
Standard Integration of Sensing and Opportunistic
Diffusion for Urban Monitoring in Vehicular Sensor

Networks: the MobEyes Architecture

Paolo Bellavista, Eugenio Magistretti
Dip. Elettronica Informatica Sistemistica (DEIS)

University of Bologna
Viale Risorgimento, 2 – 40136 Bologna – Italy

Phone: +39-051-2093001; Fax: +39-051-2093073
{pbellavista, emagistretti}@deis.unibo.it

Uichin Lee, Mario Gerla
Computer Science Department

UCLA
1010 Westwood Plaza - 90095 Los Angeles - USA
Phone: +1-310-825-4367; Fax: +1-310-825-2273

{uclee, gerla}@cs.ucla.edu

Abstract— The emerging industrial relevance of vehicular

sensor networks pushes towards their adoption for large-scale
applications, from traffic routing and relief to environmental
monitoring and distributed surveillance. With homeland security
issues in mind, we have developed MobEyes, a fully distributed
opportunistic harvesting system for urban monitoring. In
MobEyes, regular vehicles equipped with sensors collect and
locally store monitoring data while moving on the streets. Sensors
may generate a sheer data amount, especially in the case of
audio/video recording, thus making traditional reporting
unfeasible. MobEyes originally adopts the guidelines of locally
generating summaries of sensed data and of taking advantage of
vehicle mobility and opportunistic one-hop communications to
pump summaries towards mobile collectors, with minimal
overhead, reasonable completeness, and limited latency. To that
purpose, it carefully considers standard specifications to portably
integrate with heterogeneous sensors, in particular by exploiting
the Java Media Framework to interwork with cameras, the
JSR179 Location API to interface with heterogeneous localization
systems, and the Java Communications API to access lower-layer
environmental sensors.

I. INTRODUCTION

Vehicular Sensor Networks (VSN) are emerging as a new
network paradigm for effectively monitoring the physical
world. In fact, vehicles, typically not affected by strict energy
constraints, can be easily equipped with sensing devices
(chemical spill detectors, cameras, …), powerful processing
units, and wireless transmitters. That pushes towards the VSN
adoption in different large-scale applications, from traffic
routing/relief to environmental monitoring and distributed
surveillance.

In particular with homeland security issues in mind, we have
recently developed MobEyes, a fully distributed opportunistic
harvesting system for urban monitoring data, specifically
designed for post-facto crime scene investigation. In MobEyes,
regular vehicles of common people are equipped with cameras
(and possibly with additional sensors, e.g., to detect chemical
attacks and pollution indicators). These vehicles collect and
locally store urban monitoring information while regularly
moving on the streets. On-board sensors may generate a sheer

amount of data, especially in the case of recorded audio/video
streams. Traditional sensor network approaches for data
reporting, e.g., to police agents, are unfeasible in this scenario
[1, 2]. MobEyes originally adopts the guidelines of locally
generating summaries of sensed data and of taking advantage
of vehicle mobility and opportunistic one-hop communications
to pump these summaries towards police patrol cars, which
may move during the harvesting process. The goals are i) to
impose minimal communication overhead on the limited
bandwidth available for car-to-car communications, ii) to
achieve reasonable completeness of harvested summaries to
cover the largest part of sensed data, and iii) to obtain that
reasonable coverage with a limited latency, considered
acceptable for the addressed application scenario.

To achieve these goals, we have designed and implemented
MobEyes according to an architecture composed by two key
modules: the MobEyes Diffusion/Harvesting Processor
(MDHP) and the MobEyes Sensor Interface (MSI). On the one
hand, MSI provides an abstraction layer to uniformly access
sensed data independently of sensor implementations, thus
leveraging the MobEyes adoption in industrial large-scale
applications. On the other hand, MDHP implements our
original opportunistic summary dissemination/harvesting
protocols portably and effectively over different wireless
communication technologies.

