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Abstract— The emerging industrial relevance of vehicular 

sensor networks pushes towards their adoption for large-scale 
applications, from traffic routing and relief to environmental 
monitoring and distributed surveillance. With homeland security 
issues in mind, we have developed MobEyes, a fully distributed 
opportunistic harvesting system for urban monitoring. In 
MobEyes, regular vehicles equipped with sensors collect and 
locally store monitoring data while moving on the streets. Sensors 
may generate a sheer data amount, especially in the case of 
audio/video recording, thus making traditional reporting 
unfeasible. MobEyes originally adopts the guidelines of locally 
generating summaries of sensed data and of taking advantage of 
vehicle mobility and opportunistic one-hop communications to 
pump summaries towards mobile collectors, with minimal 
overhead, reasonable completeness, and limited latency. To that 
purpose, it carefully considers standard specifications to portably 
integrate with heterogeneous sensors, in particular by exploiting 
the Java Media Framework to interwork with cameras, the 
JSR179 Location API to interface with heterogeneous localization 
systems, and the Java Communications API to access lower-layer 
environmental sensors. 

 

I. INTRODUCTION 

Vehicular Sensor Networks (VSN) are emerging as a new 
network paradigm for effectively monitoring the physical 
world. In fact, vehicles, typically not affected by strict energy 
constraints, can be easily equipped with sensing devices 
(chemical spill detectors, cameras, …), powerful processing 
units, and wireless transmitters. That pushes towards the VSN 
adoption in different large-scale applications, from traffic 
routing/relief to environmental monitoring and distributed 
surveillance.  

In particular with homeland security issues in mind, we have 
recently developed MobEyes, a fully distributed opportunistic 
harvesting system for urban monitoring data, specifically 
designed for post-facto crime scene investigation. In MobEyes, 
regular vehicles of common people are equipped with cameras 
(and possibly with additional sensors, e.g., to detect chemical 
attacks and pollution indicators). These vehicles collect and 
locally store urban monitoring information while regularly 
moving on the streets. On-board sensors may generate a sheer 

amount of data, especially in the case of recorded audio/video 
streams. Traditional sensor network approaches for data 
reporting, e.g., to police agents, are unfeasible in this scenario 
[1, 2]. MobEyes originally adopts the guidelines of locally 
generating summaries of sensed data and of taking advantage 
of vehicle mobility and opportunistic one-hop communications 
to pump these summaries towards police patrol cars, which 
may move during the harvesting process. The goals are i) to 
impose minimal communication overhead on the limited 
bandwidth available for car-to-car communications, ii) to 
achieve reasonable completeness of harvested summaries to 
cover the largest part of sensed data, and iii) to obtain that 
reasonable coverage with a limited latency, considered 
acceptable for the addressed application scenario.  

To achieve these goals, we have designed and implemented 
MobEyes according to an architecture composed by two key 
modules: the MobEyes Diffusion/Harvesting Processor 
(MDHP) and the MobEyes Sensor Interface (MSI). On the one 
hand, MSI provides an abstraction layer to uniformly access 
sensed data independently of sensor implementations, thus 
leveraging the MobEyes adoption in industrial large-scale 
applications. On the other hand, MDHP implements our 
original opportunistic summary dissemination/harvesting 
protocols portably and effectively over different wireless 
communication technologies.  

In particular, in this paper, we will report our experience in 
developing and deploying the Java-based MSI and MDHP 
modules, which strongly consider maximum portability and 
interoperability as their crucial implementation requirements to 
facilitate industrial adoption and rapid diffusion. By delving 
into finer details, MSI has adopted the choice of interfacing 
with the highly heterogeneous world of sensing devices with 
standard and state-of-the-art open specifications, such as the 
Java Media Framework for cameras, the JSR179 Location API 
for possibly heterogeneous positioning systems, and the Java 
Communications API for interfacing with lower-layer 
environmental sensors. In addition, MDHP uses the standard 
Java connectivity support (.net package for sensing nodes with 
Java 2 Standard Edition (J2SE) and the Connection framework 
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for limited nodes with Java 2 Micro Edition – J2ME) to 
uniformly access the possibly heterogeneous wireless 
connectivity technologies available on different vehicles. The 
experience made in the MobEyes design and implementation 
points out the suitability of the Java environment, extended 
with recent standard specifications for specific goals such as 
JSR179, to obtain a rapid and portable prototyping of urban 
monitoring applications for vehicular networks. 

