneous data reporting solutions of conventional wire-
less sensor networks impractical.

VSNs offer a tremendous opportunity for different large-
scale applications—from traffic routing and relief to environ-
mental monitoring and distributed surveillance. In particular,
there is an increasing interest in proactive urban monitoring
services where vehicles continuously sense events from ur-
ban streets, maintain sensed data in their local storage, auto-
nomously process them (e.g., recognizing license plates), and
possibly route messages to vehicles in their vicinity to achieve
a common goal (e.g., to allow police agents to track the move-
ments of specified cars). For instance, proactive urban monitor-
ing could usefully apply to post facto crime scene investigation.
Reflecting on tragedies such as the 9/11 and London bombings,
VSNs could have actually helped emergency recovery and
forensic investigation/criminal apprehension. In the London
bombings, police agents tracked some of the suspects in the
subway by using closed-circuit TV cameras, but they had a hard
time finding helpful evidence from the double-decker bus; this

0018-9545/$25.00 © 2009 IEEE

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 883

scenario has motivated the installation of more cameras in fixed
locations along London streets. VSNs could be an excellent
complement to the deployment of fixed cameras/sensors. The
completely distributed and opportunistic cooperation among
sensor-equipped vehicles has the “deterrent” effect of making
it harder for potential attackers to disable surveillance. Another
less sensational but relevant example is the need to track the
movements of a car that was used for a bank robbery to identify
thieves, for example. It is highly probable that some vehicles
have spotted the unusual behavior of thieves’ car in the hours
before the robbery and might be able to identify the threat
by “opportunistic” correlation of their data with other vehicles
in the neighborhood. It would be much more difficult for the
police to extract that information from the massive number of
multimedia streams that were recorded by fixed cameras. As for
privacy, let us briefly note that people are willing to sacrifice
privacy and accept a reasonable level of surveillance when
the data can be collected and processed only by recognized
authorities (i.e., with a court order) for forensic purposes and/or
for counteracting terrorism and common crimes.

As shown by the aforementioned examples, the reconstruc-
tion of a crime and, more generally, the forensic investigation
of an event that was monitored by VSNs require the collec-
tion, storage, and retrieval of massive amounts of sensed data.
This condition is a major departure from conventional sensor
network operations, where data is dispatched to “sinks” under
predefined conditions such as alarm thresholds. Obviously,
it is impossible to deliver all the streaming data that were
collected by video sensors to a police authority sink because
of sheer volume. Moreover, input filtering is not possible,
because nobody knows a priori which data will be of use for
future investigations. The problem becomes one of searching
for sensed data in a massive mobile opportunistically collected
and completely decentralized storage. The challenge is to find
a completely decentralized VSN solution, with low impact on
other services, good scalability (up to thousands of nodes), and
tolerance of disruption that was caused by mobility and attacks.

For that purpose, we have designed and implemented
MobEyes, a novel middleware that supports VSN-based proac-
tive urban monitoring applications. MobEyes exploits wireless-
enabled vehicles that are equipped with video cameras and
a variety of sensors to perform event sensing, processing/
classification of sensed data, and intervehicle ad hoc message
routing. It is impossible to directly report the sheer amount of
sensed data to the authority, so MobEyes keeps sensed data
in mobile node storage, and onboard processing capabilities
are used to extract features of interest (e.g., license plates).
Mobile nodes periodically generate data summaries with ex-
tracted features and context information such as timestamps and
positioning coordinates, whereas mobile agents (e.g., police pa-
trolling cars) move and opportunistically harvest summaries as
needed from neighbor vehicles. MobEyes adopts VSN custom-
designed protocols for summary diffusion/harvesting that ex-
ploits intrinsic vehicle mobility and simple single-hop interve-
hicle communications. That way, MobEyes harvesting agents
can create a low-cost opportunistic index to query the distrib-
uted sensed data storage, thus enabling us to answer several
questions: Which vehicles were in a given place at a given time?

Which route did a certain vehicle take in a given time interval?
Which vehicle collected and stored the data of interest?

In this paper, we make the following contributions.
• We define a vehicular sensing platform and propose the

MobEyes vehicular sensing architecture. We synthesize
the existing techniques to build a MobEyes system that
satisfies the key design principles: 1) disruption tolerance;
2) scalability; and 3) nonintrusiveness.

• We propose an analytic model that can accurately predict
MobEyes’ performance and formally show that our proto-
col is scalable and nonintrusive.

• We provide extensive simulation results as follows:
1) evaluation of performance dependence on vehicle mo-
bility models; 2) effects of the concurrent exploitation
of multiple harvesting agents with single/multihop com-
munications; 3) evaluation of the network overhead and
overall system stability; and 4) performance validation
of MobEyes in a challenging urban tracking application
where the police obtain the route, followed by a car, by
simply specifying its plate number.

• We provide an overview of the primary security require-
ments that stem from VSN-based proactive urban moni-
toring applications and show how they can be addressed
via state-of-the-art solutions in the literature. MobEyes in-
tegrates these solutions and allows for enabling/disabling
them at deployment time, depending on the required de-
gree of security/privacy.

The rest of this paper is organized as follows. Section II
describes background and related paper, by positioning the
original MobEyes contributions. Section III presents the overall
MobEyes architecture, whereas Section IV details our origi-
nal protocols for opportunistic summary diffusion/harvesting.
Section V analytically models the performance of MobEyes
protocols, which are extensively evaluated via simulations in
Section VI. Section VII gives a rapid overview of security/
privacy issues and related solutions. Section VIII concludes this
paper.

II. BACKGROUND AND RELATED WORK

The idea of embedding sensors in vehicles is very novel.
To our knowledge, the only research project that deals with
the MobEyes-addressed challenging issues of car-based sens-
ing and distributed opportunistic search of sensed data is the
Massachusetts Institute of Technology’s CarTel [6], [7]. In
CarTel, users submit their queries about sensed data on a portal
that is hosted on the wired Internet. Then, an intermittently
connected database is in charge of dispatching “queries” to
vehicles and of receiving replies when vehicles move near open
access points to the Internet. Other interesting research projects
have focused on providing mobile Internet access to vehicles.
For instance, InternetCar aims at providing vehicles with seam-
less Internet connectivity by envisioning various applications
such as a traffic information dissemination service where “raw”
sensed data from vehicles are collected in a central server, and
traffic information is distributed to the drivers [8], [9]. Unlike
CarTel and InternetCar, MobEyes exploits mobile collector
agents instead of relying on the wired Internet infrastructure,

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

884 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

thus improving robustness. In addition, note that the FleetNet
project, which aims at developing an intervehicle communica-
tion platform for vehicular applications, recognized the poten-
tial of services that distribute location-tagged information (e.g.,
traffic jam warning) by collecting and processing data from cars
in a distributed fashion [10], [11]. In this paper, we originally
propose how one can design and implement such applications
using VSNs.

Related work has recently emerged in two other related
fields: 1) VANET and 2) “opportunistic” sensor networks. For
full understanding of the MobEyes proposal, we provide a brief
illustration of how Bloom filters work and of their exploitation
in networking fields.

A. VANET

Recent research has been envisioning a large number of
applications that are specifically designed for VANET, includ-
ing 1) safe cooperative driving where emergency informa-
tion is diffused to neighbor vehicles, and real-time response
is required to avoid accidents [3]; 2) entertainment support,
e.g., content sharing [1], advertisements [2], and peer-to-
peer (P2P) marketing [12]; and 3) distributed data collection,
e.g., parking lot [13] and traffic congestion information [14].
So far, however, most VANET research has focused on routing
issues. Several VANET applications, e.g., related to safety or
traffic/commercial advertising, call for the delivery of messages
to all nodes that are close to the sender, with high delivery
rate and short delay. Recent research has addressed this issue
by proposing original broadcast strategies [3], [15]. However,
single-hop broadcast does not provide full support to adver-
tising applications; effective multihop dissemination solutions
should be also investigated [16].

Packet delivery issues in areas with sparse vehicles have
stimulated several recent research contributions to investigate
carry-and-forward strategies. In [17], the authors simulate a
straight highway scenario to compare two ideal strategies:
1) pessimistic (i.e., synchronous), where sources send packets
to destinations only as soon as a multihop path is available
and 2) optimistic (i.e., carry-and-forward), where intermediate
nodes hold packets until a neighbor closer to the destination is
detected. Under the implicit assumptions of 1) unbounded mes-
sage buffers and bandwidth and 2) easily predictable mobility
patterns as for vehicles on a highway, the optimistic scenario
has demonstrated to achieve a lower delivery delay. However,
in more realistic situations, carry-and-forward protocols call
for careful design and tuning. MaxProp [18], which is part
of the University of Massachusetts DieselNet Project [19],
is a ranking strategy for determining packet delivery order
when node encounters occasionally occur, as well as dropping
priorities in the case of full buffers. Precedence is given to
packets that are destined to the other party, then to routing
information, to acknowledgements, to packets with small hop-
counts, and, finally, to packets with a high probability of being
delivered through the other party. Vehicle-assisted data delivery
[20] rests on the assumption that most node encounters happen
in intersection areas. Effective decision strategies are proposed,
which highly reduce packet delivery failures and delay.

Applications for distributed data collection in VANETs call
for geographic dissemination strategies that deliver packets to
all nodes that belong to target remote areas, despite possibly
interrupted paths [14], [21]. MDDV [21] exploits geographic
forwarding to the destination region, favoring paths where
vehicle density is higher. In MDDV, messages are carried by
head vehicles, i.e., best positioned toward the destination with
respect to their neighbors. As an alternative, [14] proposes
several strategies based on virtual potential fields that were
generated by propagation functions: Any node estimates its po-
sition in the field and retransmits packets until nodes placed in
locations with lower potential values are found. This procedure
is repeated until minima target zones are detected.

B. Opportunistic Sensor Networking

Traditionally, sensor networks have been deployed in sta-
tic environments, with application-specific monitoring tasks.
Recently, opportunistic sensor networks have emerged, which
exploit existing devices and sensors, such as cameras in mobile
phones [22]–[25]. Several of these networks are relevant to
our research, because they can easily implement opportunistic
dissemination protocols [26], [27].

Dartmouth’s MetroSense [22], [28] is closely related
to MobEyes. [22] describes a three-tier architecture for
MetroSense: 1) Servers in the wired Internet are in charge of
storing/processing sensed data; 2) Internet-connected stationary
sensor access points (SAPs) act as gateways between servers
and mobile sensors (MSs); 3) MSs move in the field, oppor-
tunistically delegating tasks to each other and “muling” [29],
[30] data to SAP. MetroSense requires infrastructure support,
including Internet-connected servers and remotely deployed
SAP. Similarly, Wang et al. proposed data delivery schemes
in Delay/Fault-Tolerant Mobile Sensor Network for human-
oriented pervasive information gathering [31]. The tradeoff
between data delivery ratio/delay and replication overhead is
mainly investigated in the case of buffer and energy resource
constraints. In contrast, MobEyes does not require any fixed
infrastructure by using mobile sinks (or agents) and addresses
VANET-specific deployment scenarios (e.g., powerful sensing
platforms and distributed index collection).

Application-level protocols for the resolution of queries to
sensed data have been proposed in [23] and [24]. Contory
abstracts the network as a database and can resolve declarative
queries. Spatial programming hides remote resources such as
nodes under local variables, thus enabling transparent access.
Migratory Services are components that react to changing
context, e.g., the target that moves out of range by migrating to
other nodes [23]. [24] presents VITP, a query-response protocol
to obtain traffic-related information from remote areas: The
primary idea is that the source specifies the target area when
injecting a query in the environment, and nodes in the target
area form a virtual ad hoc query server.

Among recent research projects about opportunistic sensing,
we mention Intel IrisNet [32] and Microsoft SenseWeb [33].
Both projects investigate the integration of heterogeneous sens-
ing platforms in the Internet via a common data publishing ar-
chitecture. We also point out the Center for Embedded Network

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 885

Sensing’s Urban Sensing Project [25], [34], which is a recently
started multidisciplinary project that addresses “participatory”
sensing, where urban monitoring applications receive data from
MSs operated by people.