In particular, in this paper, we will report our experience in
developing and deploying the Java-based MSI and MDHP
modules, which strongly consider maximum portability and
interoperability as their crucial implementation requirements to
facilitate industrial adoption and rapid diffusion. By delving
into finer details, MSI has adopted the choice of interfacing
with the highly heterogeneous world of sensing devices with
standard and state-of-the-art open specifications, such as the
Java Media Framework for cameras, the JSR179 Location API
for possibly heterogeneous positioning systems, and the Java
Communications API for interfacing with lower-layer
environmental sensors. In addition, MDHP uses the standard
Java connectivity support (.net package for sensing nodes with
Java 2 Standard Edition (J2SE) and the Connection framework

25821-4244-0755-9/07/$20.00 '2007 IEEE
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:34:17 UTC from IEEE Xplore. Restrictions apply.

for limited nodes with Java 2 Micro Edition – J2ME) to
uniformly access the possibly heterogeneous wireless
connectivity technologies available on different vehicles. The
experience made in the MobEyes design and implementation
points out the suitability of the Java environment, extended
with recent standard specifications for specific goals such as
JSR179, to obtain a rapid and portable prototyping of urban
monitoring applications for vehicular networks.

The remainder of the paper is organized as follows. Section
2 clarifies background ideas and positions our novel approach
with regard to the state-of-the-art in the field. Section 3 rapidly
sketches the high-level architecture of MobEyes, while Section
4 and Section 5 delve into finer design details of MSI and
MDHP, respectively. Some preliminary tests have been
accomplished to validate MobEyes interfacing with
heterogeneous sensors; the corresponding experimental results
are in Section 6. Conclusive remarks and directions of future
work end the paper.

II. BACKGROUND AND RAPID OVERVIEW OF THE MOBEYES
ARCHITECTURE

Surveillance of critical areas, tracking of suspect felons, and
reconstruction of crime events are all compelling cases for
urban monitoring. An expanding range of research projects is a
clear proof of the growing interest in the field. For example,
Intel Research IrisNet [3] addresses large-scale monitoring
environments based on statically deployed PCs equipped with
off-the-shelf cameras and microphones. MIT CarTel [4]
permits to inject new queries on moving vehicles equipped
with sensing devices, by exploiting wireless connectivity
provided by open access points. Originally if compared with
these projects, MobEyes focuses on a posteriori collection of
information related to events potentially monitored by
distributed sensing devices mounted on vehicles. This becomes
the problem of searching in a massive, mobile, and completely
decentralized storage of sensed data, by establishing a
distributed index via completely decentralized cooperation.

To rapidly introduce MobEyes goals and solution guidelines,
let us overview it while at work in a futuristic operating
scenario, i.e., urban surveillance. Cars move on the streets
collecting images through cameras installed on rooftops. In
that context, MobEyes helps the police to build a distributed
index upon the huge amount of information collected by
regular cars. If nodes diffused their whole sensed data, the
network would collapse given the large size of collected
multimedia contents. MobEyes proposes that vehicles locally
process the sensed multimedia streams to extract some
summarizing features, such as license plates of encountered
cars. Only this smaller summarizing information will be
diffused in the VSN. In particular, MobEyes uses opportunistic
exchange protocols, based only on 1-hop communications, to
spread summaries among cars. Police agents are the only
entities that can harvest summaries: they maintain a local table
representing the index (not necessarily complete, since its

contents depend on the effectiveness and latency of harvesting
protocols, as detailed in Section 4) of the sensed data currently
stored on remote vehicles.

To support these tasks we have designed and implemented
MobEyes according to the component-based architecture in
Figure 1. The two key modules are MSI, which supports a
portable and transparent access to heterogeneous sensing
devices, and MDHP, which implements opportunistic summary
diffusion/harvesting protocols. Both these facilities will be
extensively described in the following sections. The third
MobEyes component, less specific for the VSN research area,
is MDP, which periodically collects sensed data from MSI,
and extracts useful features, such as license plate numbers of
cars in sensed video streams, through application filters. We
rapidly observe that signal processing algorithms to support
MobEyes target applications (e.g., accurate license plate
recognition) have been recently developed and are out of the
specific scope of this paper [5, 6]. To create summaries,
extracted features are then combined with relevant data read
from other sensors and physically situated with corresponding
timestamp and geographic location. Finally, MDP stores raw
sensed data and summaries in the Raw Data Storage and
Summary Database, respectively, via standard functions for
persistency and database management.