The remainder of the paper is organized as follows. Section 
2 clarifies background ideas and positions our novel approach 
with regard to the state-of-the-art in the field. Section 3 rapidly 
sketches the high-level architecture of MobEyes, while Section 
4 and Section 5 delve into finer design details of MSI and 
MDHP, respectively. Some preliminary tests have been 
accomplished to validate MobEyes interfacing with 
heterogeneous sensors; the corresponding experimental results 
are in Section 6. Conclusive remarks and directions of future 
work end the paper. 

 

II. BACKGROUND AND RAPID OVERVIEW OF THE MOBEYES 
ARCHITECTURE 

Surveillance of critical areas, tracking of suspect felons, and 
reconstruction of crime events are all compelling cases for 
urban monitoring. An expanding range of research projects is a 
clear proof of the growing interest in the field. For example, 
Intel Research IrisNet [3] addresses large-scale monitoring 
environments based on statically deployed PCs equipped with 
off-the-shelf cameras and microphones. MIT CarTel [4] 
permits to inject new queries on moving vehicles equipped 
with sensing devices, by exploiting wireless connectivity 
provided by open access points. Originally if compared with 
these projects, MobEyes focuses on a posteriori collection of 
information related to events potentially monitored by 
distributed sensing devices mounted on vehicles. This becomes 
the problem of searching in a massive, mobile, and completely 
decentralized storage of sensed data, by establishing a 
distributed index via completely decentralized cooperation.     

To rapidly introduce MobEyes goals and solution guidelines, 
let us overview it while at work in a futuristic operating 
scenario, i.e., urban surveillance. Cars move on the streets 
collecting images through cameras installed on rooftops. In 
that context, MobEyes helps the police to build a distributed 
index upon the huge amount of information collected by 
regular cars. If nodes diffused their whole sensed data, the 
network would collapse given the large size of collected 
multimedia contents. MobEyes proposes that vehicles locally 
process the sensed multimedia streams to extract some 
summarizing features, such as license plates of encountered 
cars. Only this smaller summarizing information will be 
diffused in the VSN. In particular, MobEyes uses opportunistic 
exchange protocols, based only on 1-hop communications, to 
spread summaries among cars. Police agents are the only 
entities that can harvest summaries: they maintain a local table 
representing the index (not necessarily complete, since its 

contents depend on the effectiveness and latency of harvesting 
protocols, as detailed in Section 4) of the sensed data currently 
stored on remote vehicles. 

To support these tasks we have designed and implemented 
MobEyes according to the component-based architecture in 
Figure 1. The two key modules are MSI, which supports a 
portable and transparent access to heterogeneous sensing 
devices, and MDHP, which implements opportunistic summary 
diffusion/harvesting protocols. Both these facilities will be 
extensively described in the following sections. The third 
MobEyes component, less specific for the VSN research area, 
is MDP, which periodically collects sensed data  from MSI, 
and extracts useful features, such as license plate numbers of 
cars in sensed video streams, through application filters. We 
rapidly observe that signal processing algorithms to support 
MobEyes target applications (e.g., accurate license plate 
recognition) have been recently developed and are out of the 
specific scope of this paper [5, 6].  To create summaries, 
extracted features are then combined with relevant data read 
from other sensors and physically situated with corresponding 
timestamp and geographic location. Finally, MDP stores raw 
sensed data and summaries in the Raw Data Storage and 
Summary Database, respectively, via standard functions for 
persistency and database management.  