With regard to dissemination of sensed data through peers,
we can mention two solutions for monitoring wildlife habitats:
1) ZebraNet [26] and 2) SWIM [27]. ZebraNet addresses
remote wildlife tracking, e.g., zebras in the Mpala Research
Center in Kenya, by equipping animals with collars that embed
wireless communication devices, GPS, and biometric sensors.
As GPS-equipped animals drift within the park, their collars op-
portunistically exchange sensed data, which must make its way
to the base station (the ranger’s truck). ZebraNet proposes two
dissemination protocols: 1) a flooding-based approach where
zebras exchange all the data within their buffers (either locally
generated or received from other animals) with neighbors and
2) a history-based protocol where data is uploaded only to ze-
bras with a good track record of base station encounters. SWIM
[27] addresses sparse MS networks with fixed Infostations as
collecting points. Sensed data is epidemically disseminated via
single-hop flooding to encountered nodes and is offloaded when
Infostations are within reach.

Although all the aforementioned schemes implement P2P
dissemination, none fits the performance requirements of the
MobEyes target scenario. Flooding generates excessive over-
head, whereas history-based is ineffective in the very dynamic
VANET where the base station (the agent’s vehicle) rapidly
moves without following a specific mobility pattern [26]. In
addition, MobEyes nodes do not transmit raw collected data
but, due the abundance of on board computing resources, they
locally process data and relay only short summaries. That
advantage is relevant, because data that were collected in VSNs,
e.g., from video cameras, may be order-of-magnitude larger
than data sensed in naturalistic scenarios.

C. Bloom Filter and Its Applications

Bloom filter [35] is a space-efficient randomized data struc-
ture for representing a set and is mainly used for membership
checking. A Bloom filter for representing a set of ω elements,
S = {s1, s2, . . . , sω}, consists of m bits, which are initially
set to 0. The filter uses � independent random hash functions
h1, . . . , h� within m bits. By applying these hash functions,
the filter records the presence of each element into the m bits
by setting � corresponding bits. To check the membership of
the element x, it is sufficient to verify whether all hi(x) are
set to 1. Although membership checking in a Bloom filter is
probabilistic, and false positives are possible, it has widely
been used for applications where “space saving” outweighs the
drawback of errors.

Bloom filters have gained momentum in networking fields
due to their space efficiency, thus reducing the amount of trans-
mitted data and, consequently, saving energy. Readers can find
a survey of Bloom filter-based networking applications in [36].
Bloom filters are mostly used for simple membership check-
ing [37], [38], set difference (or reconciliation) [39], and set
intersection [40]. Fan et al. proposed a summary cache where a
set of distributed Web proxies use Bloom filters to disseminate

Fig. 1. MobEyes sensor node architecture.

the content of their cache [37]. Similarly, Ye et al. exploited
them to store MAC addresses for simple membership check-
ing in wireless sensor networks [38]. For set reconciliation,
Byers et al. proposed a method that uses a comparison tree
over a Bloom filter [39], which allows for faster search
of elements in the difference set (when difference sets are
small). To find set intersection without transmission entire sets,
Reynolds et al. used Bloom filters for keyword search in a P2P
overlay network [40].

III. MOBEYES ARCHITECTURE

For clarity, we present the MobEyes solution using one
of its possible practical application scenarios, i.e., collecting
information from MobEyes-enabled vehicles about criminals
that spread poisonous chemicals in a particular section of the
city (e.g., a subway station). We suspect that the criminals have
used vehicles for the attack. Thus, MobEyes will help detect
the vehicles and permit tracking and capture. Here, we assume
that vehicles are equipped with cameras and chemical detec-
tion sensors. Vehicles continuously generate a huge amount
of sensed data, store it locally, and periodically produce short
summary chunks that were obtained by processing sensed data,
e.g., license plate numbers or aggregated chemical readings.
Summary chunks are aggregated in summaries that are oppor-
tunistically disseminated to neighbor vehicles, thus enabling
metadata harvesting by the police to create a distributed meta-
data index, which is useful for forensic purposes, e.g., crime
scene reconstruction and criminal tracking.

To support all the aforementioned tasks, we have devel-
oped MobEyes according to the component-based architecture,
as depicted in Fig. 1. The key component is the MobEyes
Diffusion/Harvesting Processor (MDHP), which will be dis-
cussed in detail in the next section. MDHP works by oppor-
tunistically disseminating/harvesting summaries produced by
the MobEyes Data Processor (MDP), which accesses sensor
data via the MobEyes Sensor Interface (MSI). Vehicles are
not strictly resource constrained, so our MobEyes prototype
is built on top of the Java Standard Edition virtual machine.
MDP is in charge of reading raw sensed data (via MSI),
processing it, and generating chunks. Chunks include metadata
(e.g., vehicle position, timestamp, vehicle ID number, and
possible additional context such as simultaneous sensor alerts)
and features of interest that were extracted by local filters (see
Fig. 2). For instance, in the aforementioned application sce-
nario, MDP includes a filter determining license plate numbers
from multimedia flows taken by cameras [41]. Finally, MDP

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

886 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

Fig. 2. Packet format. A single summary packet contains multiple summary
chunks.

commands the storage of both raw data and chunks in two
local databases. MDHP disseminates/harvests summaries by
packing a set of chunks into a single packet for effectiveness.
Therefore, the generation rate and the size of chunks and
summaries are relevant to MobEyes’ performance. Additional
details about the design and implementation of the MobEyes
prototype are out of the scope of this paper and can be found
in [42].

Developers of MobEyes-based applications can specify the
desired generation rate as a function of vehicle speed and
expected vehicle density. The chunk size mainly depends on
application-specific requirements: in the scenario under consid-
eration, each recognized license plate is represented with 6 B,
sensed data with 10 B (e.g., concentrations of potential toxic
agents), timestamp with 2 B, and vehicle location with 5 B.
Then, in our scenario, MDP can pack 65 chunks in a single
1500-B summary, even without exploiting any data aggregation
or encoding technique. In usual deployment environments,
chunks are generated every [2, 10] s; thus, a single summary
can include all the chunks about a [2, 10]-minute interval.
MSI permits MDHP to access raw sensed data, independent of
actual sensor implementation, thus simplifying the integration
with many different types of sensors. MSI currently implements
methods for accessing camera streaming outputs, serial port
I/O streams, and GPS information by only specifying a high-
level name for the target sensor. To interface with sensor
implementations, MSI exploits well-known standard specifica-
tions to achieve high portability and openness: the Java Media
Framework (JMF) application programming interface (API),
the Sun Communication API, and the JSR179 Location API.

IV. MOBEYES DIFFUSION/HARVESTING PROCESSOR

In this section, we review the design principles of MDHP
protocols, i.e., disruption tolerance, scalability, and nonintru-
siveness. Private vehicles (i.e., regular nodes) opportunistically
and autonomously spread summaries of sensed data by exploit-
ing their mobility and occasional encounters. Police agents (i.e.,
authority nodes) proactively build a low-cost distributed index
of the mobile storage of sensed data. The main goal of the
MDHP process is to create a highly distributed and scalable
index that allows police agents to place queries into the huge
urban monitoring database without even trying to combine this
index in a centralized location.

A. MDHP Protocol Design Principles

A vehicular sensing platform, which is built on top of a
VANET, has the following specific characteristics that differ-
entiate it from more established and investigated deployment
scenarios. First, it has unique mobility patterns. Vehicles move
at a relatively high speed (e.g., up to 80 mi/h) on roads that
may have multiple lanes and different speed limits. Instead of
random motion patterns, drivers navigate a set of interest points
(e.g., home and work place) by following their preferred paths.
The dynamic behavior of mobile nodes, i.e., join/leave/failure,
usually results in modifications of the set of participating nodes
(called churning). Moreover, there are time-of-the-day effects
such that the overall volume of vehicles changes over time,
e.g., high density during rush hours or some special event.
Thus, the spatial distribution of vehicles is variable and nonuni-
form, and in some cases, the network can be partitioned. As a
result, vehicles may experience disruptions and intermittent
connectivity. Second, the network scales up to hundred thou-
sands of vehicles, because sensing applications primarily target
urban environments. Third, unlike conventional sensor net-
works where the communication channel is dedicated to sens-
ing nodes, the primary purpose of vehicular communications is
for safety navigation, and sensing platforms cannot fully utilize
the overall available bandwidth.

Under these circumstances, we have decided to consider the
following design principles for MDHP protocols.

• Disruption tolerance. It is crucial that MDHP protocols
can operate, even with disruptions (caused by sparse
network connectivity, obstacles, and nonuniform vehicle
distribution) and with arbitrary delays. High churning of
vehicles must be considered; for robustness, data replica-
tion is a must.

• Scalability. MDHP protocols must scale up to hundred
thousands of nodes (e.g., the number of vehicles that
potentially interwork in a large city).

• Nonintrusiveness. Intrusive protocols may cause severe
contention with safety applications and could deter re-
liable propagation of important messages in a timely
fashion. MDHP protocols should not disturb other safety
applications, and limiting the use of bandwidth below a
certain threshold is imperative.

Given the aforementioned motivations and the deriving de-
sign principles, simple flooding and probabilistic gossiping
cannot be used for MDHP. In fact, they require the network
to be fully connected (i.e., nondelay tolerant) and cause the
network traffic to scale with the number of nodes in the network
(i.e., nonscalable and intrusive). For instance, in Epidemic
Data Dissemination (EDD), where data is spread whenever
connectivity is available (i.e., the data is replicated without
any restriction), the size of exchanged data scales with the
network size; thus, EDD is intrusive and nonscalable. EDD is
more suitable for sparse small-scale wireless networks. Note
that the formal analysis that corroborates this sketched obser-
vation can be found in Section V-B. Unlike these approaches,
we propose to use “mobility-assist” information dissemination
and harvesting in MobEyes. Data are replicated via periodic
“single-hop” broadcasting (i.e., only the data originator can

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 887

broadcast its data) for a given period of time. Through the
mobility of carriers, the data will be delivered to a set of
harvesting agents. Mobility-assist dissemination and harvesting
per se are delay and disruption tolerant, and, as extensively de-
tailed in the following, single-hop broadcasting-based localized
information exchange makes our protocols nonintrusive and
scalable.

B. Summary Diffusion

By following the aforementioned guidelines, in MobEyes,
any regular node periodically advertises a new packet with
generated summaries to its current neighbors to increase the
opportunities for agents to harvest summaries. Clearly, exces-
sive advertising will introduce too much overhead (as in EDD),
whereas no advertising at all (i.e., direct contact) will introduce
unacceptable delays, as agents will need to directly contact each
individual source of monitoring information to complete the
harvesting process. Thus, MobEyes tries to trade off delivery
latency with advertisement overhead. As depicted in Fig. 2, a
packet header includes the packet type, generator ID, locally
unique sequence number, packet generation timestamp, and
generator’s current position. Each packet is uniquely identified
by a 〈generator ID, sequence number〉 pair and contains a set
of summaries that are locally generated during a fixed time
interval.1

Neighbor nodes that receive a packet store it in their local
summary databases. Therefore, depending on the mobility and
the encounters of regular nodes, packets are opportunistically
diffused into the network (i.e., passive diffusion). MobEyes can
be configured to perform either single-hop passive diffusion
(i.e., only the original source of the data advertises its packet
to current single-hop neighbors) or k-hop passive diffusion
(i.e., the packet travels up to k-hop as it is forwarded by
j-hop neighbors with j < k). Other diffusion strategies could
easily be included in MobEyes. One strategy is single-hop
active diffusion, where any node periodically advertises all
packets (generated by itself and received from others) in its
local summary databases, at the expense of a greater traffic
overhead. As detailed in the experimental evaluation section,
in a usual urban VANET (node mobility restricted by roads),
it is sufficient for MobEyes to exploit the lightweight k-hop
passive diffusion strategy with very small k values to achieve
the desired diffusion levels.