Fig. 1. MobEyes Architecture

III. MOBEYES SENSOR INTERFACE (MSI)

MSI aims to facilitate the access to possibly heterogeneous
sensor devices, by providing a high-level interface that exposes
generic functions. In this way, MobEyes guarantees access
transparency and high adaptability to changes in the devices
(and in their driver implementations) available in the
deployment environment and possibly discovered at runtime.
For instance, if the sequence of operations to access a camera
sensor changes, developers working on top of MobEyes are
completely hidden from the modification. Let us rapidly
observe that this dynamicity is obtained by considering only
the limited and invariant set of operations needed to MobEyes.
In other words, MSI has been specifically designed for
MobEyes and, thus, does not permit general-purpose control
operations and parameter settings on sensor devices.

MSI is built on top of the standard Java Virtual Machine.
This choice grants wide portability to our implementation. At
the same time, that design decision has facilitated our

2583
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:34:17 UTC from IEEE Xplore. Restrictions apply.

development and deployment work, by allowing us to adopt
several standard Java API that provide useful contributions to
supporting sensor communications, control, and management.
Some API, as detailed in the following, are the result of the
open Sun standardization process (Java Community Process -
JCP), which warrants a widespread support for heterogeneous
platforms by involving all stakeholders, from developers to
companies, in the definition of novel Java specifications and
extensions to increase consensus on crucial design decisions
[7].

MobEyes deployment scenarios call for the support of a
number of different sensing devices, depending on the kind of
data that police patrol agents are going to retrieve from regular
cars, e.g., audio/video streams or images of the streets,
temperature, weather, and road conditions, all to be tagged
with location information. We identified three primary classes
of sensors, corresponding to three different standard Java API.
MSI exploits the Java Media Framework (JMF) API to access
the first class of sensed data, which is generated by multimedia
devices such as cameras and microphones. JMF provides a
widespread set of functions to perform acquisition, control, and
management operations on multimedia sensors (e.g., to capture
images or video streams with digital web-cams, or to
command/transfer the recording of audio streams with
microphones) [8].

The second class includes all sensors (usually monitoring
lower-layer environmental information if compared with
audio/video sensors) that can be connected through an RS-232
serial interface. RS-232 can either provide access to an
embedded board where sensors report analog inputs or directly
receive the output signal of a single sensor. In both cases, the
values made available on the serial interface are retrieved by
using the Java Communications API [9]. This standard API
permits to operate with serial/parallel communication ports, by
hiding the details of low-level platform-dependent drivers. The
Java Communications API supports both synchronous and
asynchronous (event-driven) programming models. In
particular, it is possible to automatically raise/receive
notifications every time a signal overcomes a specified
threshold. For any different sensor type (temperature sensors,
carbon-oxide detectors, …) of interest for MobEyes, MSI

currently implements an ad-hoc module for specialized serial
data parsing. We are working on generalizing the parsing
process so to provide a single parser module, possibly
instructed by different XML-based descriptions of the data
format provided by specific types of sensors. Mainly due to the
proof-of-concept purpose of our current MobEyes prototype
and to the non-negligible cost of pollution sensors, at the
moment MSI includes only two specific parsing modules for
temperature and hygrometer sensors.