 

Fig. 1. MobEyes Architecture 
 

III. MOBEYES SENSOR INTERFACE (MSI) 

MSI aims to facilitate the access to possibly heterogeneous 
sensor devices, by providing a high-level interface that exposes 
generic functions. In this way, MobEyes guarantees access 
transparency and high adaptability to changes in the devices 
(and in their driver implementations) available in the 
deployment environment and possibly discovered at runtime. 
For instance, if the sequence of operations to access a camera 
sensor changes, developers working on top of MobEyes are 
completely hidden from the modification. Let us rapidly 
observe that this dynamicity is obtained by considering only 
the limited and invariant set of operations needed to MobEyes. 
In other words, MSI has been specifically designed for 
MobEyes and, thus, does not permit general-purpose control 
operations and parameter settings on sensor devices.  

MSI is built on top of the standard Java Virtual Machine. 
This choice grants wide portability to our implementation. At 
the same time, that design decision has facilitated our 
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development and deployment work, by allowing us to adopt 
several standard Java API that provide useful contributions to 
supporting sensor communications, control, and management. 
Some API, as detailed in the following, are the result of the 
open Sun standardization process (Java Community Process - 
JCP), which warrants a widespread support for heterogeneous 
platforms by involving all stakeholders, from developers to 
companies, in the definition of novel Java specifications and 
extensions to increase consensus on crucial design decisions 
[7].  

MobEyes deployment scenarios call for the support of a 
number of different sensing devices, depending on the kind of 
data that police patrol agents are going to retrieve from regular 
cars, e.g., audio/video streams or images of the streets, 
temperature, weather, and road conditions, all to be tagged 
with location information. We identified three primary classes 
of sensors, corresponding to three different standard Java API. 
MSI exploits the Java Media Framework (JMF) API to access 
the first class of sensed data, which is generated by multimedia 
devices such as cameras and microphones. JMF provides a 
widespread set of functions to perform acquisition, control, and 
management operations on multimedia sensors (e.g., to capture 
images or video streams with digital web-cams, or to 
command/transfer the recording of audio streams with 
microphones) [8].  

The second class includes all sensors (usually monitoring 
lower-layer environmental information if compared with 
audio/video sensors) that can be connected through an RS-232 
serial interface. RS-232 can either provide access to an 
embedded board where sensors report analog inputs or directly 
receive the output signal of a single sensor. In both cases, the 
values made available on the serial interface are retrieved by 
using the Java Communications API [9]. This standard API 
permits to operate with serial/parallel communication ports, by 
hiding the details of low-level platform-dependent drivers. The 
Java Communications API supports both synchronous and 
asynchronous (event-driven) programming models. In 
particular, it is possible to automatically raise/receive 
notifications every time a signal overcomes a specified 
threshold. For any different sensor type (temperature sensors, 
carbon-oxide detectors, …) of interest for MobEyes, MSI 

currently implements an ad-hoc module for specialized serial 
data parsing. We are working on generalizing the parsing 
process so to provide a single parser module, possibly 
instructed by different XML-based descriptions of the data 
format provided by specific types of sensors. Mainly due to the 
proof-of-concept purpose of our current MobEyes prototype 
and to the non-negligible cost of pollution sensors, at the 
moment MSI includes only two specific parsing modules for 
temperature and hygrometer sensors.  

