
AutoGait: A Mobile Platform that Accurately Estimates the Distance Walked 

Dae-Ki Cho, Min Mun, Uichin Lee t, William J. Kaiser+, Mario Gerla 
UCLA Computer Science Department, t Alcatel-Lucent Bell Labs, +UCLA Electrical Engineering Department 

{dkcho, bobbymun, gerla }@cs.ucla.edu tuichin.lee@alcatel-Iucent.com +kaiser@ee.ucla.edu 

Abstract-AutoGait is a mobile platform that autonomously 
discovers a user's walking profile and accurately estimates the 
distance walked. The discovery is made by utilizing the GPS 
in the user's mobile device when the user is walking outdoors. 
This profile can then be used both indoors and outdoors to 
estimate the distance walked. To model the person's walking 
profile, we take advantage of the fact that a linear relationship 
exists between step frequency and stride length, which is 
unique to individuals and applies to everyone regardless of age. 
Autonomous calibration invisible to users allows the system to 
maintain a high level of accuracy under changing conditions. 
AutoGait can be integrated into any pedometer or indoor 
navigation software on handheld devices as long as they are 
equipped with GPS. The main contribution of this paper is two 
fold: (1) we propose an auto-calibration method that trains a 
person's walking profile by effectively processing noisy GPS 
readings, and (2) we build a prototype system and validate 
its performance by performing extensive experiments. Our 
experimental results confirm that the proposed auto-calibration 
method can accurately estimate a person's walking profile and 
thus significantly reduce the error rate. 

I. INTRODUCTION 

Accurate estimation of the distance walked is the key 
enabler for numerous ubiquitous mobile applications, rang­
ing from pedometers to indoor navigation systems. Despite 
its high energy consumption, the Global Positioning Sys­
tem (GPS) can provide a very useful means of distance 
estimation as long as mobile users are outdoors. For in­
door coverage, there are two popular techniques, namely 
indoor localization using RF-based fingerprinting (e. g. , 
WiFi/GSMlBluetooth-based fingerprinting methods [1]) and 
pedestrian dead reckoning using wearable sensors (e. g. , 
accelerometer- or pressure-sensor-based pedometers). The 
latter is more preferable for ubiquitous mobile applica­
tions [2], because the former requires infrastructure and its 
performance heavily depends on the fingerprint database or 
signal conditions [3]. 

Existing sensor-based pedestrian dead reckoning systems 
typically use accelerometers to count steps and compasses 
and gyroscopes to measure changes in walking direc­
tions [4]. Then, the total distance walked is calculated by 
simply multiplying the measured step count by the average 
stride length. ! However, these systems suffer from inaccu­
racy, namely distance overestimation at slower speeds and 
underestimation at faster speeds. While one possible cause 
is the sensor problems such as accelerometer measurement 
errors and sensor misalignment [5], the major problem is 
that these systems assume a constant stride length while 
estimating the distance walked. Most pedometer systems ask 

1 Stride length is the distance between the heel of the front foot and the 
heel of the back foot at the point where they are farthest apart. 
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the user to manually calibrate the average stride length; e. g. , 
after walking a known distance, a user finds the average 
stride length by dividing the distance by the measured step 
count. This makes the distance estimation severely biased 
towards dominant walking patterns. Considering the fact that 
human walking patterns are not uniform and the stride length 
is variable, such manual calibration may result in severe 
errors. Recall that for indoor navigation, even a small error 
in estimating the distance walked (e. g. , 10m) can account 
for location misprediction. Hence, it is very important to 
characterize the variable stride length by profiling walking 
patterns. 

In physiology literature, it has been shown that there is a 
linear relationship between step frequency and stride length 
- the stride length linearly increases with the step frequency, 
which is unique to individuals and applies to everyone 
regardless of age [6], [7].2 For instance, the stride length 
while walking slowly (low step frequency) is shorter than 
the one while walking fast (high step frequency). Given that 
the same walking profile applies both indoors and outdoors, 
we can find a linear walking profile using GPS when a user 
is walking outdoors, and this profile can then be used for 
estimating the distance walked for both indoor and outdoor 
environments. The profile can be re-calibrated occasionally, 
because walking is a time-varying activity that is affected by 
several factors such as mood, body shape, and weight [8]. 