Since in MobEyes any monitored data are useful only if
tagged with space/time coordinates of the corresponding
sensing location, the third crucial class of sensors includes
positioning systems, i.e., “sensors” that can provide
localization data. MSI can obtain geographic location of
sensors by querying the positioning system hosted on board of
the car. To interface with heterogeneous positioning solutions
(satellite-based, such as GPS, but also signal-strength based,
such as Ekahau [10]) in a standard way, MSI employs the Java
Location API (JSR 179) [11]. For instance, MSI invokes JSR
179 functions to select the positioning technique to use, by
simply specifying the desired location accuracy and/or
response time. Other JSR 179 functions are used to get position
updates either synchronously or through an event-driven
interface. The latter permits either to specify periodic updating
intervals or to be notified when located in proximity of a target.
The usage of these standard API allows MSI to be independent
of the implementation of the specific localization system
available in the deployment environment.

In the following, the section specifically focuses on the main
design choices behind our portable MSI realization, structured
around the three previously sketched classes of sensors. Figure
2 shows the overall MSI architecture with, from left to right,
the three subsystems supporting the three sensor classes.

A. Standard Interfacing with Audio/ Video Sensors
The leftmost part of Figure 1 shows the audio/video sensor

interfacing subsystem. This includes four components
supporting access to audio, video, synchronized audio/video,
and image data. A grabber module is responsible of the
interaction with JMF functions. The grabber facilitates design
maintenance by decoupling high-level MSI components from

MobEye Sensing Interface
Audio

Grabber

JMF

+ startAudioCapture
(filename, encA, qual)

+ stopAudioCapture()

Micro

Location
+ Coordinates

getLocation()

Java Communications
API

JSR-179

Dispatcher
+ Data getData
(String sType)

Thermometer
+ Temperature
getSensedData()

AudioVideo
+ startAVCapture
(filename,encA,encV,qual)

+ stopAVCapture()

Image
+ Image

getImage()
+ saveImage(file, enc, qual)

Video
+ startVideoCapture
(filename, encV, qual)
+ stopVideoCapture()

Camera

MobEye Sensing Interface
Audio

Grabber

JMF

+ startAudioCapture
(filename, encA, qual)

+ stopAudioCapture()

Micro

Location
+ Coordinates

getLocation()

Java Communications
API

JSR-179

Dispatcher
+ Data getData
(String sType)

Thermometer
+ Temperature
getSensedData()

AudioVideo
+ startAVCapture
(filename,encA,encV,qual)

+ stopAVCapture()

Image
+ Image

getImage()
+ saveImage(file, enc, qual)

Video
+ startVideoCapture
(filename, encV, qual)
+ stopVideoCapture()

Camera

 Fig. 2. The modular architecture of MobEyes MSI

2584
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:34:17 UTC from IEEE Xplore. Restrictions apply.

access procedures, which may be specific of each device. In
short, the grabber is in charge of obtaining a JMF
Player/Processor from an abstract input device (Microphone or
Camera), and of connecting its output to a destination file
where the sensed data will be stored.

MSI hides the details of actual data access operations, by
exposing high-level methods to grab the currently sensed
image and to save audio, video, and audio/video streams. For
image grabbing, MSI either returns an Image object or a file of
the taken picture. With regards to data streams, MSI permits to
command recording start/stop; the stream is initially stored in
an uncompressed format (RGB video and LINEAR audio) for
efficiency reasons as motivated in the experimental result
section, and encoded only offline.

MSI provides two main parameters to simply control sensing
processes: format and quality, which affect occupied memory,
processing time, and reproduction accuracy. The suitable
parameter choice depends on application-level requirements.
For example, MDP may require high quality images for post-
processing to extract license plate numbers. In the case of
video streams finally watched by human operators, top quality
is usually not needed and it is possible to configure MSI with
less resource-consuming format/quality settings.

Through JMF, MSI can support many different formats,
including PCM, MPEG Layer 2 and GSM for audio streams,
MPEG-1, MJPEG and H.263 for video streams. The choice of
MSI quality value (with a coarse granularity from 1 to 3)
directly influences the adopted encoding parameters (see
Section 5).