Since in MobEyes any monitored data are useful only if 
tagged with space/time coordinates of the corresponding 
sensing location, the third crucial class of sensors includes 
positioning systems, i.e., “sensors” that can provide 
localization data. MSI can obtain geographic location of 
sensors by querying the positioning system hosted on board of 
the car. To interface with heterogeneous positioning solutions 
(satellite-based, such as GPS, but also signal-strength based, 
such as Ekahau [10]) in a standard way, MSI employs the Java 
Location API (JSR 179) [11]. For instance, MSI invokes JSR 
179 functions to select the positioning technique to use, by 
simply specifying the desired location accuracy and/or 
response time. Other JSR 179 functions are used to get position 
updates either synchronously or through an event-driven 
interface. The latter permits either to specify periodic updating 
intervals or to be notified when located in proximity of a target. 
The usage of these standard API allows MSI to be independent 
of the implementation of the specific localization system 
available in the deployment environment. 

In the following, the section specifically focuses on the main 
design choices behind our portable MSI realization, structured 
around the three previously sketched classes of sensors. Figure 
2 shows the overall MSI architecture with, from left to right, 
the three subsystems supporting the three sensor classes.  

A. Standard Interfacing with Audio/ Video Sensors 
The leftmost part of Figure 1 shows the audio/video sensor 

interfacing subsystem. This includes four components 
supporting access to audio, video, synchronized audio/video, 
and image data. A grabber module is responsible of the 
interaction with JMF functions. The grabber facilitates design 
maintenance by decoupling high-level MSI components from 
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            Fig. 2. The modular architecture of MobEyes MSI 
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access procedures, which may be specific of each device. In 
short, the grabber is in charge of obtaining a JMF 
Player/Processor from an abstract input device (Microphone or 
Camera), and of connecting its output to a destination file 
where the sensed data will be stored.  

MSI hides the details of actual data access operations, by 
exposing high-level methods to grab the currently sensed 
image and to save audio, video, and audio/video streams. For 
image grabbing, MSI either returns an Image object or a file of 
the taken picture. With regards to data streams, MSI permits to 
command recording start/stop; the stream is initially stored in 
an uncompressed format (RGB video and LINEAR audio) for 
efficiency reasons as motivated in the experimental result 
section, and encoded only offline. 

MSI provides two main parameters to simply control sensing 
processes: format and quality, which affect occupied memory, 
processing time, and reproduction accuracy. The suitable 
parameter choice depends on application-level requirements. 
For example, MDP may require high quality images for post-
processing to extract license plate numbers. In the case of 
video streams finally watched by human operators, top quality 
is usually not needed and it is possible to configure MSI with 
less resource-consuming format/quality settings. 

Through JMF, MSI can support many different formats, 
including PCM, MPEG Layer 2 and GSM for audio streams, 
MPEG-1, MJPEG and H.263 for video streams. The choice of 
MSI quality value (with a coarse granularity from 1 to 3) 
directly influences the adopted encoding parameters (see 
Section 5).  

B. Standard Interfacing with Temperature Sensors 
The rightmost part of Figure 1 shows the sensor interfacing 

subsystem. Its flexible and modular architecture is based on the 
Sensor abstraction representing the actual device. Sensors 
export a generic method, getSensedData(), which returns an 
object of abstract type Data. The MSI Dispatcher rules the 
interaction between upper layers and Sensors. The MSI 
Dispatcher API includes the method Data getData(String 
sType) that, based on the requested data type, returns a Data 
object with current reading. In case the sensor does not 
properly work, the method raises an exception. 

MSI directly builds on the low-level Java Communications 
API to access and collect sensed data. The Java 
Communications API permit both to synchronously read data 
from Sensors and to register listeners to be invoked every time 
new data are available on the communication port (serial and 
parallel ports). Both modes are fully supported and integrated 
in MSI. 

Since MSI will likely need to support a growing number of 
sensors, extensibility is a crucial aspect for its design. To this 
purpose, the Dispatcher manages only Sensor and Data 
interfaces, without the need of any modification if a new 
sensor type is added. In that case, developers willing to extend 
the MSI prototype should only implement the new device class 
as a subclass of Sensor. The device-specific Sensor subclass is 

in charge of actually reading, parsing, and verifying the raw 
data present on the serial port.  