The main challenge is to calibrate a walking profile using 
commercial off-the-shelf (COTS) GPS in a typical mobile 
device. In this paper, we address this challenge and propose 
AutoGait, a mobile platform that autonomously discovers a 
user's walking profile and accurately estimates the distance 
walked. The following are the key contributions of the paper: 

• The proposed auto-calibration method effectively pro­
cesses noisy GPS readings by searching for straight­
line walking patterns, where heading changes of a 
mobile user are bound within a certain threshold degree. 
Finding such segments is not difficult because users 
walk on the pedestrian roads. Further, the distance of 
a straight-line segment can be accurately measured, 
because the impact of GPS errors becomes negligible 
as the distance walked increases. This allows us to find 
sample data points for linear regression by calculating 
the average step frequency and stride length from each 
line segment. Thus, our system can accurately calibrate 
the linear model even with noisy GPS readings. More­
over, AutoGait periodically triggers auto-calibration to 

2 Step frequency is the inverse of the time taken by a user to move a 
stride. 
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Figure I. High-level system view of AutoGait 

detect whether one's gait pattern has changed over time. 
• We implement the AutoGait system based on Nokia 

N810 and Smartshoe platforms and validate its ac­
curacy via extensive experiments in both controlled 
(treadmills) and outdoor environments. AutoGait is 
sufficiently generic to be paired with any pedometers or 
indoor navigation systems as long as they are equipped 
with GPS and requires minimal modifications to their 
software. Our experiment results show that AutoGait 
performs within error rates of less than 1. 5% in the 
tested scenarios; this is comparable to the performance 
of differential GPS (DGPS)-based schemes [9]. 

II. OVERVIEW OF AUTO GAIT SYSTEM 

The AutoGait system consists of two modules: a pedome­
ter module and a GPS data filtering/calibration module (see 
Figure 1). The pedometer module detects steps and keeps 
track of the step history as well as the distance walked. When 
calibration is required, the GPS data filtering/calibration 
module first filters noisy COTS GPS readings via smoothing 
and then searches for straight-line walking segments where 
heading changes of a user are bound within a certain 
angular threshold. We only consider straight lines, because 
smoothing tends to distort the shape of the corners owing to 
noisy GPS readings. Moreover, it is possible to accurately 
measure the distance of a straight-line segment, because the 
impact of GPS errors becomes negligible as the distance 
traveled increases. 

AutoGait exploits the fact that there is a linear relationship 
between stride length and step frequency [6], [7]. We call 
this linear relationship the Stride Length Lookup (SLL) 
function, namely s = a· i + {3; i. e. , for a given step frequency 
i, we can find the corresponding stride length s. The rest 
of the parameters, a and {3, can be found using straight­
line segments as follows: For each straight-line segment, the 
system calculates the average step frequency and the average 
stride length. The two values form a sample point, and 
the system runs a linear regression on such sample points 
obtained from multiple straight-line segments. Therefore, 
our system can accurately calibrate the linear walking profile 
or SLL even with noisy GPS readings. AutoGait periodically 
triggers auto-calibration and detects whether one's gait pat­
tern has changed over time. Given that we have a set of 
measured step frequencies iI,'" ,is, we can estimate the 
distance using SLL as follows: dtotal = 2:::=1 a · Ii + (3. 
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III. MECHANISM FOR GPS DATA FILTERING, 

CALIBRATION, AND TRIGGERING 

Whenever a calibration is required, AutoGait opportunis­
tically calibrates the SLL while a user is walking outdoors. 
After collecting a sufficient number of GPS readings out­
doors, the system performs GPS data filtering and detects 
straight-line segments. It then calibrates the SLL using the 
straight-line segments. In this section, we detail GPS data 
filtering, calibration, and triggering mechanisms. 

A. GPS Data Filtering 

Instead of using highly accurate DGPS to calibrate the 
linear relationship between stride length and step frequency 
by measuring the exact position of the feet [9], we utilize 
COTS GPS in mobile devices, which have the error range of 
5 to 10m. Therefore, the distance between two consecutive 
GPS coordinates is not always the same as the actual dis­
tance that a user has walked. To reduce the overall error rate, 
we propose the following filtering processes: segmentation, 
smoothing, and straight-line identification. These processes 
filter noise and curvilinear walking GPS data and produce 
only straight-line GPS data segments. 