Fig. 3 depicts the case of two sensor nodes C1 and C2 that
interact with other sensor nodes while moving (the radio range
is represented as a dotted circle). For ease of explanation, we
assume that there is only a single encounter, but in reality, any
nodes within dotted circle are considered encounters. In the fig-
ure, a black triangle with a timestamp represents an encounter.
According to the MobEyes summary diffusion protocol, C1 and
C2 periodically advertise a new summary packet SC1,1 and
SC2,1, respectively, where the subscript denotes 〈ID, Seq.#〉.

1The optimal interval can be determined by noting that the harvesting time
distribution is characterized by the verage (μ) and standard deviation (ρ). Then,
the Chebyshev inequality P (|x − μ| ≥ kρ) ≤ 1/k2 allows us to choose k
such that we can guarantee the needed harvesting latency, thus fixing the period
as μ + kρ. See related details in Section V.

Fig. 3. MobEyes single-hop passive diffusion.

At time T − t4, C2 encounters C1, and thus, they exchange
those packets. As a result, C1 carries SC2,1, and C2 carries
SC1,1.

Summary diffusion is time and location sensitive (spatial-
temporal information diffusion). In fact, regular nodes keep
track of the freshness of summary packets by using a sliding
window with a maximum window size (i.e., fixed expiration
time). In addition, a single summary packet may contain
multiple summaries, so we define “aggregate” packet sensing
location as the average of the sensing locations of all sum-
maries in the packet. When a packet expires or the packet
originator moves away more than a threshold distance from the
aggregate packet sensing location, the packet is automatically
disposed. The expiration time and the maximum distance are
system parameters that should be configured, depending on
urban monitoring application requirements. Let us also briefly
note that summaries always include, of course, the time and
location where the sample was taken. Upon receiving an adver-
tisement, neighbor nodes keep the encounter information (the
advertiser’s current position and current timestamp). This also
allows MobEyes nodes, when the type of urban monitoring
applications makes it applicable, to exploit spatial-temporal
routing techniques such as last encounter routing [43] and to
maintain a georeference service for proactively accessing the
data, which is obtained as a simple byproduct of summary
dissemination, without additional costs.

C. Summary Harvesting

In parallel with diffusion, MobEyes summary harvesting
takes place. There are two possible modes of harvesting “dif-
fused” information: 1) the on-demand mode and 2) the proac-
tive (or background) mode. The on-demand mode is suitable
for cases when the police agents react to an emergency call,
e.g., the previously mentioned poisonous gas incident. Police
agents will converge to the outskirts of the area (keeping a
safe distance of course) and will query vehicles for summaries
that correspond to a given time interval and area (i.e., a
time–space window). The agents can flood a query with such
information (i.e., like a route request in on-demand routing).
Each regular node resolves the query and returns its summary

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

888 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

to the agents (i.e., like a route reply in on-demand routing).
Therefore, the on-demand strategy is more likely a traditional
sensor network-based data harvesting protocol, e.g., Directed
Diffusion [44]—the reply is “diffused” in the direction of the
querier. The main difference in MobEyes would be that a query
has a spatiotemporal range. The police agents, as a team, will
collect as many summaries of interest that they can.

However, it is not very practical to exploit an on-demand
strategy in MobEyes due to the following reasons. First, agents
should provide a query with the range of spatiotemporal in-
formation, even in the usual cases when they have no precise
prior information. An improperly chosen query range may
require accessing a large number of vehicles (e.g., for a given
chemical attack that happened in a busy street, the police may
want to find out all the vehicles that pass by the scene within
the last several hours, which results in thousands of vehicles).
Second, the on-demand scheme is quite similar to conventional
data harvesting and requires maintaining a “concast” tree from
the query originator. However, the number of vehicles is ex-
pected to be very large in MobEyes, and vehicles are mobile;
thus, route management would have relevant implementation
costs in terms of overhead. Third, collecting a complete set
of summaries would be nontrivial and not always possible
due to intermittent connectivity and network partitions. To
overcome intermittence, a query/response can opportunistically
be disseminated in a delay-tolerant network style. However,
in such a case, the delay will be comparable to “proactive”
harvesting, with the additional cost of a separate dissemination
process. Fourth, in “covert” operations, agents may not want to
broadcast a query (e.g., so that they will not alert the criminals
that are currently being pursued). Then, the police must con-
sider physically dispatching agents to the location of interest
and collect summaries via physical contacts. In summary, this
on-demand “mechanical” search will be extremely costly and
potentially very time consuming.

To overcome such issues, we are proposing a “proactive”
version of the search based on distributed index construction.
That is, in each area, there are agent vehicles that collect all
the summaries as a background process and create a distributed
index. In this case, there is no time–space window concern
during collection. The only requirement is to collect all the
summaries in a particular area. Now, for specific information
(e.g., the poisonous gas level monitoring), the query is directed
to the target regular vehicles by exploiting the agents’ distrib-
uted index. The time–space window concept can be applied to
the “index” to find the vehicles in a particular place and time
and then pursue the hot leads. For example, upon receiving
a specific query, the agents collectively examine the “index,”
find a match, and decide to inspect, in more detail, the video
files that were collected by a “limited” number of vehicles.
The vehicles can be contacted based on the originator’s vehicle
ID number that is stored in each summary. A message is
sent to each vehicle, which requests it to upload the file at
the nearest police access point. Note that the request message
can exploit georouting by either exploiting the Geo Location
Service that maps the vehicle ID to the current vehicle location
or using “Last Encounter Routing” techniques [43], [45]. The
latter technique is particularly convenient here, because nodes

memorize the time and place of encounters at the time that
summary exchanges take place.

After the desired summaries have been found, both on-
demand and proactive processes require contacting the cars
under consideration. However, the proactive approach is much
more powerful, because it can considerably speed up the search.
For instance, if the inspection of the information that was
collected in the crime area indicates a possible escape direc-
tion by the terrorists, one can immediately search again the
proactively created index for a new time–space window without
having another time-consuming collection of summaries from
vehicles. However, maintaining that index is costly, because
agent resources must be dedicated to the task.

In the sequel, we will assume proactive index construc-
tion. Thus, the agents indiscriminately collect all summaries.
There is no loss of generality, however, because the procedure
will also allow on-demand index construction for a specific
time–space request. In fact, the only difference between the two
harvesting schemes is the size of the set that is being harvested.
In the on-demand scheme, the target set is a specific time–space
window. In the proactive scheme, the target set is the entire
geographic area within agent responsibility. There is no limit
on the harvesting time, although old records are timed out.

By considering the proactive (or background) harvesting
model, the MobEyes police agent collects summaries from reg-
ular nodes by periodically querying its neighbors. The goal is
to collect all the summaries that were generated in the specified
area. Obviously, a police node is interested in harvesting only
summary packets that it has not collected so far. To focus
only on missing packets, a MobEyes authority node compares
its list of summary packets with that of each neighbor (i.e.,
a set difference problem) by exploiting a space-efficient data
structure for membership checking (i.e., a Bloom filter).2 A
MobEyes police agent uses a Bloom filter to represent its set of
already-harvested still-valid summary packets. Each summary
has a 〈unique node ID, sequence number〉 pair, so we use it
as an input for the hash functions. The MobEyes harvesting
procedure consists of the following steps.

1) The agent broadcasts a “harvest” request message with its
Bloom filter.

2) Each neighbor prepares a list of “missing” packets based
on the received Bloom filter.

3) One of the neighbors returns missing packets to the agent.
4) The agent sends back an acknowledgment with a piggy-

backed list of returned packets and, upon listening to or
overhearing this message, neighbors update their lists of
missing packets.

5) Steps 3 and 4 are repeated until all missing packets are
sent.

An example of summary harvesting is shown in Fig. 4. The
agent first broadcasts its Bloom filter that is related to the
packets that have been collected so far (i.e., P2, P4, P6, P7,
P9, and P10), as shown in Fig. 4(a). Each neighbor receives
the filter and creates a list of missing packets. For example,
C3 has P3 and P8 to be returned, whereas C4 has P1 and P8.

2See also Section II.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 889

Fig. 4. MobEyes proactive summary harvesting. (a) Broadcast a harvest request. (b) C2 first returns missing packets. (c) Broadcast acknowledgement.

In Fig. 4(b), C2 is the first node to return missing packets
(P1, P3), and the agent sends back an acknowledgement that
is piggybacked with the list of received packets. Neighbor
nodes overhear the message and update their lists: C3 and
C4 both remove P1 and P3 from their lists, as depicted in
Fig. 4(c).

Note that membership checking in a Bloom filter is proba-
bilistic, and false positives are possible, even if they are rare
(as rapidly shown in the following section). In Fig. 4(b), for
example, a false positive on P1 makes C2 return only P3.
None of the neighbors can send P1. To deal with this prob-
lem, the agent periodically changes the set of hash functions.
Suppose that we use m hash functions. Each hash function
is a pseudorandom function (PRF), where a PRF takes two
arguments, Xk is the key (k = 1, 2, . . . ,m), and i is the in-
put value, which produces an output value o = FXk

(i). All
nodes are initially given the same set of keys Xk, where
k = 1, 2, . . . ,m. For periodic changes, the key for the kth hash
function in the nth epoch Xn

k can be calculated by hashing
the initial value Xn

k n times. The Bloom filter contains the
epoch number, which allows the neighbors to find the set
of keys for m hash functions. Even with failure, by period-
ically incrementing the epoch number, the agent can gather
the missing packets. In addition, note that, in our application,
a set changes over time, with summaries being inserted and
deleted, because summaries have spatiotemporal properties.
For deletion operations, Fan et al. introduced the idea of
counting Bloom filters, where each entry in the Bloom filter
is not a single bit but rather a small counter [37]. When an
item is inserted, the corresponding counters are incremented.
When an item is deleted, the corresponding counters are decre-
mented. For actual filter transfer, instead of sending the full
counting Bloom filter, each counter is represented as a single
bit. That is, the counter is 1 if its value is greater than 0;
otherwise, it is 0.

For simplicity, so far, we assumed that there is a single
agent that works to harvest summaries. In fact, MobEyes
can handle concurrent harvesting by multiple agents (pos-
sibly several hops apart) that can cooperate by exchanging
their Bloom filters among multihop routing paths; thus, this
step creates a distributed and partially replicated index of
the sensed data storage. In particular, whenever an agent
harvests a set of j new summary packets, it broadcasts its
Bloom filter to other agents, with benefits in terms of latency
and accuracy, as shown in the following sections. Note that
strategically controlling the trajectory of police agents, prop-
erly scheduling Bloom filter updates, and efficiently accessing

the partitioned and partially replicated index are part of our
future work. In the following section, we focus on the primary
goal of identifying the tradeoffs between dissemination and
harvesting in a single geographic area and the dependence
of MobEyes’ performance on various parameters. We also
analyze the traffic overhead that was created by diffusion/
harvesting and show that it can scale well to very large node
numbers.

V. DELAY AND SCALABILITY ANALYSIS

In this section, to evaluate and validate the effectiveness
of the MobEyes protocols, we present analytic results about
summary diffusion/harvesting and scalability.