B. Standard Interfacing with Temperature Sensors
The rightmost part of Figure 1 shows the sensor interfacing

subsystem. Its flexible and modular architecture is based on the
Sensor abstraction representing the actual device. Sensors
export a generic method, getSensedData(), which returns an
object of abstract type Data. The MSI Dispatcher rules the
interaction between upper layers and Sensors. The MSI
Dispatcher API includes the method Data getData(String
sType) that, based on the requested data type, returns a Data
object with current reading. In case the sensor does not
properly work, the method raises an exception.

MSI directly builds on the low-level Java Communications
API to access and collect sensed data. The Java
Communications API permit both to synchronously read data
from Sensors and to register listeners to be invoked every time
new data are available on the communication port (serial and
parallel ports). Both modes are fully supported and integrated
in MSI.

Since MSI will likely need to support a growing number of
sensors, extensibility is a crucial aspect for its design. To this
purpose, the Dispatcher manages only Sensor and Data
interfaces, without the need of any modification if a new
sensor type is added. In that case, developers willing to extend
the MSI prototype should only implement the new device class
as a subclass of Sensor. The device-specific Sensor subclass is

in charge of actually reading, parsing, and verifying the raw
data present on the serial port.

C. Standard Interfacing with Positioning Systems
MSI permits to easily include in the set of sensed data also

the geographic coordinates of sensors, in an open and standard
way. Our Location module provides a simplified view of JSR
179 functions to MobEyes developers, by aggregating and
composing API of the standard Java specification. In
particular, the Location module can synchronously return the
current <latitude, longitude, and (optionally) altitude> car
coordinates. Similarly to the generic sensor case, the function
either creates an object encapsulating the coordinates or raises
an exception, e.g., in the case GPS is the only available
positioning technique and cannot determine the position
because the car is indoor in an underground car park.

To the best of our knowledge, no free implementation of
JSR 179 was available for J2SE at the time of writing. Thus,
two different design options were possible: either
implementing the JSR 179 specifications, or interfacing the
GPS as if it was a common sensing device, i.e., directly
through the Java Communications API. Given the relevance of
opening MSI via the extensive adoption of standard
specifications, we decided to develop our partial
implementation of JSR 179. Our implementation of
LocationProvider interfaces with GPS equipment via a serial
port via the Java Communications API. Currently, we are
working on a portable extension of our LocationProvider to
support also USB-based GPS devices, by exploiting the Java
USB API (JSR 80) [12].

IV. MOBEYES DIFFUSION/HARVESTING PROCESSOR (MDHP)

After rapidly introducing the primary guidelines of the
original MobEyes delay-tolerant protocols for summary
diffusion/harvesting, this section focuses on the description of
MDHP realization, by pointing out the motivations behind our
architectural choices and their impact on the solution
portability in industrial large-scale applications.

MobEyes aims at creating a distributed and partially
replicated opportunistic index of the information collected by
moving vehicles. MDHP is in charge of supporting fast and
effective ways for mobile police agents to harvest summaries
from mobile regular nodes. To that purpose, we have designed
two original protocols: the first for regular nodes to
periodically spread summaries through 1-hop diffusion; the
second for agents to query opportunistically encountered cars
to build an updated and partial distributed index of sensed data.

More specifically, a regular node periodically advertises
newly generated summaries through 1-hop broadcasts.
Neighbors populate a local table including copies of all the
summaries received and not delivered to agents yet. Then,
neighbors can either contribute to boost the diffusion by further
relaying or refrain. In the first case, the diffusion speed of the
summaries results dramatically improved; however, this comes
at the expense of higher communication overhead and larger

2585
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:34:17 UTC from IEEE Xplore. Restrictions apply.

memory required for local summary storage. Depending on the
requirements of supported applications, MDHP permits two
operating modes: a basic one (only the source advertises its
packets to 1-hop neighbors) and a passive k-hop (any packet
travels up to k hops as it is forwarded by j-hop neighbors, with
j<k). Strategies to further expedite summary diffusion can be
devised by allowing nodes to continuously advertise all the
packets within their local tables, also if generated by other
nodes.