C. Standard Interfacing with Positioning Systems 
MSI permits to easily include in the set of sensed data also 

the geographic coordinates of sensors, in an open and standard 
way. Our Location module provides a simplified view of JSR 
179 functions to MobEyes developers, by aggregating and 
composing API of the standard Java specification. In 
particular, the Location module can synchronously return the 
current <latitude, longitude, and (optionally) altitude> car 
coordinates. Similarly to the generic sensor case, the function 
either creates an object encapsulating the coordinates or raises 
an exception, e.g., in the case GPS is the only available 
positioning technique and cannot determine the position 
because the car is indoor in an underground car park.  

To the best of our knowledge, no free implementation of 
JSR 179 was available for J2SE at the time of writing. Thus, 
two different design options were possible: either 
implementing the JSR 179 specifications, or interfacing the 
GPS as if it was a common sensing device, i.e., directly 
through the Java Communications API. Given the relevance of 
opening MSI via the extensive adoption of standard 
specifications, we decided to develop our partial 
implementation of JSR 179. Our implementation of 
LocationProvider interfaces with GPS equipment via a serial 
port via the Java Communications API. Currently, we are 
working on a portable extension of our LocationProvider to 
support also USB-based GPS devices, by exploiting the Java 
USB API (JSR 80) [12]. 

 

IV. MOBEYES DIFFUSION/HARVESTING PROCESSOR (MDHP) 

After rapidly introducing the primary guidelines of the 
original MobEyes delay-tolerant protocols for summary 
diffusion/harvesting, this section focuses on the description of 
MDHP realization, by pointing out the motivations behind our 
architectural choices and their impact on the solution 
portability in industrial large-scale applications. 

MobEyes aims at creating a distributed and partially 
replicated opportunistic index of the information collected by 
moving vehicles. MDHP is in charge of supporting fast and 
effective ways for mobile police agents to harvest summaries 
from mobile regular nodes. To that purpose, we have designed 
two original protocols: the first for regular nodes to 
periodically spread summaries through 1-hop diffusion; the 
second for agents to query opportunistically encountered cars 
to build an updated and partial distributed index of sensed data. 

More specifically, a regular node periodically advertises 
newly generated summaries through 1-hop broadcasts. 
Neighbors populate a local table including copies of all the 
summaries received and not delivered to agents yet. Then, 
neighbors can either contribute to boost the diffusion by further 
relaying or refrain. In the first case, the diffusion speed of the 
summaries results dramatically improved; however, this comes 
at the expense of higher communication overhead and larger 
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memory required for local summary storage. Depending on the 
requirements of supported applications, MDHP permits two 
operating modes: a basic one (only the source advertises its 
packets to 1-hop neighbors) and a passive k-hop (any packet 
travels up to k hops as it is forwarded by j-hop neighbors, with 
j<k). Strategies to further expedite summary diffusion can be 
devised by allowing nodes to continuously advertise all the 
packets within their local tables, also if generated by other 
nodes.  

While regular nodes move and diffuse their summaries, 
police agents roam with the goal of building a distributed index 
by harvesting as many summaries as possible. When required, 
e.g., after a crime event or periodically, agents may query 
neighbor regular nodes to obtain summaries they have not 
collected yet. To this end, agents advertise Bloom filters 
hashing the already harvested summaries [13]. Every regular 
node tests its local table entries against the received Bloom 
filter and replies by delivering only non-matching items. 
MDHP takes into consideration situations where multiple 
regular nodes are simultaneously present: in that case, MDHP 
adopts heuristic-based strategies to properly schedule node 
communications in order to avoid redundant summary 
deliveries [14].  

Several agents will likely scour the urban area concurrently 
in real deployment scenarios. MDHP supports collaborative 
strategies to build a distributed and partially replicated index. 
Simple strategies have been devised so far to combine the 
information carried by different agents: police agents can 
exchange their Bloom filters through multi-hop paths as soon 
as they have collected a specified number of new summaries. 
More effective solutions based on controlling agent trajectories 
are under investigation to further limit communication 
overhead and latency [15]. 