1) Segmentation (Pre-process): We segmentize GPS data 
points into different groups using the following criteria: 

• Immobility Detection: If the time interval between two 
consecutive GPS readings is considerably larger than 
the values of all of the recorded intervals, it is likely 
that the mobile user has stopped walking. If the time 
interval is greater than the sum of the mean and three 
times of the standard deviation of the time intervals as 
a whole, we divide it into different segments. 

• Unrealistic Movement Detection: Poor GPS satellite 
visibilities due to environmental obstacles often gen­
erate sudden jumps in GPS traces (see Figure 2). We 
compute the speed by dividing the distance between 
two consecutive GPS readings by the time interval. If 
the estimated speed is far greater than the values of the 
others; i. e. , if it is greater than the sum of the average 
and two times of the standard deviation of the recorded 
GPS readings, we divide it into different segments. 

Figure 2. GPS coordinates collected in widely opened area (left) and near 
tall buildings (right) 

The current prototype collects a GPS reading for every 
ten steps, which is approximately 5 to 10m in distance. 
When we consider that the GPS error range is 5 to 10m, 
the error rate of the distance estimation for a given segment 
can be higher than 100% if it has only a small number of 
GPS readings. In general, a longer segment is required to 
effectively reduce the error rate. In our prototype, we remove 
segments that have less than ten GPS data points. 
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(a) Before 

(b) After 

Figure 3. Visualization of the Smoothing: Noisy GPS trace (a) becomes 
smoother after the convolution (b). 

2) Smoothing: Even when a user walks in a straight 
line, GPS errors may make raw GPS traces jagged or 
curved, as illustrated in Figure 3(a). Such data fluctuations 
cause distance misprediction. Therefore, we smooth the pre­
processed GPS segments using convolution, a linear filtering 
method that is similar to cross-correlation [10]. This process 
flattens the jagged or curved lines of GPS traces. As shown 
later, it also helps identify a straight-line segment. Other 
filtering methods such as autoregression [11] are not suitable 
for our system, because we are not predicting the current 
position from the previous coordinates. In the convolution, 
each GPS coordinate in the segment is smoothed with only 
its neighbors as follows: 

f(t) * g(t) == l
h 

f(T)g(t - T) dT 

where f is an array of (latitude I longitude) floats, g is 1 
for 0 :::; t < a and 0 otherwise, and h is the number of GPS 
position data in a segment. 

The output of the convolution indicates the amount of 
overlap of a function g as it is shifted over another function 
f. It thus blends smoothed data segments with the pre­
processed segments. Because a GPS coordinate consists of 
latitude and longitude values and because these two elements 
are independent, we separate them into two arrays and 
independently filter them. We use the continuous uniform 
distribution function g, because the values within a window 
should be equally weighted. An example of the output of a 
convolution is illustrated in Figure 3(b). 

3) Straight-Line Identifier: The smoothing process 
straightens a jagged trace. However, when a user makes 
turns, it rounds off GPS readings sampled at the corners, 
making sharp corners dull and round. Moreover, some of 
the noisy GPS data still remain even after the smoothing 
process, thus severely distorting the actual path traveled. To 
remove the erroneous estimation caused by turns, we focus 
on walking patterns in straight-line roads where a user walks 
in a near straight line. Thus, we can exclude curves and GPS 
noise by considering only near straight-line walking patterns 
over noisy GPS readings. To this end, we propose a heading 
change (HC)-based filtering algorithm. The idea is to find 
a series of GPS coordinates where each heading is formed 
by two consecutive GPS readings points toward a similar 
direction. 
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Figure 4. Definition of Heading Change (Oi-l) 

The HC algorithm first finds a heading (or bearing) 
between two consecutive GPS coordinates. The algorithm 
begins by transforming the coordinates to a Cartesian space 
[12]. We then calculate the vertical (y) and the horizontal 
(x) distances between two consecutive points using: 

y = sin (PH1.Lon - Pi.Lon) . cos (PH1.Lat) 
x = cos (Pi.Lat) . sin (PH1.Lat) - sin (Pi.Lat)· 

cos (PH1.Lat) . cos (PH1.Lon - Pi.Lon) 
---) 
P = [Pl, P2, ... , Ph] where Pi = (Lati, Loni) 

Given x and y, we calculate the heading values Ii 
(Hl, H2, ... , Hh- d, where atan2(y,x) is the arctangent of 
y/x. 