A. Summary Harvesting Delay

In MobEyes, regular nodes receive summaries from their
neighbors (passive harvesting), and these summaries are har-
vested by police agents (active harvesting). Obviously, the ef-
fectiveness of active harvesting also depends on how extensive
the passive harvesting was. Therefore, we model the progress
of passive harvesting, from which we formulate the progress of
active harvesting. We extend the model to analyze k-hop relay
scope. We assume that there are N nodes that move within an
L × L m2 area, and each node advertises a single summary
packet (i.e., a total of N summary packets). For analysis, we
use two different mobility models, both with uniform spatial
node distribution: 1) the random-direction model and 2) the
Manhattan mobility model. In the random-direction mobility
model, nodes move toward random directions (chosen out
of [0, 2π]) at a speed of v on the average. The Manhattan
mobility model restricts node mobility patterns along grids.
Because a target direction is uniformly chosen in both cases,
the steady-state node distribution is uniform [5], [46]. Thus, the
node density is location independent. The Manhattan mobility
model exhibits uniform node distribution, because nodes are
uniformly distributed in the area where mobile nodes can go
along. Therefore, the node density can simply be expressed as
ρ = δN/L2, where δ is used to control the size of the area that
is covered by mobile nodes in the Manhattan mobility model,
and δ = 1 in the random-direction mobility model. The value δ
for the Manhattan mobility model is a function of grid layout
and communication range R, because node movement patterns
are restricted to the exploited grids (i.e., the covered area size
C is smaller than L2). Thus, we have δ = L2/C. For instance,
given an L × L area, the mobility pattern is restricted to a single

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

890 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

strip. The covered area size is 2R × L (where 2R is the radio
range of mobile nodes), instead of L2; thus, δ = L × L/2R ×
L = L/2R. Let v∗ denote the average relative speed of nodes.
As shown in [47], v∗ = v/2π

∫ 2π

0

√
(1 + cos θ)2 + sin2 θdθ =

1.27 v. In general, we simply assume that the average relative
speed can be modeled to be proportional to the average speed,
i.e., v∗ = cv, where c is a constant.

By extending [48], we now develop a deterministic discrete-
time model. Let us first reason on how many summaries a
node can receive for a given time slot. For ease of exposition,
we assume that all nodes are static, except for one regular
node. This node randomly moves and collects summaries by
passively listening to advertisements from encountered nodes.
In this case, the node (or the passive harvester) behaves just as
a data mule in traditional sensor networks [29]. During time
slot Δt, a regular node travels a distance r = vΔt, and the
covered area size is vΔt2R, where R is the radio range. The
expected number of encountered nodes in this area is simply
α = ρvΔt2R. Each of these nodes will advertise its summaries,
so the regular node will receive α summaries. The dual scenario
is when all nodes are mobile, but the passive harvesting node
is static. Without loss of generality, if all nodes are mobile,
we can simply replace the average speed with the average
relative speed: α = ρv∗Δt2R where v∗ is the average relative
speed.3

Given α, we can estimate the progress of passive harvesting
as follows. Let Et denote the number of distinct summaries
that were collected by a regular node by time slot t. As we
have previously described, during time slot Δt, a regular node
will receive α summaries. The node has Et summaries, so
the probability that the received summary is new is simply
1 − Et/N . Thus, the expected number of new summaries out
of α is given as α(1 − Et/N). It is obvious that restricted
movement patterns (e.g., two nodes that move together along
the same path in the Manhattan mobility model) will affect
the effective number of neighbors. We are interested in the
average behavior, and we can model this by simply multiplying
α with a constant compensation factor η. Therefore, we have
the following relationship:

Et − Et−1 = αη

(
1 − Et−1

N

)
. (1)

Equation (1) is a standard difference equation with the follow-
ing solution:

Et = N − (N − αη)
(
1 − αη

N

)t

. (2)

Equation (2) tells us that the distinct number of collected sum-
maries is geometrically increasing. As time tends to infinity,
Et = N . Let us define a random variable T to denote the time

3We can think of this as follows. For example, in front of a freeway (where
everybody is driving in one direction at a constant speed v), we count the
number of vehicles that pass by. During Δt, it will be ρvΔt. Now, let us
assume that an observer is also moving. If it moves in the same direction, i.e.,
the relative speed is 0, it always observes the same vehicles. On the contrary,
if it moves in the opposite direction, the relative speed is 2v, and it will see
ρ2vΔt vehicles.

that a regular node encounters any random node, thus receiving
a summary from it. The cumulative distribution of random
variable T can be derived by dividing (2) by N , i.e.,

FT (t) = 1 −
(
1 − αη

N

)t+1

. (3)

Then, we can derive the probability mass function fT (t) as
follows:

fT (t) =
αη

N

(
1 − αη

N

)t

. (4)

Equation (4) is a modified geometric distribution with suc-
cess probability p = αη/N . The average is given as E[T] =
1/p − 1 = N/αη − 1. Since α = ρv∗Δt2R, by replacing ρ =
δN/L2, we have α = N/L2v∗Δt2R. Thus, we have

E[T] =
N

αη
− 1 =

L2

δv∗Δt2Rη
− 1. (5)

As shown in (5), given a square area of L2, the average time
for a regular node to collect a summary is independent of the
node density. In fact, it is a function of the average relative
speed and communication range. Intuitively, as the node density
increases (i.e., N increases), a node can collect more summaries
during a given time slot. However, higher density means that the
total number of summaries to be collected is higher. Thus, the
two factors compensate for each other.

Unlike regular nodes, the agent actively harvests summaries
from its neighbors. Every node moves randomly and starts
passive harvesting at time 0, so it is expected that every node
has the same number of summaries that were collected by
time t (Et). Therefore, the probability that a neighbor node
does not have a random summary is given as 1 − Et/N . The
probability that none of the αη neighbors has a summary is
simply (1 − Et/N)αη . The probability that at least one of the
neighbors has a random summary is 1 − (1 − Et/N)αη . The
expected number of distinct summaries that the agent receives
from its neighbors at time slot t can be expressed by simply
multiplying that probability by N , i.e.,

N

(
1 −

(
1 − Et−1

N

)αη)
. (6)

Let Ht denote the expected number of distinct summaries that
were harvested by the agent up to time slot t. The agent has Ht

summaries, so the probability of acquiring a new summary is
1 − Ht/N . Hence, multiplying this probability by the expected
number of summaries that were harvested from the neighbors
[see (6)] gives us the number of new summaries harvested
during time slot t as follows:

Ht − Ht−1 = γN

(
1 −

(
1 − Et−1

N

)αη) (
1 − Ht−1

N

)
(7)

where the constant compensation factor γ adjusts the expected
number of summaries that were received from the neighbors
to consider the restricted mobility. Note that, as we have
previously described, restricted mobility such as in the Man-
hattan mobility model reduces the rate of new encounters
(adjusted by η) and exerts baleful influence on the rate of active

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 891

Fig. 5. Fraction of harvested summaries with k = 1 and 2.

harvesting, because neighbors tend to carry overlapping sum-
maries (adjusted by γ).

Based on (7), we see that Ht grows much faster than Et.
During a time slot, the number of collected summaries in (2) is
constant (α), whereas in (7), it is a function of time. Moreover,
(6) is a function of the number of neighbors, i.e., related to the
node density. As N (or the node density) increases, we can see
that the harvesting delay also decreases.

The growing rates of Et and Ht depend on mobility mod-
els. The aforementioned equations are based on the random-
direction mobility model, but for restricted-mobility models,
such as the Manhattan mobility model, the rate will be smaller
than for the others (as shown in Section VI). In this case,
MobEyes decides to use k-hop limited scope flooding, where a
summary is forwarded up to k hop neighbors, as long as there is
connectivity. Again, we are assuming a rectangular area Δt2R.
Increasing the relay scope by k hops is the same as multiplying
the area by k times.

Let Ek denote the number of summaries that were collected
by time slot t with k-hop relay scope. Thus, we have

Ek
t − Ek

t−1 = kαη

(
1 − Ek

t−1

N

)
. (8)

This equation tells us that, even though Et grows rather
slowly due to the mobility model, by increasing the hop count,
we can increase the Et rate (from α to k ∗ α). Let Hk denote
the number of summaries that the agent harvested by time slot
t with k-hop relay scope. Then, we have

Hk
t − Hk

t−1 = γN

(
1 −

(
1 − Ek

t−1

N

)kαη
)(

1 − Hk
t−1

N

)
.

(9)

For illustration, we assume that we have a total of N =
200 nodes within an area of 2400 m × 2400 m. The transmis-
sion range is R = 250 m, and the node relative speed is 10 m/s
on the average. For system parameters, we used η = 1, γ = 0.2,
and Δt = 1 s. The iterative solutions of both Et and Ht are
presented in Fig. 5, which shows that the agent can harvest
summaries much faster than a regular node, and a k-hop relay
relevantly decreases the overall delay.

B. Scalability

The feasibility of MobEyes strictly depends on its scalability
over wide VSNs in terms of the network traffic due to both
passive diffusion when the number of regular nodes grows and
the number of regular nodes that a single harvesting agent can
handle with a reasonable latency.

With regard to passive diffusion network traffic, it is possible
to analytically estimate the MobEyes radio channel utilization.
In the diffusion process, nodes periodically advertise their
packets, without any synchronization among them. Therefore,
we can model the process by considering a packet that was
randomly sent within [iTa, (i + 1)Ta) time slot for all i, where
Ta is the advertisement period. Therefore, the number of pack-
ets that a node has received is bounded by the number of its
neighbors while it is traveling for Ta, thus depending on the
node density but not on the overall number of nodes. In contrast,
any “flooding”-based diffusion protocol is not scalable, because
a node can potentially receive a number of packets proportional
to the network size.

To give a rough idea of the traffic that the MobEyes diffusion
generated, let us simply use Ta = 2R/v∗ (i.e., the time that a
mobile node traverses the diameter of its coverage area), where
R is the transmission range, and v∗ denotes the relative speed
of two nodes. In fact, for a given speed, the Ta interval should
neither be too short nor too long compared with the average
connection duration among nodes. If it is too short, then we
are unnecessarily sending out more packets to the same set
of nodes, thus increasing link bandwidth utilization; on the
contrary, if it is too long, a node misses its chances to send
packets to encountered nodes, thus slowing down the dissem-
ination. In our target deployment environment, v∗ = 20 m/s,
R = 250 m, the advertisement period Ta = 12.5 s, and the
fixed packet size S = 1500 B. Consequently, the transmission
time for one packet is about Tx = 1 ms. While traveling for
Ta, a node moves 2R, and the covered rectangular area size is
4R2. In addition, the covered area includes two half circles at
the beginning and ending of the rectangle (due to the wireless
communication range). Thus, a regular node will be exposed to
advertisements from an area of A = πR2 + 4R2. In the worst
case, all nodes within this area are distinct and potentially send
their generated packets to the considered node (i.e., potential
senders n = Aρ). Therefore, the worst case link utilization
could be estimated as nTx/Ta, where Tx is the transmission
time of a packet. For instance, given a relatively high popu-
lated area with N = 2, 000, the number of potential senders is
n � 179, and the MobEyes protocol has a very low worst case
link utilization of 0.014, thus showing high scalability in terms
of link bandwidth exploitation.

Similarly, we can give an approximated idea of the scalability
of the harvesting process via a simple queuing model. Consider
the usual situation of a police agent that harvests only fresh
summaries, i.e., generated in the last Texp s. Let us assume
that the summary arrival rate is Poisson with rate λ = Nλ′,
and the harvesting rate is deterministic with rate μ. Given that
the harvesting rate is limited by the channel utilization ϑ, the
maximum μ is simply ϑTexp/Tx. As a result, the system can
be modeled using an M/D/1 queue. The stability condition

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

892 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

Nλ′ < ϑTexp/Tx gives us the upper bound N < ϑTexp/λ′Tx.
Therefore, it is possible to conclude that, for a given Texp and
arrival rate, there is a limit in the number of regular nodes
that a single harvesting agent can handle. For instance, in
the considered scenario (ϑ = 0.01, λ′ = 2, and Texp = 250 s),
that number is N < 0.01 × 250/(2 × 0.001) = 1, 250. As a
consequence, in the case of node numbers being equal to or
not far from 1,250, there is a need to deploy more than one
harvesting agent to maintain the system stable (i.e., to more
rapidly harvest summaries than regular nodes generate them).