While regular nodes move and diffuse their summaries,
police agents roam with the goal of building a distributed index
by harvesting as many summaries as possible. When required,
e.g., after a crime event or periodically, agents may query
neighbor regular nodes to obtain summaries they have not
collected yet. To this end, agents advertise Bloom filters
hashing the already harvested summaries [13]. Every regular
node tests its local table entries against the received Bloom
filter and replies by delivering only non-matching items.
MDHP takes into consideration situations where multiple
regular nodes are simultaneously present: in that case, MDHP
adopts heuristic-based strategies to properly schedule node
communications in order to avoid redundant summary
deliveries [14].

Several agents will likely scour the urban area concurrently
in real deployment scenarios. MDHP supports collaborative
strategies to build a distributed and partially replicated index.
Simple strategies have been devised so far to combine the
information carried by different agents: police agents can
exchange their Bloom filters through multi-hop paths as soon
as they have collected a specified number of new summaries.
More effective solutions based on controlling agent trajectories
are under investigation to further limit communication
overhead and latency [15].

A. MDHP Architecture and Portability
MDHP manages communications for regular nodes as well

as for police agents. It is in charge of extracting/storing
summaries from/to the local database and of implementing
opportunistic protocols for summary diffusion/harvesting.
Figure 3 represents both regular node and police agent MDHP
components; obviously, only the suitable ones will be installed
on a single vehicle depending on its type.

MDHP functions can be split into two different layers. The
upper layer (DB Interfacing Layer) interworks with the

summary database that maintains summaries either locally
generated or obtained from neighbors and not delivered to an
agent yet. The lower one (Network Management Layer)
consists of the components that actually implement
communication protocol operations. While the DB Interfacing
layer deals with instances of the Java Summary class, the
Network Management layer marshals/unmarshals summaries
into packets. Any summary includes a license plate number (6
bytes), additional sensed data (10 bytes, currently a 3-byte
temperature/hygrometer info and a 7-byte placeholder),
timestamp (2 bytes), and vehicle location (8 bytes). Thus, each
1500-byte packet can pack up to 58 summaries, without
exploiting aggregation or size-optimizing encoding techniques,
which are currently under investigation.

Periodically, the Diffusion Manager at regular nodes
advertises recently generated summaries (one packet with the
58 last summaries provided by the Local Summary DB
Interface). In the current MobEyes implementation, the
diffusion period is set to 5 seconds and new summaries are
expected to be generated with a maximum rate of 0.4 Hz (so,
each summary is advertised at least 29 times). These
parameters, e.g., the diffusion period, are tuned depending on
the MobEyes-supported application and deployment
environment. The cited values permit to accurately track
vehicle positions in common urban scenarios [15]. As future
work, we are considering: i) to adapt the diffusion period to the
changing rate of neighbor set (detected by Neighbor Manager);
and ii) to combine summaries generated in different epochs in
the same packet. The guideline is to maximize the usefulness
of packets by advertising them to new neighbors expected not
to have already collected the included summaries.

Any time a regular node receives new summaries, the
Received Summary Persistence Manager updates the local
database. Summaries are maintained until a police agent query
is received: in that case, the Summary Selector component
performs Bloom filter matching [13], prepares the set of
summaries to send to the agent, ordered from the least to the
most recent ones (in fact, due to random node trajectories,
oldest summaries are likely to be the rarest in the neighborhood
and consequently the higher priority ones), and then removes
those summaries from the local database.

Actual communications between agents and regular cars are
carried by the Harvester and the Agent Interaction Manager.

MobEyes Data Harvesting Protocol

Diffusion
Manager

Agent Interaction
ManagerReceiver Harvester

Summary
Persistence Manager

Local Summ
DB

Interface

Regular Node Agent Node

Packet

Summary

Recvd Summ
Persistence
Manager

Summary
Selector

Multi-agent
Coordinator

DB
nterfacing

Layer

Network
Mgmt
Layer

Neighbor List Neighbor Manager

MobEyes Data Harvesting Protocol

Diffusion
Manager

Agent Interaction
ManagerReceiver Harvester

Summary
Persistence Manager

Local Summ
DB

Interface

Regular Node Agent Node

Packet

Summary

Recvd Summ
Persistence
Manager

Summary
Selector

Multi-agent
Coordinator

DB
nterfacing

Layer

Network
Mgmt
Layer

Neighbor List Neighbor Manager

 Fig. 3. The MDHP modular architecture for regular and agent nodes

2586
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:34:17 UTC from IEEE Xplore. Restrictions apply.