180 
Hi = -[mod(atan2(y,x),21f)]' 1:::; i < h (1) 

1f 
---) 

We then compute the heading changes, e = 

(el, e2, ... , eh-2) , using the heading values Ii from (1). The 
heading change of two consecutive heading directions is 
visualized in Figure 4. 

ei = HHl - Hi 1:::; i < h - 1, -1800:::; e < 1800 

Given the heading change values, 1, we can find the 
straight-line segments as follows: The algorithm calculates 
cumulative heading changes, <! where Ci is the angle 
difference between Hl and the heading angle of the edge 
from Pl to PH2 (see Figure 5). 

1 2 k 
<! = [L:et,L:et, ... ,L:et] 

t=l t=l t=l 
---) 

where k is length of e. 
Next, the algorithm looks for the maximum i such that 

Ci is less than the end-point threshold (ET) and Cj (where 
j is between 1 and i-I) is less than the angular threshold 
called the middle-point threshold (MT). Figure 5 visualizes 
ET and MT. If the GPS coordinates, Pl,··· , PH2, are 
within the boundary of the double line (=) where i is greater 
than a certain number (i.e., to minimize the error, each 
segment should have a sufficient number of GPS readings), 
we assume that Pl,·· . , PH2 are on a straight-line segment. 
This fo� re-entering the rest of the heading change 
values, ei ... h (excluding the straight-line segment), to find 
more straight-line segments. If the process finds no straight­
�egment, it discards the first heading change value (i.e., 
e2 ... h). This process repeats until a straight-line segment is 
found. The current prototype uses 10° and 35° for ET and 
MT, respectively. 

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:24:08 UTC from IEEE Xplore.  Restrictions apply. 



Figure 5. End-point Threshold (ET) and Middle-point Threshold (MT) 

B. Walking Profile Calibration 

1) Updating Stride Length Lookup (SLL): Once we dis­
cover a straight-line segment from the above process, we 
average the step frequencies that belong to the segment. 
We then estimate the stride length using the following two 
approaches: 

• end-to-end: DH1, Distance between two endpoints of 
the segment (see Figure 6) 

• sum up: L;�� dj, Cumulative distance of two consec-
utive points in the segment (see Figure 6) 

The average stride length is then estimated by dividing the 
distance (i.e., DHl and Li�� dj) by the number of edges 
in the segment and the number of steps in an edge (i.e., ten). 
This sample from the segment is then used for updating the 
SLL. 

Given the sample from the above process, the system 
updates the SLL using a linear least squares fitting with 
existing samples. The linear least squares fitting is known 
as the most common method of linear regression, which 
provides a solution of finding the best fitting line through 
a set of points. Recall that SLL is given as s = CY • f + (J 
where s is the stride length, f is the step frequency, and CY 
and (J are constants. When the system takes a sample from 
the Straight-Line Identifier, it recalculates two coefficients, 
CY and (J, that are newly used for calculating the stride length. 

2) Calibration Termination Condition: The system con­
tinuously detects the straight-line segments to update the 
SLL when the calibration is necessary. As the number 
of samples increases, the linear equation, given by the 
least squares method, converges. The system then stops the 
learning process after a certain threshold and turns off the 
GPS module to conserve energy. The termination criterion 
is given as: 

I 
CYi - CYi-l 180 

I Vi, arctan( ) * - < 'Y
o 

1 + CYi . CYi-l 7r 
(2) 

where i is between k and k + m, that is, the angle change 
between the slope of the new equation (CYi) and the previous 
slope (CYi-d is smaller than 'Yo 

over m calibration periods. 
In our experiment, we set m as 5 and 'Y as 10, which is 
discussed in Section V. 