VI. MOBEYES PERFORMANCE EVALUATION

We evaluated the MobEyes protocols via extensive ns-2 [49]
simulations. This section shows the most important results, with
the goal of investigating MobEyes’ performance based on the
following perspectives.

1) Analysis validation. We simulate the MobEyes protocols
for summary collection on regular nodes and for agent
harvesting and show that they confirm our main analytic
results.

2) Effect of k-hop relay and multiple agents. We examine
how MobEyes’ effectiveness can be increased by lever-
aging k-hop passive diffusion and the deployment of
multiple agents.

3) Summary diffusion overhead. We investigate the tradeoff
between harvesting delay and the load that was imposed
on the communication channel.

4) Stability and scalability check. We verify that the system
is stable/scalable, even in the worst case of a single
harvesting agent and of the highest summary generation
rate in Section V.

5) Tracking application. We prove MobEyes’ effectiveness
in supporting a challenging tracking application, where
trajectories of regular nodes are locally reconstructed by
a police agent based on harvested summaries.

6) Border effects and turnover. We show that MobEyes’
performance does not dramatically change in the case
with more dynamic mobility models, where nodes are
allowed to enter/exit from the simulated area.

Additional experimental results and MobEyes implemen-
tation details are available at http://www.lia.deis.unibo.it/
Research/MobEyes/.

A. Simulation Setup

We consider vehicles that move in a fixed region of size
2400 × 2400 m. The default mobility model is Real-Track (RT),
which was introduced by our colleagues in [50]. RT permits
us to model realistic vehicle motion in urban environments. In
RT, nodes move following virtual tracks, thus representing real
accessible streets on an arbitrary loaded roadmap. For this set of
experiments, we used a map of the Westwood area in the vicinity
of the University of California at Los Angeles (UCLA) campus,
as obtained by the U.S. Census Bureau data for street-level
maps [51] (see Fig. 6). At any intersection, each node randomly
selects the next track that it will run through. The speed is
periodically allowed to change (i.e., increase or decrease) by a

Fig. 6. Map of the Westwood area in the UCLA campus.

quantity that is uniformly distributed in the interval [0,±Δs].
To evaluate the impact of the mobility model on MobEyes’
performance, we tested two additional well-known models:
1) Manhattan (MAN) [48] and 2) random waypoint (RWP)
[52]. Similar to RT, MAN builds node trajectories following
urban roads; however, in MAN roads are deployed according
to a regular grid, thus allowing a more uniform node deploy-
ment. In our simulation, we adopted a 10 × 10 grid. RWP
does not constrain node positions to follow actual road tracks
but moves nodes toward randomly selected destinations with
random speeds. When a node reaches its destination, it pauses
for a fixed period (which we set to be equal to 0 by homogeneity
with the other models) and then selects a new destination.
Surprisingly, RWP is considered “a good approximation for
simulating the motion of vehicles on a road [53]”, generally
producing limited distortion on protocol performance. Note
that MobEyes agents do not exploit any special trajectory or
controlled mobility pattern but move by conforming to regular
nodes.

Our simulations consider the number of nodes N = 100,
200, 300. Vehicles move with an average speed of v = 5, 15,
25. To obtain these values, we tuned the minimum speed to
vm = 1 and the maximum speed to vM = 11, 31, 51, respec-
tively. The summary advertisement period of regular nodes
and the harvesting request period are kept constant and equal
to 3 s through all the simulations. We use a Bloom filter
with 8192 bits (1024 B) and 10 hash functions. We have a
large filter size (i.e., 8192 bits) compared with the number of
summaries, so the false-positive probability is negligible.4 We
note that if the value of this parameter is too large, MobEyes’
effectiveness is reduced, because it is possible that two nodes
do not exchange messages, even if they occasionally enter each
other’s transmission ranges. This effect is magnified, as the

4The false-positive probability is pf = (1 − (1 − 1/m)�ω)� � (1 −
e−�ω/m)�, where m is total number of bits, ω is the number of elements,
and � is the number of hash functions.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 893

Fig. 7. Fraction of passively harvested summaries by a regular node. (a) RWP. (b) MAN. (c) RT.

Fig. 8. Fraction of actively harvested summaries by an agent. (a) RWP. (b) MAN. (c) RT.

node speed v increases. The chosen value has experimentally
been determined to balance the effectiveness of our protocol
and the message overhead, even in the worst case, i.e., v = 25.
A deeper more formal investigation of the optimal value of the
advertisement period is an object of future work.

Finally, we modeled communications as follows: the MAC
protocol is IEEE 802.11, the transmission band is 2.4 GHz,
the bandwidth is 11 Mb/s, the nominal radio range is equal to
250 m, and two-ray ground is the propagation model [54]. The
values of these parameters have been chosen similar to other
work in the field [17], [20]. Unless stated otherwise, reported
results are average values out of 35 repetitions. Other MobEyes
configuration parameters will be introduced in the following
sections when discussing the related aspects of MobEyes’
performance.

B. Analysis Validation

Our first goal is to validate the results that were obtained in
Section V. In particular, we investigate the regular node collec-
tion and agent harvesting processes, as described, respectively,
by (2) and (7). Without loss of generality (see Section VI-E),
let us assume that new summaries are synchronously generated
by all regular nodes. A generation epoch is the time interval
between two successive summary generations. In this set of
experiments, every regular node continuously advertises the
single summary that it generated in the epoch t = 0 for the rest
of the simulation run. Equations (2) and (7) characterize the
spreading processes of all summaries that were generated in the

same epoch, so it is not necessary that regular nodes generate
additional summaries. We remark that this assumption does not
undermine the relevance of our results, because the process is
stationary, as described in Section VI-E.

Figs. 7 and 8 show the results that were collected for a num-
ber of nodes N = 100/300, average speed v = 5/25, and the
RWP, MAN, and RT mobility models. In particular, Fig. 7 plots
the cumulative distribution of summaries that were collected by
regular nodes as a function of time. The figure shows that the
process highly depends on the average node speed. In fact, the
speed determines, to a large extent, how quickly nodes “infect”
other participants with their own summaries. The results do not
depend on the node density, as shown in (4). Our analytic model
(2) accurately fits the simulation results for RWP and MAN.
The curves for the RT model exhibit worst fitting: They start
deviating from that of analytical results after certain thresholds
[i.e., the analytic results that were not reported in Figs. 7(c) and
8(c)]. RWP shows slightly better accuracy mainly due to node
unconstrained motion and to the tendency to gather at the center
of the field as time passes [46]. Although both MAN and RT
show restricted mobility patterns, their node distributions are
different: MAN has almost-uniform node distribution over the
grids, whereas RT exhibits nonuniform node distribution over
the map, as shown in [55]. Our model is based on uniform
distribution, so the curve fitting works well with MAN. The
experimental results helped us tune the constant compensa-
tion factor η that we have introduced in Section V to take
into account the nonuniform movement patterns. In detail, the
values that we have found are 0.97 and 0.9, respectively, for

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

894 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

Fig. 9. Fraction of actively harvested summaries by multiple agents with k-hop relay (N = 300 and v = 15). (a) RWP. (b) MAN. (c) RT.

v = 15 m/s and v = 25 m/s in RWP and 0.40 and 0.36 in MAN.
As restrictions on node mobility grow due to the mobility
model, the values of η decreases, thus representing a slower
process.

Fig. 8 plots the cumulative distribution of summaries that
were harvested by a police agent as a function of time. The
figure shows that the results are mainly dependent on the speed.
Unlike in passive harvesting, density plays an important role
in active harvesting. In the analysis section, we show that the
higher the density, the faster the harvesting progress [see (7)].
Intuitively, if there are more neighbors, the agent has a higher
chance of getting a random summary. Our analytic model well
fits the simulations, particularly when we have large N and
v. This set of results allowed us to tune the parameter γ,
accounting for the effect of the overlapping of summaries that
were contributed from regular agents (see Section V). In detail,
the values that we have found are 0.21 and 0.21, respectively,
for v = 5 m/s and v = 25 m/s in RWP and 0.15 and 0.20
in MAN.

C. Effect of k-Hop Relay and Multiple Agents

The effectiveness of MobEyes harvesting can be measured in
terms of the fraction of summaries that were harvested by the
agent(s) as a function of time. To enhance the validity of our
conclusions, it is important to determine the dependence of the
performance indicators on different mobility models. In [56],
we only investigated the RT mobility model. In this paper, we
extend the results to RWP and MAN. For every mobility model,
we show plots for 1, 3 agents (a#) and for 1, 3 relay hops
(k). For k-hop relaying, we use a probabilistic flooding, i.e.,
a node rebroadcasts a newly received packet with probability
p = 0.5.5 The summary harvesting latency is a crucial figure for
determining the feasibility of the MobEyes approach, because
it allows us to estimate the fraction of harvested summaries by
the agent within a certain time t. This estimation is useful in
deciding the tuning of the parameters (the k-hop relay scope
and the number of agents) to address application requirements.
Fig. 9 shows how the number of agents, the choice of the
number of relaying hops k, and the average speed v of the

5In the simulation, we use the arbitrary value, but for a given scenario, we can
pick the probability that can minimize the overhead (i.e., redundant broadcasts).
Note that we can further reduce the overhead by using the efficient broadcast
schemes in [57].

nodes influence the process. Fig. 9 plots the cumulative distrib-
ution of the summaries that were harvested for N = 300 and
v = 15 m/s. In the case of multiple agents, the harvesting
process considers the union of the summary sets that were har-
vested by agents. The figure clearly shows that the k-hop relay
scope and multiple agents highly impact harvesting latency.

By carefully inspecting the results in Fig. 9, it is possible
to obtain some guidelines on the choice of MobEyes param-
eters. For example, given, as a baseline, a network with
N =300 nodes that move with an average speed of v = 15 m/s,
fixed k = 1, a single agent employs 530 s, 236 s, and 116 s to
harvest 95% of the summaries that were generated, respectively,
in the RT, MAN, and RWP mobility models. By increasing k
to 3, the times, respectively, reduce to 420 s, 176 s, and 86 s,
which shows an improvement of about 20%–30% in all cases.
On the other hand, by increasing the number of agents to three,
the times become, respectively, 280 s, 123 s, and 68 s. In this
case, the improvement is in the range of 40%–50%. If we set
v = 25 m/s, the times become 211 s, 67 s, and 43 s, respectively,
and the improvement is around 60%–70%. Interestingly, the
relative impact of the three parameters (i.e., the harvesting
team size, multihop forwarding, and speed) shows a limited
dependence on the mobility model. This fact also holds for the
results that we have collected for different cases (i.e., different
values of N and v). In particular, speed has a larger impact than
the number of agents, and k is the less-decisive factor.

D. Summary Diffusion Overhead

The study of the diffusion overhead helps us understand
the requirements that were imposed on the underlying vehic-
ular communication technology and to determine if MobEyes
can coexist with other applications. For example, parameter k
shows the largest impact on the performance. The effect due
to a small number of agents is negligible, because the agents
are only responsible for local single-hop traffic. Fig. 10 shows
the average received packets per node per second, which was
obtained during a simulation time of 1000 s. In this set of
simulations, we fixed k = 1 and changed all the other parame-
ters, i.e., the mobility model (RWP, MAN, and RT), N (100,
200, and 300), and v (5, 15, and 25). As expected, the number
of received packets linearly increases as the number of nodes
increases. Therefore, for clarity, Fig. 10 only reports the case
with N = 300. In addition, the number of received packets

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 895

Fig. 10. Total number of received packets (k = 1).

exhibits no dependence on v. In all the considered cases, the
overhead is limited, i.e., on the order of few (e.g., two to five)
packets per second, which proves the low impact of MobEyes
on the available bandwidth.