A. MDHP Architecture and Portability 
MDHP manages communications for regular nodes as well 

as for police agents. It is in charge of extracting/storing 
summaries from/to the local database and of implementing 
opportunistic protocols for summary diffusion/harvesting. 
Figure 3 represents both regular node and police agent MDHP 
components; obviously, only the suitable ones will be installed 
on a single vehicle depending on its type. 

MDHP functions can be split into two different layers. The 
upper layer (DB Interfacing Layer) interworks with the 

summary database that maintains summaries either locally 
generated or obtained from neighbors and not delivered to an 
agent yet. The lower one (Network Management Layer) 
consists of the components that actually implement 
communication protocol operations. While the DB Interfacing 
layer deals with instances of the Java Summary class, the 
Network Management layer marshals/unmarshals summaries 
into packets. Any summary includes a license plate number (6 
bytes), additional sensed data (10 bytes, currently a 3-byte 
temperature/hygrometer info and a 7-byte placeholder), 
timestamp (2 bytes), and vehicle location (8 bytes). Thus, each 
1500-byte packet can pack up to 58 summaries, without 
exploiting aggregation or size-optimizing encoding techniques, 
which are currently under investigation. 

Periodically, the Diffusion Manager at regular nodes 
advertises recently generated summaries (one packet with the 
58 last summaries provided by the Local Summary DB 
Interface). In the current MobEyes implementation, the 
diffusion period is set to 5 seconds and new summaries are 
expected to be generated with a maximum rate of 0.4 Hz (so, 
each summary is advertised at least 29 times). These 
parameters, e.g., the diffusion period, are tuned depending on 
the MobEyes-supported application and deployment 
environment. The cited values permit to accurately track 
vehicle positions in common urban scenarios [15]. As future 
work, we are considering: i) to adapt the diffusion period to the 
changing rate of neighbor set (detected by Neighbor Manager); 
and ii) to combine summaries generated in different epochs in 
the same packet. The guideline is to maximize the usefulness 
of packets by advertising them to new neighbors expected not 
to have already collected the included summaries. 

Any time a regular node receives new summaries, the 
Received Summary Persistence Manager updates the local 
database. Summaries are maintained until a police agent query 
is received: in that case, the Summary Selector component 
performs Bloom filter matching [13], prepares the set of 
summaries to send to the agent, ordered from the least to the 
most recent ones (in fact, due to random node trajectories, 
oldest summaries are likely to be the rarest in the neighborhood 
and consequently the higher priority ones), and then removes 
those summaries from the local database.  

Actual communications between agents and regular cars are 
carried by the Harvester and the Agent Interaction Manager. 
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           Fig. 3. The MDHP modular architecture for regular and agent nodes 
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The Harvester coordinates neighbor communications by 
exploiting unicast messages for queries. The Agent Interaction 
Manager, instead, handles summary delivery on regular nodes.  
In the current prototype, as soon as an agent encounters other 
agents (at 1-hop distance), the Multi-Agent Coordinator 
exchanges the list of harvested summaries. We are now 
extending the MobEyes architecture to support multi-hop inter-
agent communications via IETF reactive routing protocols 
such as AODV [16, 17]. 

About low-layer communication support, we built MDHP on 
the standard .net package for sensing nodes equipped with 
J2SE. Limited nodes with J2ME will benefit from a MobEyes 
prototype version with a different implementation of the Packet 
component of the Network Management Layer, based on the 
standard Connection framework included in the official Sun 
virtual machine. 

 

V. EXPERIMENTAL RESULTS 

We developed current MSI and MDHP implementations on 
top of J2SEv1.5. We adopted: 1) the official Sun release of 
JMF 2.1.1 with Windows Performance Package (including 
enhanced audio/video decoders/encoders for Microsoft 
platforms); 2) our own implementation of JSR 179; 3) the 
official Sun release of Java Communications API v2.0.  