3) Triggering and Re-calibration: The system can es­
timate the distance walked using the SLL discovered in 
the calibration process. However, the step frequencies and 
the stride lengths can change depending upon one's mood, 
body shape, and weight; e.g., a regression model constructed 
this week could be different from the one generated two 
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Figure 6. A Straight-Line Segment. di: Distance Between Two Consec­
utive Points (i.e., Pi and PHI), DHI: Distance Between Two Endpoints 
of the Segment 

weeks ago. One simple method is to compare the new 
SLL generated with the previous values periodically (say 
a month). The triggering frequency can be adjusted on 
the basis of the differences between the SLLs. If the user 
is experiencing dynamically changing SLLs, the system 
can trigger the re-calibration process more frequently, say 
once a week. Additionally, we can configure the system to 
automatically measure the changes in step frequencies to 
trigger auto-calibration. If the system finds any significant 
changes, it asks users whether they would like to perform 
re-calibration. 

IV. AUTOGAIT PROTOTYPE IMPLEMENTATION 

We implemented AutoGait on the Nokia N810 using 
Linux Python (version 2. 5) and designed our own pedometer 
using low-power force sensors in the SmartShoe platform 
to avoid the low-acceleration sensing problem found in 
accelerometer-based pedometers. In this section, we briefly 
describe the SmartShoe platform and illustrate how we 
integrate AutoGait into the pedometer. 

A. SmartShoe Platform 

The SmartShoe platform has 1) low-cost sensors that 
measure motion, force, and pressure signals, and 2) a 
MicroLEAP [13] computing unit that acquires sensor data 
and transfers it using Bluetooth to a mobile user's handheld 
device. MicroLEAP is a mote-size wireless wearable sensor 
platform. It includes a low-power embedded processor, the 
Texas Instruments (TI) MSP430, for basic data processing, 
a high-resolution analog-digital converter, data storage, a 
Bluetooth module, and MEMS sensors. The sensor signals 
are digitized with 16-bit resolution or higher. More details 
of SmartShoe can be found in [14]. 

B. Pedometer Implementation 

We implemented the pedometer in Linux Python (version 
2. 5), which is integrated with the calibration module as 
shown in Figure 1. Two MicroLEAPs (from the left shoe 
and the right shoe) are separately connected to the Nokia 
N810 using Bluetooth. We use threads to guarantee reliable 
data collection for both connections. When the program 
starts, it creates socket connections using Bluetooth to both 
MicroLEAPs. Once the connections are successfully estab­
lished, the system issues a command to both MicroLEAPs, 
configuring a sampling rate, the streaming data format, and 
the number of channels. It then creates threads for data col­
lection. The threads loop until the system detects a keyboard 
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(a) Raw GPS Data (b) Effect of Segmentation and Smoothing 
Figure 7. The Performance of the Straight-Line Identifier 

interrupt command. Each thread (Bluetooth connection) runs 
separately to count steps. The thread periodically receives 
five pressure data samples from a MicroLEAP. Each sensor 
value is then converted to a Boolean value, indicating pres­
sure or no pressure, respectively. Normal walking motion 
follows unique sequential patterns of stance and swing. In 
the stance motion, the ground contact force on the foot shifts 
from the heel to the toe, whereas in the swing motions, 
there is no pressure on the foot. Thus, by analyzing the 
sequential Boolean values, the system recognizes that a 
step has been taken. When the pedometer detects a step 
while the calibration is running, the pedometer passes its 
step frequency to the calibration module. Every ten steps, 
the module reads the GPS to find a straight-line segment. 
Once a straight-line segment is found, the SLL runs a linear 
regression to update the SLL. 

V. EXPERIMENTS 

In this section, we describe the experiments of our pro­
posed system. 

A. Linear Relationship Verification (Treadmill) 

Our first experiment was performed on a treadmill to 
illustrate the linear relationship between stride length and 
step frequency. One participant walked on a treadmill while 
changing walking speeds from 1.0 mph to 4. 5 mph as 
follows: at every two hundred steps, the speed was increased 
by 0.5 mph. The system computes the step frequency for 
every step. The step frequencies are averaged, and thus, each 
result represents the average frequency for a given speed. 