The latter result could mislead us to conclude that speed
increments would not impact the harvesting latency, because
the number of received packets would not change. This appar-
ently invalidates our previous results (see Fig. 7) and has the
following motivations. For a fixed advertisement interval, as
the average speed increases, the probability of useful meetings
(i.e., of receiving a nonredundant summary) increases, because
there is more mixing among mobile nodes. For example, given
an average speed v, let us assume that the average period that
any two nodes are within their communication ranges simply be
2R/2v. Then, with v being set to 5 and 25 m/s, and R = 250 m,
the periods can be estimated as 50 and 10 s, respectively. This
step implies that the case with 5 m/s has roughly five times
higher chances of receiving redundant advertisements than the
case with 25 m/s. It is interesting to note that, for a given
average speed, there exists an optimal advertisement period that
allows for maximizing nonredundant summary diffusion while
minimizing the overhead. Analytically determining this value
will be part of our future work.

Fig. 11 shows the magnifying effect that was produced by an
increase in parameter k. k-hop relaying produces an enlarge-
ment of the area where summary packets are diffused intuitively
proportional to k2. Consequently, the number of nodes that
were affected by a single summary diffusion will also be about
k2 larger than the single-hop case. Moreover, nodes receive any
summary packet only once in the single-hop case, whereas with
k-hop relaying, any node within k hops from the originator
receives it a number of times proportional to the number of its
neighbors. Thus, the total overhead is expected to increase by
a factor that is larger than k2 but is lower than k2 times the
average number of neighbors (note that k-hop distant nodes do
not relay packets, thus reducing the latter factor for k-hop and
k − 1-hop distant nodes). The combination of these results with
those in Fig. 9 lead us to conclude that parameter k allows for
decreasing the harvesting latency (i.e., about 20%–30% for k =
3) but at the price of a relevant overhead increase (i.e., around

Fig. 11. Total number of received packets (k = 3).

15–20 times). The proper balance of latency/k tradeoff can only
be decided based on specific characteristics and requirements of
the supported urban monitoring application.

E. Stability and Scalability Check

In what follows, we investigate the stability of MobEyes by
verifying that continuous summary injections do not influence
its performance to a large extent. In particular, we show that
the ratio of summaries that were harvested on longer periods
remains acceptable and that the harvesting latency does not
grow as time passes. With regard to the results that we have
presented so far, here, we remove the assumption about the
single summary generation epoch at t = 0. Nodes generate
new summaries with period T = 120 s and advertise the last
generated summary. Note that in Section III, this rate repre-
sents a practical worst-case scenario. For clarity, we hold the
synchronicity assumption: all nodes simultaneously generate
new summaries at intervals multiple of T . We obtained similar
performance with differently distributed generation intervals,
i.e., Poisson with average value T , but plots (particularly related
to results in Fig. 13) are far more jumbled. The following results
are reported for the case of a single harvesting agent, k = 1,
N = 100, v = 15 m/s, and with nodes moving according to the
RT model.

Fig. 12 plots the cumulative distribution of the number of
summaries that were generated and harvested as a function of
time (i.e., we ran simulations for 6000 s). The graph shows
that the harvesting curve tracks the generation curve with a
certain delay, which can be traced to the harvesting latency
in Section VI-B. This also motivates the difference of the
endpoints of the two plots. Fig. 13 provides further evidence
of the stability of the system, and the curves show the har-
vesting latency for summaries that were generated during some
generation epochs. For clarity, the graph does not exhaustively
represent every generation epoch but only samples one genera-
tion epoch every T ∗ 7 = 840 s until the end of the simulation
time. The different curves show similar trends, without any
performance degradation that was caused by the increase in
the number of summaries in the network. The harvesting that

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

896 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

Fig. 12. Stability of summary harvesting with continuous summary injection.
Cumulative distributions of generated and harvested summaries over all gener-
ation epochs.

Fig. 13. Stability of summary harvesting with continuous summary injection.
Cumulative distributions of harvested summaries in every seven-generation
epoch (120 ∗ 7 = 840 s interval).

is related to the last summary generation epoch is evidently
incomplete (i.e., 25% of the summaries are harvested within
the timeline), because the epoch starts 120 s before the end of
the simulation. We also evaluate the scenario with N = 1000 to
show the scalability. Fig. 14 shows that the harvesting latency
is considerably reduced compared to the case with N = 100.
Thus, our protocol scales well. The result matches with the
observation from our analytic model in Section V-A, where we
find that the harvesting delay decreases as the number of nodes
increases.

We also investigated if higher summary generation rates af-
flict MobEyes’ performance. We shortened T from 120 s to 6 s
(with T = 6 s, the chunk generation rate is 100 ms). Such a gen-
eration rate is largely greater than the rate that is required for the
set of applications that MobEyes addressed. Simulation results
prove that MobEyes’ performance starts degrading only when
T < 30 s. Fig. 15 shows the harvesting process for two epochs
(i.e., 0 and 2520 s) and compares T = 120 s with T = 6 s. The
second case shows that MobEyes’ performance gracefully de-
grades as the generation epoch shortens, thus demonstrating the
high stability of the system when operating in usual summary

Fig. 14. Scalability of summary harvesting with N = 1000. Cumulative
distributions of harvested summaries in every seven-generation epoch (120 ∗
7 = 840 s interval).

Fig. 15. Impact of different summary generation rates (T = 6, 120 S).
Cumulative distributions of two epochs (t = 0, 2520 S).

rate conditions. We expect that the performance degradation
happens in an earlier stage as the number of nodes increases.
However, the advertisement period can be shortened, because
the harvesting delay is also decreased. This reduces the overall
overhead, and thus, the performance degradation happens rather
gracefully with the number of nodes. For instance, our results
with N = 1000 show that the performance starts degrading
when T < 50 s. Note that if a single agent cannot sustain the
configuration, multiple agents can be used for better scalability,
as discussed in Section V-B.

F. Tracking Application

In the Introduction, we have sketched some application cases
for MobEyes. To prove its effectiveness in supporting urban
monitoring, we also simulated a vehicle tracking application
where the agent reconstructs node trajectories that exploit the
collected summaries. This application is challenging, because it
requires our system to observe the following: 1) Monitor a large
number of targets, i.e., all participant vehicles; 2) periodically
generate fresh information on these targets, because they are
highly mobile; and 3) deliver to the agent a high share of the

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 897

Fig. 16. Maximum uncovered intervals per node.

generated information. Moreover, because nodes are generally
spread all over the area, this application shows that a single
agent can maintain a consistent view of a large zone of respon-
sibility. In more detail, as regular cars move in the field, they
generate new summaries every T = 120 s and continuously
advertise the last generated summary. Every summary contains
60 summary chunks, which are created every ChunkPeriod =
2 s and include the license plate and position of the vehicle
nearest the summary sender at the generating time, which is
tagged with a timestamp. The application exploits the MobEyes
diffusion protocol with k = 1 to spread the summaries and
deliver as much information as possible to a single agent that
scouts the ground. As the agent receives the summaries, it
extracts the information about node plates and positions and
tries to reconstruct node trajectories within the area. This step is
possible by aggregating data that are related to the same license
plate, as reported from different summaries.

To determine the effectiveness of MobEyes, we decided to
evaluate the average uncovered interval and maximum uncov-
ered interval for each node in the field. Given a set of summary
chunks related to the same vehicle and ordered on a time basis,
these parameters measure, respectively, the average period for
which the agent does not have any record for that vehicle
and the longest period. The latter interval typically represents
situations in which a node moves in a zone where the vehicle
density is low; thus, it cannot be traced by any other participant.
We associated the average and maximum uncovered intervals
to each simulated node and present the results in Fig. 16 (note
the logarithmic scale on the y-axis). Every point in the figure
represents the value of the parameter for a different node.
We sorted nodes on the x-axis so that they are reported with
increasing values of uncovered interval. Results are collected
along a 6000-s simulation. The plot shows that, in most cases,
the average uncovered interval floats between [2.7 s–3.5 s].
The maximum uncovered interval shows that, even in the worst
cases, the agent has at least one sample every 200 s for more
than 90% of the participants. A more immediate visualization
of the inaccuracy is given in Fig. 17, which shows, for the case
of a node with a maximum uncovered interval that is equal to

Fig. 17. Actual node trajectory versus harvested sampled points.

200 s (i.e., locating this node in the lowest tenth percentile), its
real trajectory (i.e., the unbroken line) and the sample points
that the agent collected.

G. Border Effects and Turnover

Usual mobility models [58], e.g., RWP, MAN, and RT,
assume that nodes remain within the simulated area during the
entire simulation (in the following discussion, we indicate them
as closed mobility models). Even if this does not necessary hold
for MobEyes applications, we observe that this assumption does
not invalidate our findings. First, if we consider a sufficiently
large area, which is on the order of several hundred kilometer
squares, the amount of time that nodes continuously reside
within the area is likely very long, i.e., for most nodes, a
closed mobility model. Second, the worst effect of dynamic
scenarios takes place when nodes leave a specific area and carry
several summaries (locally generated or collected) that are not
yet harvested by the local agent. Nonetheless, we remark that
carried information does not vanish as nodes leave but can be
harvested later by remote agents, who are responsible for the
adjacent area where the leaving nodes are moving.

However, to estimate how node entrances/exits impact the
presented results, we tested MobEyes with a novel mobility
model, i.e., open-RT, which takes these effects into account. In
open-RT, nodes follow the same patterns of RT but with one ex-
ception: as soon as a node reaches the endpoint of a track, which
is close to the boundary of the area, it suddenly disappears.
To keep the number of nodes within the area unchanged and
obtain results comparable to the ones presented in the previous
sections, we assume that the net vehicle flow in/out the area
is null. Thus, any node that exits from the area is immediately
replaced with one node that enters, and the latter node is placed
at the endpoint of a random road, which is close to the boundary
of the area.

This dynamic effect is better evaluated for long simulation
periods and periodic summary generation epochs. Thus, we
confirm the settings that were used in Sections VI-E and F.
In addition, we consider a single harvesting agent, k = 1,
N = 100, and v = 15 m/s. Nodes synchronously generate
new summaries and only as long as they remain in the area.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

898 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

Fig. 18. Cumulative distribution of harvested summaries per epoch
(open-RT).

Fig. 19. Maximum uncovered intervals per node (open-RT).

To keep nodes from staying within the area only for very short
periods, we introduce a constraint on their minimum residing
time, which is equal to 10% of the whole simulation. Even
with this assumption, more than 550 nodes need to take turns
on the simulation area to keep 100 nodes always present. The
agent does not follow the open-RT model but the traditional RT
model, i.e., it always remains within the area.

Figs. 18 and 19 present results that correspond to those in
Sections VI-E and -F but were obtained with the open-RT
model. Significant conclusions can be drawn, particularly based
on Fig. 18. Under these unfavorable assumptions, the agent can
collect more than 85% of any generated summary, and in most
cases, it reaches 90%. By inspecting simulation traces, we could
find that missing summaries generally originate with vehicles
leaving the area within a short interval from any epoch. In that
case, the last generated summary is only advertised for that
short interval and cannot spread enough to reach the agent. Note
that those summaries are not irreparably lost but will probably
be harvested by agents who are in charge of the adjacent
areas. Fig. 19 shows the average and maximum uncovered
intervals, as obtained with the open-RT model. The quality of
the reconstructed trajectories is only slightly degraded, given

that the average uncovered interval is shorter than 4 s for more
than 75% of the nodes (and shorter than 10 s for 90%) and that
the 85th percentile of the vehicles can be tracked with a worst-
case inaccuracy of 200 s.