To verify the feasibility of our approach, we tested MobEyes 
components in real-world scenarios. Due to the lack of space, 
here we present some selected results. These refer to the 
performance of the MSI audio/video capture functionality. 
Tests were performed by capturing streams at a trafficked 
intersection near the UCLA campus and were run on Dell 
Latitude D610 laptops, equipped with PentiumM2GHz, 
512MB RAM, and Logitech Quickcam Chats. We aimed at 
evaluating three parameters: the size of generated files of 
sensed data, mainly dependent on stream length and encoding 
type; the overhead time needed to capture the stream, i.e., the 
gross amount of time needed to start media processor and to 
close processor and output file; and the conversion time to 
encode the stream.  

Table I, II, and III show the results obtained while capturing 
audio and audio/video streams, either in raw or encoded 
formats. For RGB video, the frame rate was set to 4 fps and 
resolution to 320x240 (we are currently experimenting with 
higher-resolution cameras allowing 640x480 image capturing, 
as suggested in [5]); for LINEAR audio, sample rate was set to 
44100, 16 bits per sample. Table I shows the average size of 
the files generated during our tests, for different recording time 
lengths. Both compression methods (audio/video MJPG, and 
audio GSM) achieve a significant file size reduction. MJPG 
permits to tune a “quality” parameter, influencing the 
conversion time, as well as the output file size. Table I shows 
only the results with a medium quality value: this permits to 
reduce the file size of about 5 times with regard to the raw 
version. Similar results are obtained in the case of streams 
including only the video track. Table II shows the overhead 

time needed to start the JMF processor capturing the stream 
and to terminate it. Results prove that audio/video capturing 
overhead is significantly greater than the one for a stream with 
only the audio track. Finally, Table III reports how long it 
takes to MSI to convert audio/video streams to the MJPG 
encoded format, depending on the chosen quality factor. Lower 
quality values (MobEyes quality=1, equivalent to MJPG 
quality=10%) impose a stable conversion time, largely 
compatible with typical MobEyes application requirements. 
 

TABLE I 
GENERATED FILE SIZE (IN [KB]) 

Rec-
Time 

A/V 
RGB 

A/V MJPG 
(Medium) 

Audio 
LINEAR 

Audio 
GSM 

5s 4907 934 439 9 
20s 16280 3295 1747 33 
60s 46518 8749 5180 95 

 

TABLE II 
OVERHEAD TIME (IN [MS]) 

RecTime A/V RGB Audio LINEAR 
5s 4790 206 
20s 4493 401 
60s 7780 270 

 

TABLE III 
CONVERSION TIME (IN [MS]) 

RecTime A/V MJPG 
(Low) 

A/V MJPG 
(Medium) 

A/V MJPG 
(High) 

5s 802 1432 2099 
20s 1901 2198 11354 
60s 6726 6523 37429 

 

VI. CONCLUSIONS AND FUTURE WORK 

Urban monitoring is becoming a research field of growing 
interest. With the goal of supporting a posteriori monitoring 
investigations, we proposed MobEyes to address searching in a 
massive, mobile, and decentralized storage of sensed data. In 
this paper, we discussed and evaluated MSI and MDHP, two 
key components of the MobEyes architecture. Our MSI/MDHP 
design and implementation demonstrate that the integration 
with Java-based standard solutions (JMF, JSR 179, 
Communications API, .net package) can allow to obtain 
feasible performance results with a high degree of openness, 
thus facilitating the adoption in large-scale existing industrial 
deployment environments.  

The encouraging experimental results already obtained are 
stimulating further research work. In addition to some 
directions already sketched in the paper, we are currently 
investigating how the protocol for summary exchange among 
agents at multi-hop distance works when implemented upon 
ad-hoc routing solutions.  
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