The Harvester coordinates neighbor communications by
exploiting unicast messages for queries. The Agent Interaction
Manager, instead, handles summary delivery on regular nodes.
In the current prototype, as soon as an agent encounters other
agents (at 1-hop distance), the Multi-Agent Coordinator
exchanges the list of harvested summaries. We are now
extending the MobEyes architecture to support multi-hop inter-
agent communications via IETF reactive routing protocols
such as AODV [16, 17].

About low-layer communication support, we built MDHP on
the standard .net package for sensing nodes equipped with
J2SE. Limited nodes with J2ME will benefit from a MobEyes
prototype version with a different implementation of the Packet
component of the Network Management Layer, based on the
standard Connection framework included in the official Sun
virtual machine.

V. EXPERIMENTAL RESULTS

We developed current MSI and MDHP implementations on
top of J2SEv1.5. We adopted: 1) the official Sun release of
JMF 2.1.1 with Windows Performance Package (including
enhanced audio/video decoders/encoders for Microsoft
platforms); 2) our own implementation of JSR 179; 3) the
official Sun release of Java Communications API v2.0.

To verify the feasibility of our approach, we tested MobEyes
components in real-world scenarios. Due to the lack of space,
here we present some selected results. These refer to the
performance of the MSI audio/video capture functionality.
Tests were performed by capturing streams at a trafficked
intersection near the UCLA campus and were run on Dell
Latitude D610 laptops, equipped with PentiumM2GHz,
512MB RAM, and Logitech Quickcam Chats. We aimed at
evaluating three parameters: the size of generated files of
sensed data, mainly dependent on stream length and encoding
type; the overhead time needed to capture the stream, i.e., the
gross amount of time needed to start media processor and to
close processor and output file; and the conversion time to
encode the stream.

Table I, II, and III show the results obtained while capturing
audio and audio/video streams, either in raw or encoded
formats. For RGB video, the frame rate was set to 4 fps and
resolution to 320x240 (we are currently experimenting with
higher-resolution cameras allowing 640x480 image capturing,
as suggested in [5]); for LINEAR audio, sample rate was set to
44100, 16 bits per sample. Table I shows the average size of
the files generated during our tests, for different recording time
lengths. Both compression methods (audio/video MJPG, and
audio GSM) achieve a significant file size reduction. MJPG
permits to tune a “quality” parameter, influencing the
conversion time, as well as the output file size. Table I shows
only the results with a medium quality value: this permits to
reduce the file size of about 5 times with regard to the raw
version. Similar results are obtained in the case of streams
including only the video track. Table II shows the overhead

time needed to start the JMF processor capturing the stream
and to terminate it. Results prove that audio/video capturing
overhead is significantly greater than the one for a stream with
only the audio track. Finally, Table III reports how long it
takes to MSI to convert audio/video streams to the MJPG
encoded format, depending on the chosen quality factor. Lower
quality values (MobEyes quality=1, equivalent to MJPG
quality=10%) impose a stable conversion time, largely
compatible with typical MobEyes application requirements.