H. Discussion

1) Mobile Versus Static Agents: We assume that police
agents are also mobile. It would be also possible that stationary
agents can be placed on the roadside for summary harvesting.
Then, the question is whether the performance of static agents
is comparable with that of mobile agents. The answer is that
mobile agents perform better than static agents, because, for a
given period of time, mobile agents will encounter a larger num-
ber of nodes than static nodes. To be precise, in Section V, we
show that the number of mobile nodes encountered during Δt is
given as α = ρv∗Δt2R, where v∗ is the average relative speed.
If the agent is static, the relative speed is simply replaced with
the average speed. The relative speed between mobile nodes
is typically faster than that between mobile and static nodes.
Thus, α is greater if the agents are mobile (i.e., lower latency).
In addition, in the urban grids, the spatial node distribution of
vehicles in the steady state is usually nonuniform. If an agent
is misplaced (i.e., where there are few vehicles on the average),
the harvesting latency will be large. To clearly understand the
performance difference and how the position of a static node
affects the latency, we use a scenario with 100 nodes that move
at an average speed of 25 m/s. We intentionally fix the location
of a random node (as an agent) to its initial position, which
is uniformly distributed in the simulated area, i.e., for a given
scenario file (N = 100,V = 25 m/s), we generate 100 scenario
files by fixing a node one by one to its initial position. Our
simulation results show that the average latency widely varies,
depending on the location. We find that the area with high
spatial node distribution minimizes the latency, but the average
latency of mobile agents is still lower than that of static agents.

2) Impact of Radio Range: The radio range is an important
performance parameter. Recall that the radio range controls the
number of encountered nodes per unit time (α = ρv∗Δt2R).
The performance with various radio ranges can analytically be
determined using our models in Section V. The large commu-
nication range reduces the dissemination/harvesting latency but
will limit the scalability of network due to increased channel
contention.

3) Comparison With Other Schemes: Let us compare the
performance with other two naive schemes: 1) direct contact
and 2) probabilistic flooding. In direct contact, regular vehicles
do not advertise summaries, and the agent harvests the sum-
maries only from the summary originator. CarTel [6] uses direct
contact for data uploading. In probabilistic flooding, regular
vehicles use probabilistic flooding to broadcast its summary.
Upon receiving a message, each node rebroadcasts the message
with a certain probability p. The performance of direct contact
is the same as that of “passive harvesting.” Recall that a
regular node performs passive harvesting, because it only stores
summaries that were received from its one-hop neighbors. Our
analytic model clearly shows that the agents harvest summaries
much faster than the regular nodes. Thus, we only consider the

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 899

performance of the flooding scheme. Given p = 1, we measure
the fraction of collected summaries that were generated for a
period of 2000 s. Each message is generated every 20 s (with a
total of 100 messages per node). To generate intermittent con-
nectivity, we simulate 50 nodes that move at the average speed
of 15 m/s. The RT model is used. We measure the completeness
of summary harvesting, i.e., the fraction of messages that were
harvested out of a total of 49 000 (49 ∗ 100) messages. Our
results show that MobEyes can collect 100% of summaries,
whereas the probabilistic scheme collects 32% of summaries.
Note that the completeness gain of MobEyes comes at the cost
of increased latency.

VII. MOBEYES PRIVACY AND SECURITY

MobEyes nodes continually generate and diffuse summaries
that contain private information, e.g., license plate numbers.
Thus, privacy is of critical importance. On one hand, unautho-
rized nodes must not be given access to private information,
including vehicle location. On the other hand, the harvesting
process should not reveal the information that is being sought,
because this step may tip off the attackers and/or cause unnec-
essary panic to the public. In general, we can summarize the
security requirements of MobEyes as follows.

• Authentication. Harvesting agents (i.e., authority nodes)
must authenticate summary senders and vice versa.

• Nonrepudiation. A summary originator cannot deny the
transmission of a summary (liability issue). This way,
upon request from the agent, the summary source must
submit the full file with related sensed data.

• Privacy. Only legitimate users (i.e., authority nodes) can
access summaries. Moreover, summaries must privately be
advertised such that the attackers cannot track users.

• Service availability. MobEyes summary diffusion/
harvesting should be protected from denial-of-service
(DoS) attacks.

• Data integrity. MobEyes should filter out false summary
data that were injected by attackers.

• Query confidentiality. In some cases, e.g., biological at-
tacks and search for crime suspects, even the nature of the
query that was injected by harvesting agents should not
be disclosed, should not create unnecessary panic in the
population, or should avoid tipping off the criminals.

One important aspect that sets apart MobEyes “forensic
sensed data” security from conventional VANET security for
“safe navigation” is the “real time” and “criticality” of the
safe navigation application. For instance, consider a dangerous
curve on the road monitored by an “e-mirror.” If no car is
coming, the e-mirror tells the driver to proceed at normal speed;
otherwise, it tells the driver to slow down. An adversary can
“intercept and replay” a message from the mirror and tell the
driver that the way is clear, whereas a truck is coming at
high speed behind the curve. In this “safe drive” application,
it is mandatory to authenticate alert messages. Thus, in safe
navigation applications, message authentication is far more
important than privacy. For instance, privacy concerns should
not prevent drivers from alerting the vehicles behind them that
there is a boulder on the road.

MobEyes has strongly different security requirements. A
false report cannot create much damage, because it is not
immediately acted upon (e.g., a wrong set of license plates at
the crime scene). There is plenty of time to detect and, if nec-
essary, punish the “impostors.” On the other hand, drivers that
propagate summaries want to be assured that their privacy will
not be violated. This major difference in security concerns leads
to MobEyes security approaches that are quite different (and,
in fact, much simpler and generally more efficient) than con-
ventional VANET security solutions. Readers can find general
security issues for VANET in [59]. For brevity, in this section,
we will simply outline several MobEyes security approaches,
reserving the detailed rigorous discussion of MobEyes security
to future publications.

In MobEyes, we assume the existence of a public key
infrastructure (PKI). Standard PKI mechanisms provide au-
thentication and nonrepudiation, so we focus on the rest of
the MobEyes requirements (i.e., privacy, service availability,
and data consistency) by addressing the following MobEyes-
specific attack models and a brief description of possible so-
lutions. Readers can find the details for each solution in the
extended version of this paper [60].

• Location tracking. Periodic broadcasting of identical sum-
maries could facilitate attackers in tracking the route of
a vehicle. To change the encrypted summary, one can
introduce perturbation of time and position information.

• DoS. Attackers could inject a large number of bogus
summaries to slow down correct summary harvesting by
agents. MobEyes can check summary validity using the
PKI, and the rate of generating valid summaries can be
limited using rate-limited summary diffusion, which shares
the same idea of the router requirements rate limit in a
secure routing protocol [61].

• False data injection. Attackers could inject fabricated
summaries to mislead investigations or make the data
inconsistent. Statistical methods in conventional sensor
networks [38], [62], [63] can be used. As noted in [64],
the mobility of vehicles makes it hard in reality.

• Query confidentiality. Attackers could infer “important”
information from the content of police queries. Private
keyword searching, as proposed by Ostrovsky et al. [65],
can be used. Secure filters can be distributed to the reg-
ular vehicles, and agents can harvest the resulting en-
crypted data.

VIII. CONCLUSION

In this paper, we have proposed the decentralized oppor-
tunistic MobEyes solution for proactive urban monitoring in
VSNs. MobEyes’ key component is MDHP, which works by
disseminating/harvesting summaries of sensed data and uses
original opportunistic protocols that exploit intrinsic mobil-
ity of regular and authority nodes. One of the reasons for
using original dissemination protocols is, for instance, to
overcome the intermittent connectivity of urban grids in off-
peak hours, which precludes the exploitation of conventional
search/propagation techniques based on ad hoc multicast and
broadcast. We have shown that MDHP protocols are disruption

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

900 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, FEBRUARY 2009

tolerant, scalable, and nonintrusive via both analytic models and
extensive simulations. MobEyes can be configured to achieve
the most suitable tradeoff between latency/completeness and
overhead by properly choosing primarily its k-hop relay scope
and the number of harvesting agents. These encouraging results
are stimulating further research activities. In particular, we have
been extending the MobEyes prototype to determine the best
trajectory of mobile agents when collaborating with summary
harvesting. In addition, we have formally been investigating
on how we can determine the optimal value for the summary
advertisement period, depending on node speed/population, and
on urban monitoring requirements about traffic/latency. We will
explore hybrid strategies that combine broadcast with epidemic
dissemination, even by dynamically adapting to urban density
conditions and application needs.

ACKNOWLEDGMENT

The authors would like to thank X. Hong and J. Kong for
giving their valuable time to review the security section of this
paper and G. Galante for reviewing an earlier version of this
paper.

REFERENCES

[1] A. Nandan, S. Das, G. Pau, M. Gerla, and M. Y. Sanadidi, “Co-operative
downloading in vehicular ad-hoc wireless networks,” in Proc. IEEE
WONS. St. Moritz, Switzerland, Jan. 2005, pp. 32–41.

[2] A. Nandan, S. Tewari, S. Das, G. Pau, M. Gerla, and L. Kleinrock, “Ad-
Torrent: Delivering location cognizant advertisements to car networks,” in
Proc. IFIP WONS, Les Menuires, France, Jan. 2006.

[3] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety mes-
saging in DSRC,” in Proc. ACM VANET, Philadelphia, PA, Oct. 2004,
pp. 19–28.

[4] J. Ott and D. Kutscher, “A disconnection-tolerant transport for drive-thru
Internet environments,” in Proc. IEEE INFOCOM, Miami, FL, Apr. 2005,
pp. 1849–1862.

[5] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi,
“Efficient data harvesting in mobile sensor platforms,” in Proc. IEEE
PerSeNS, Pisa, Italy, Mar. 2006, p. 352.

[6] MIT’s CarTel Central. [Online]. Available: http://cartel.csail.mit.edu/
[7] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko, A. Miu, E. Shih,

Y. Zhang, H. Balakrishnan, and S. Madden, “CarTel: A distributed mobile
sensor computing system,” in Proc. ACM SenSys, Boulder, CO, Oct./
Nov. 2006, pp. 125–138.

[8] InternetCAR Project. [Online]. Available: http://www.icar.wide.ad.jp
[9] T. Ernst, K. Mitsuya, and K. Uehara, “Network mobility from the Inter-

netCAR perspective,” J. Interconnection Netw., vol. 4, no. 3, pp. 329–343,
Sep. 2003.

[10] FleetNet. [Online]. Available: http://www.et2.tu-harburg.de
[11] W. Enkelmann, “FleetNet—Applications for intervehicle communica-

tion,” in Proc. IEEE IV, Columbus, OH, Jun. 2003, pp. 162–167.
[12] U. Lee, J.-S. Park, E. Amir, and M. Gerla, “FleaNet: A virtual market

place on vehicular networks,” in Proc. IEEE V2VCOM, San Francisco,
CA, Jul. 2006, pp. 1–8.

[13] M. Caliskan, D. Graupner, and M. Mauve, “Decentralized discovery of
free parking places,” in Proc. ACM VANET, Los Angeles, CA, Sep. 2006,
pp. 30–39.

[14] D. Sormani, G. Turconi, P. Costa, D. Frey, M. Migliavacca, and
L. Mottola, “Towards lightweight information dissemination in interve-
hicular networks,” in Proc. ACM VANET, Los Angeles, CA, Sep. 2006,
pp. 20–29.

[15] M. Torrent-Moreno, D. Jiang, and H. Hartenstein, “Broadcast
reception rates and effects of priority access in 802.11-based vehicular
ad-hoc networks,” in Proc. ACM VANET, Philadelphia, PA, Oct. 2004,
pp. 10–18.

[16] G. Korkmaz, E. Ekici, F. Ozguner, and U. Ozguner, “Urban multihop
broadcast protocol for intervehicle communication systems,” in Proc.
ACM VANET, Philadelphia, PA, Oct. 2004, pp. 76–85.

[17] Z. Da Chen, H. T. Kung, and D. Vlah, “Ad hoc relay wireless net-
works over moving vehicles on highways,” in Proc. ACM MOBIHOC,
Long Beach, CA, Oct. 2001, pp. 247–250.

[18] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp:
Routing for vehicle-based disruption-tolerant networks,” in Proc. IEEE
INFOCOM, Barcelona, Spain, Apr. 2006, pp. 1–11.