45.,... -" 
40 L-�L-�L-�L-��� __ � __ ��� 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 
Step Frequency (Hz) 

Figure 8. Linear Relationship Verification (Treadmill): Sample points (_) 
are used for estimating the slope (--) using linear least squares. 
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We also recorded the total distance walked for each speed 
that was given by the treadmill. The distance was divided 
by the total number of steps taken to calculate the average 
stride length. Figure 8 clearly validates that there is a linear 
relationship between the stride length and the step frequency. 

B. Identifying Straight-Line Segments and Calibrating SLL 

To show that the stride length and the step frequency 
can be calibrated using GPS, the prototype system was 
used for collecting a dataset obtained by walking near 
the UCLA campus. During the experiments, a participant 
casually walked the same route six times with the Nokia 
N810 in hand. The traces are plotted in Figure 7(a). 

As we described in the GPS data filtering section III-A, 
we processed the raw GPS data with a three-step filtering 
method: segmentation, smoothing, and straight-line identi­
fication. The result of each step is illustrated in Figure 7. 
By removing outliers and short segments, the pre-processing 
and smoothing separated a long segment into several pieces 
(see Figure 7(b)). Finally, the HC algorithm found only the 
straight-line segments from the smoothed segments as shown 
in Figure 7(c). 

For each segment obtained after the filtering process, 
two samples were obtained by two different methods, end­
to-end and sum up, that we mentioned in Section III-B. 
Figure 9 plots the results of the sum up (+) and the end­
to-end (D) methods. The results show that the end-to-end 
method underestimates the stride length when compared to 

_ 0.6 
'* 0.75 
E 
;; 0.7 
c;, c: 0.65 
.3 Q) 0.6 
-0 � 0.55 

Number of samples: 1-10 
- Number of samples: 11-17 !!J 
� Number of samples: 18-22 

0.6 0.7 0.6 0.9 I 
Step Frequency (Hz) 

1.1 1.2 

Figure 9. Least Square: As number of samples increases, the linear line 
converges to a line 
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Figure 10. Angle variation between previous and current lines is rapidly 
decreasing as number of samples increases 

the sum up method. The system then separately updates 
the SLL of the end-to-end and the sum up using linear 
least squares fitting. The straight lines in Figure 9 show 
the updating progress of the SLL based on the end-to-end 
method. When there are only a few samples (I to 10), the 
angle variation of the lines (see (2)) is large because of the 
small size of the learning set. However, when the number 
of samples is larger than 11, it gradually converges and 
shows minimal slope variations. The changes in the slope 
angle are plotted in Figure 10. The graph shows that the 
change in the angle stays within ±1° after the 12th sample. 
In our implementation, we stop the discovery process when 
the angle change is sequentially smaller than 10 over five 
time periods. Hence, the calibration process terminates after 
the 17th sample. 

C. Effectiveness of CPS Filtering 

In order to show the effectiveness of our learning process, 
we compared our two methods with the following attributes: 

• Raw GPS (RG): For every two sequential GPS coor­
dinates, we estimate the stride length by dividing the 
distance between two points by the number of steps, 
and the step frequency by averaging step frequencies 
between two points. Each point (step frequency, stride 
length) is then used for estimating the slope using linear 
least squares. 

• Raw GPS without Outliers (RGO): From the above 
process, we remove the outliers whose stride lengths 
are greater than the sum of the average and two 
times the standard deviation of all the stride lengths. 
The remaining samples are applied to the linear least 
squares fitting in order to obtain a linear equation. 

• Smoothing (SM): After the smoothing process, several 
segments are obtained. Using the same process that 
is used for raw GPS data, the segments are used for 
estimating the linear equation. 

The results are plotted in Figure 11. As the figure shows, 
the Treadmill and two He methods follow similar trends; 
however, the lines generated by the two He methods are 
above the Treadmill, because the stride length increases 
slightly when the user walks on the ground [15] compared to 
when the user walks on the treadmill, and the result indeed 
makes sense. The fitted lines of the other methods are by far 
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Figure 11. Discovered Stride Length Lookup (SLL): Stride Length vs 
Step Frequency 

different from those of the Treadmill or Hes. The raw GPS 
overestimates the stride length as compared to the others. On 
the other hand, the raw GPS without outliers significantly 
underestimates the stride length. This means that the raw 
GPS is very noisy, and thus, the effective filtering method 
is necessary. Smoothing is relatively close to two Hes, but 
it underestimates when the walking speed is high (i.e., step 
frequency is high). 