TABLE I
GENERATED FILE SIZE (IN [KB])

Rec-
Time

A/V
RGB

A/V MJPG
(Medium)

Audio
LINEAR

Audio
GSM

5s 4907 934 439 9
20s 16280 3295 1747 33
60s 46518 8749 5180 95

TABLE II
OVERHEAD TIME (IN [MS])

RecTime A/V RGB Audio LINEAR
5s 4790 206
20s 4493 401
60s 7780 270

TABLE III
CONVERSION TIME (IN [MS])

RecTime A/V MJPG
(Low)

A/V MJPG
(Medium)

A/V MJPG
(High)

5s 802 1432 2099
20s 1901 2198 11354
60s 6726 6523 37429

VI. CONCLUSIONS AND FUTURE WORK

Urban monitoring is becoming a research field of growing
interest. With the goal of supporting a posteriori monitoring
investigations, we proposed MobEyes to address searching in a
massive, mobile, and decentralized storage of sensed data. In
this paper, we discussed and evaluated MSI and MDHP, two
key components of the MobEyes architecture. Our MSI/MDHP
design and implementation demonstrate that the integration
with Java-based standard solutions (JMF, JSR 179,
Communications API, .net package) can allow to obtain
feasible performance results with a high degree of openness,
thus facilitating the adoption in large-scale existing industrial
deployment environments.

The encouraging experimental results already obtained are
stimulating further research work. In addition to some
directions already sketched in the paper, we are currently
investigating how the protocol for summary exchange among
agents at multi-hop distance works when implemented upon
ad-hoc routing solutions.

2587
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:34:17 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

The authors would like to thank Antonio Corradi and Chiara
Chiappini, whose suggestions, help, and support were crucial
for the realization of this work.

REFERENCES
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “A Survey on

Sensor Networks”, IEEE Communications Magazine, Vol. 40, No. 8,
Aug. 2002.

[2] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed Diffusion: a
Scalable and Robust Communication Paradigm for Sensor Networks”,
ACM Mobicom Conf., 2000.

[3] P. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan, “IrisNet: an Architecture
for a Worldwide Sensor Web”, IEEE Pervasive Computing, Vol. 2, No.
4, Oct-Dec. 2003.

[4] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. K. Miu, E.
Shih, H. Balakrishnan, S. Madden, “CarTel: a Distributed Mobile Sensor
Computing System”, ACM SenSys Conf., 2006.

[5] S.-L. Chang, L.-S. Chen, Y.-C. Chung, and S.-W. Chen, “Automatic
License Plate Recognition”, IEEE Transactions On Intelligent
Transportation Systems, Vol. 5, No. 1, Mar. 2004.

[6] UNO-2160 in Mobile License Plate Recognition System,
http://www.advantech.com.tw/ia/newsletter/AutomationLink/January200
5/Application_Story _ UNO-2160.pdf

[7] Java Community Process, http://jcp.org
[8] Java Media Framework, http://java.sun.com/prod-ucts/java-media/jmf/
[9] Java Communications API, http://java.sun.com/ products/javacomm/
[10] T. Manesis, N. Avouris “Survey of Position Location Techniques in

Mobile Systems”, ACM Conf. Human Computer Interaction with Mobile
Devices and Services, 2005.

[11] Java Location API 179, http://jcp.org/en/jsr/de-tail?id=179
[12] Java USB API, http://jcp.org/en/jsr/detail?id=80
[13] L. Fan, P. Cao, J. Almeida, “Summary Cache: A Scalable Wide-Area

Web Cache Sharing Protocols,” ACM SIGCOMM Conf., 1998.
[14] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, A. Corradi,

“MobEyes: Smart Mobs for Urban Monitoring with a Vehicular Sensor
Network”, IEEE Wireless Communications, Vol. 13, No. 5, Oct. 2006.

[15] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, A. Corradi,
“MobEyes: Smart Mobs for Urban Monitoring with a Vehicular Sensor
Network”, UCLA CSD Tech. Report 060015, http://
netlab.cs.ucla.edu/wiki/files/mobeyestr06.pdf

[16] E.M. Royer, C.-K. Toh, “A Review of Current Routing Protocols for Ad
Hoc Mobile Wireless Networks,” IEEE Personal Communications, Vol.
6, No. 2, April 1999.

[17] C.E. Perkins, E.M. Royer, “Ad Hoc On-Demand Distance Vector
Routing”, IEEE WMCSA Conf., 1999.

2588
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:34:17 UTC from IEEE Xplore. Restrictions apply.