[19] UMass DieselNet. [Online]. Available: http://prisms.cs.umass.edu/dome/
[20] J. Zhao and G. Cao, “VADD: Vehicle-assisted data delivery in vehicular

ad hoc networks,” in Proc. IEEE INFOCOM, Barcelona, Spain, Apr.
2006, pp. 1–12.

[21] H. Wu, R. Fujimoto, R. Guensler, and M. Hunter, “MDDV: A mobility-
centric data dissemination algorithm for vehicular networks,” in Proc.
ACM VANET, Philadelphia, PA, Oct. 2004.

[22] S. B. Eisenman, G.-S. Ahn, N. D. Lane, E. Miluzzo, R. A. Peterson, and
A. T. Campbell, “MetroSense project: People-centric sensing at scale,” in
Proc. ACM WSW, Boulder, CO, Oct./Nov. 2006.

[23] O. Riva and C. Borcea, “The urbanet revolution: Sensor power to the
people!” IEEE Pervasive Comput., vol. 6, no. 2, pp. 41–49, Apr.–
Jan. 2007.

[24] M. D. Dikaiakos, S. Iqbal, T. Nadeem, and L. Iftode, “VITP: An infor-
mation transfer protocol for vehicular computing,” in Proc. ACM VANET,
Cologne, Germany, Sep. 2005, pp. 30–39.

[25] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and
M. B. Srivastava, “Participatory sensing,” in Proc. ACM WSW, Boulder,
CO, Oct./Nov. 2006, pp. 1–5.

[26] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with ZebraNet,” in Proc. ACM ASPLOS-X, San Jose,
CA, Oct. 2002, pp. 96–107.

[27] T. Small and Z. J. Haas, “The shared wireless infostation model: A new
ad hoc networking paradigm (or where there is a whale, there is a way),”
in Proc. ACM MOBIHOC, Annapolis, MD, Jun. 2003, pp. 233–244.

[28] University of Dartmouth MetroSense. [Online]. Available: http://
metrosense.cs.dartmouth.edu/

[29] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: Modeling
and analysis of a three-tier architecture for sparse sensor networks,” Else-
vier Ad Hoc Netw. J., vol. 1, no. 2/3, pp. 215–233, Sep. 2003.

[30] Q. Li and D. Rus, “Sending messages to mobile users in disconnected
ad-hoc wireless networks,” in Proc. ACM MOBICOM, Boston, MA,
Aug. 2000, pp. 44–55.

[31] Y. Wang and H. Wu, “DFT-MSN: The delay/fault-tolerant mobile sen-
sor network for pervasive information gathering,” in Proc. INFOCOM,
Barcelona, Spain, Apr. 2006, pp. 1–12.

[32] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, “IrisNet: An
architecture for a worldwide sensor web,” Pervasive Comput., vol. 2,
no. 4, pp. 22–33, Oct.–Dec. 2003.

[33] S. Nath, J. Liu, and F. Zhao, “Challenges in building a portal
for sensors world-wide,” in Proc. ACM WSW, Boulder, CO, Oct./
Nov. 2006.

[34] CENS’ Urban Sensing. [Online]. Available: http://research.cens.ucla.edu/
projects/2006/Systems/Urban Sensing/

[35] B. H. Bloom, “Space/Time trade-offs in hash coding with allowable er-
rors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[36] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Math., vol. 1, no. 4, pp. 422–426, 2003.

[37] L. Fan, P. Cao, and J. Almeida, “Summary cache: A scalable wide-area
web cache sharing protocol,” in Proc. ACM SIGCOMM, Vancouver, BC,
Canada, Aug./Sep. 1998, pp. 254–265.

[38] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route filtering of
injected false data in sensor networks,” in Proc. INFOCOM, Hong Kong,
Mar. 2004, pp. 2446–2457.

[39] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
content delivery across adaptive overlay networks,” in Proc. ACM SIG-
COMM, Pittsburgh, PA, Aug. 2002, pp. 47–60.

[40] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,” in
Proc. Middleware. Rio de Janeiro, Brazil, Jun. 2003, p. 997.

[41] L. Dlagnekov and S. Belongie, “Recognizing cars,” Dept. Comput. Sci.
Eng., Univ. California, San Diego, San Diego, CA, Tech. Rep. CS2005-
0833, 2005.

[42] P. Bellavista, E. Magistretti, U. Lee, and M. Gerla, “Standard integration
of sensing and opportunistic diffusion for urban monitoring in vehicular
sensor networks: The MobEyes architecture,” in Proc. IEEE ISIE, Vigo,
Spain, Jun. 2007, pp. 2582–2588.

[43] M. Grossglauser and M. Vetterli, “Locating nodes with EASE:
Last encounter routing in ad hoc networks through mobility diffu-
sion,” in Proc. IEEE INFOCOM, San Francisco, CA, Mar./Apr. 2003,
pp. 1954–1964.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: DISSEMINATION AND HARVESTING OF URBAN DATA USING VEHICULAR SENSING PLATFORMS 901

[44] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A
scalable and robust communication paradigm for sensor networks,” in
Proc. ACM MOBICOM, Boston, MA, 2000, pp. 56–67.

[45] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A
scalable location service for geographic ad hoc routing,” in Proc. ACM
MOBICOM, Boston, MA, 2000, pp. 120–130.

[46] C. Bettstetter, G. Resta, and P. Santi, “The node distribution of the random
waypoint mobility model for wireless ad hoc networks,” IEEE Trans.
Mobile Comput., vol. 2, no. 3, pp. 257–269, Jul.–Sep. 2003.

[47] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Performance analysis
of mobility-assisted routing,” in Proc. ACM MOBIHOC, Florence, Italy,
May 2006, pp. 49–60.

[48] F. Bai and A. Helmy, “Impact of mobility on mobility-assisted
information diffusion (MAID) protocols,” Univ. Southern Calif.,
Los Angeles, CA, Jul. 2005. Tech. Rep.

[49] ns-2 (The Network Simulator). [Online]. Available: http://www.isi.
edu/nsnam/ns/

[50] B. Zhou, K. Xu, and M. Gerla, “Group and swarm mobility models for
ad hoc network scenarios using virtual tracks,” in Proc. IEEE MILCOM,
Monterey, CA, Oct./Nov. 2004, pp. 289–294.

[51] U. S. Census Bureau, TIGER, TIGER/Line and TIGER-Related Products.
[Online]. Available: http://www.census.gov/geo/www/tiger/

[52] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. G. Jetcheva, “A
performance comparison of multihop wireless ad hoc network routing
protocols,” in Proc. ACM MOBICOM, Dallas, TX, Oct. 1998, pp. 85–97.

[53] A. Kumar Saha and D. B. Johnson, “Modeling mobility for vehicular
ad-hoc networks,” in Proc. ACM VANET, Philadelphia, PA, Oct. 2004,
pp. 91–92.

[54] T. S. Rappaport, Wireless Communications: Principles and Practice.
Piscataway, NJ: IEEE Press, 1996.

[55] U. Lee, J.-S. Park, E. Amir, and M. Gerla, “FleaNet: A virtual market
place on vehicular networks,” in Proc. V2VCOM, San Jose, CA, Jul. 2006.

[56] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi,
“MobEyes: Smart mobs for urban monitoring with vehicular sensor net-
works,” Wireless Commun., vol. 13, no. 5, pp. 51–57, Sep./Oct. 2006.

[57] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in Proc. MobiCom, Seattle, WA,
Aug. 1999, pp. 151–162.

[58] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad
hoc network research,” Wirel. Commun. Mobile Comput., vol. 2, no. 5,
pp. 483–502, Aug. 2002.

[59] M. Raya and J.-P. Hubaux, “The security of vehicular ad hoc networks,”
in Proc. SASN, Alexandria, VA, Nov. 2005, pp. 11–21.

[60] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi,
“Dissemination and harvesting of urban data using vehicular sensing plat-
forms,” Dept. Comput. Sci., Univ. Calif., Los Angeles, Los Angeles, CA,
2007. Tech. Rep.

[61] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand
routing protocol for ad hoc networks,” in Proc. MOBICOM, Atlanta, GA,
Sep. 2002, pp. 12–23.

[62] S. Tanachaiwiwat and A. Helmy, “Correlation analysis for alleviating ef-
fects of inserted data in wireless sensor networks,” in Proc. MobiQuitous,
San Diego, PA, Jul. 2005, pp. 97–108.

[63] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An interleaved hop-by-
hop authentication scheme for filtering of injected false data in sen-
sor networks,” in Proc. IEEE Symp. Security Privacy, Oakland, CA,
May 2004, pp. 259–271.

[64] P. Golle, D. Greene, and J. Staddon, “Detecting and correcting
malicious data in VANETs,” in Proc. VANET, Philadelphia, PA,
Oct. 2004, pp. 29–37.

[65] R. Ostrovsky and W. Skeith, “Private searching on streaming data,” in
Proc. CRYPTO, Santa Barbara, CA, Aug. 2005, pp. 223–240.

Uichin Lee is currently working toward the Ph.D.
degree with the Department of Computer Science,
University of California at Los Angeles (UCLA).

His research interests include mobile wireless sen-
sor networks (e.g., vehicular/underwater sensors),
delay-tolerant networks, and wireless vehicular
applications.

Eugenio Magistretti received the M.S. and Ph.D.
degrees in computer engineering from the University
of Bologna, Bologna, Italy, in 2003 and 2007, re-
spectively. He is currently working toward the Ph.D.
degree with the Department of Electrical and Com-
puter Engineering, Rice University, Houston, TX.

His research interests include protocols and al-
gorithms for wireless networks, mobile ad hoc net-
works, and sensor networks.

Mario Gerla received the M.S. degree in engineer-
ing from the Politecnico di Milano, Milano, Italy, in
1966 and the M.S. and Ph.D. degrees in engineering
from the University of California at Los Angeles
(UCLA) in 1970 and 1973, respectively.

From 1973 to 1976, he was with the Network
Analysis Corporation, New York. He is currently a
Professor with the Department of Computer Science,
UCLA. His research interests include distributed
computer communication systems and wireless net-
works. He has designed and implemented various

network protocols (e.g., channel access, clustering, routing, and transport)
under grants from the Defense Advanced Research Projects Agency and the
National Science Foundation. He also leads the Office of Naval Research-
supported MINUTEMAN Project at UCLA, which focuses on robust scalable
network architectures for unmanned intelligent agents in defense and homeland
security scenarios. He currently conducts research on scalable TCP trans-
port for the Next-Generation Internet (see www.cs.ucla.edu/NRL) for recent
publications.

Paolo Bellavista (SM’06) received the Ph.D. degree
in computer science engineering from the University
of Bologna, Bologna, Italy, in 2001.

He is currently an Associate Professor of com-
puter engineering at the Department of Electron-
ics, Computer Sciences and Systems, University of
Bologna. He serves on the Editorial Board of the
Springer Journal of Network and Systems Manage-
ment. His research interests include middleware for
mobile computing, location/context-aware services,
adaptive multimedia and vehicular sensor networks,

and mobile agent technologies.
Dr. Bellavista is a member of the Association for Computing Machinery and

the Institute for Computer Sciences and Technology. He serves on the Editorial
Board of IEEE Communications Magazine and the IEEE TRANSACTIONS ON

SERVICES COMPUTING.

Antonio Corradi (M’80) received the Laurea de-
gree in electronic engineering from the University
of Bologna, Bologna, Italy, and the M.S. degree
in electrical engineering from Cornell University,
Ithaca, NY.

He is currently a Full Professor of computer en-
gineering with the Department of Electronics, Com-
puter Sciences, and Systems, University of Bologna.
His research interests include distributed and parallel
systems and solutions, middleware for pervasive and
heterogeneous computing, infrastructure support for

context-aware multimodal services, network management, and mobile agent
platforms. He is a member of the Association for Computing Machinery and
the Associazione Italiana per l’Informatica ed il Calcolo Automatico.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:30:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