D. Validation of SLL's Accuracy: Field Tests 

To evaluate the accuracy of the calibrated SLL, we ran 
an experiment where the participant walked on both the 
treadmill and the ground for a mile. Because it is difficult 
to measure the accurate distance traveled while a user 
is walking on an unevenly surfaced ground, we had the 
participant walk four laps on a track (l lap = .25 mile) at 
three different speed levels, as listed in Table I. Our system 
collected the step frequency for each step, and we estimated 
the distance walked by using the SLL profiles in Figure 11. 
During the test, the system missed one step on the treadmill; 
however, none of the steps were missed on the track. 

Error rates are plotted in Figure 12, where the error rate is 
the percentage of distance that deviates from one mile; e.g., 
if the estimated distance is 1. 1 mile, the error rate is 10% . 
From this experiment, we made the following observations. 
First, high error rates for RG and RGO indicate that the raw 
GPS data cannot be directly used for estimating the stride 
length. Second, SM underestimates the distance traveled 
(between -6% and -4.5%), because the smoothing process 
distorts the sharp corners and curves. This confirms that it is 
necessary to use straight-line segments to accurately estimate 
the stride length. Third, the sum up method performs two 
times better than the end-to-end method in the track test. 

Slow Moderate Fast 

Table I 
ONE PARTICIPANT WALKED TOTAL FOUR LAPS ON A TRACK AT THREE 

DIFFERENT SPEED LEVELS. 
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Figure 12. Error rate from Field Test: TM (Treadmill), RG (Raw GPS), 
RGO (Raw GPS without outlier), SM (Smoothed), HC (end-to-end), HC 
(sum up) 

This is because the end-to-end method connects two end 
points of a straight-line segment to estimate the stride length, 
possibly shortening the actual path that the user walked, 
while the sum up method closely estimates the length of 
a real walking path by summing up all the edges within 
a straight-line segment. Finally, the sum up method works 
four times better than Treadmill (TM) in the track test 
while the TM performs three times better than the sum 
up method in the treadmill test. This implies that for a 
better estimation of the distance traveled, the SLL should 
be discovered outdoors. 

On the basis of the sum up method, we evaluate how 
accurately the SLL estimates the distance walked at different 
speed levels. Table I lists the experiment results, which 
shows that the SLL-based method significantly outperforms 
the constant stride length-based method both at slow speeds 
and at fast speeds. More precisely, the error rate decreases 
from -25.7% to 1. 02% at slow speeds and from 14. 6% 
to 0. 93% at fast speeds. This also shows that the distance 
walked is overestimated at slow speeds and underestimated 
at fast speeds when a constant stride length is assumed [5]. 
Even at moderate speeds, the accuracy of the SLL-based 
estimate is higher than that of the constant stride length­
based estimate. This confirms that AutoGait performs well 
at different walking speeds. 

E. Benchmark Studies 

Setup: During the field test in Section V-D, the participant 
was equipped with two additional commercial products, an 
Omron pedometer (Hl-72OITC) and a Nokia Step Counter. 
The pedometer was clipped on the participant's belt, and the 
Nokia Step Counter was placed in the pocket. Both devices 
use different ways of estimating the distance traveled. The 
Omron pedometer estimates the distance by multiplying the 
number of steps by the participant's stride length (i. e. , 70 em 
in our experiment). The Nokia Step Counter measures the 
distance using a constant stride length that is calculated on 
the basis of a user's height and weight. We also evaluated the 
performance of Nike + iPod shoes. Because one participant 
cannot wear two different shoes at the same time, we instead 
had the participant walk on a track wearing the Nike+ shoes 
and the sports kid sensors separately. The test was performed 
with and without calibration. The calibration was done on a 
treadmill by making the participant walk 400m at moderate 
speeds as recommended by the manual. In each test, there 
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were three trials with slow, moderate, and fast speeds. For 
each trial, the participant walked one lap of the 400m track. 

Omron Pedometer and Nokia Step Counter: The bench­
mark study results are listed in Table II and Table III. The 
error rate of the Nokia Step Counter was 54. 6% at slow 
speeds, 10. 3% at moderate speeds, and 22. 1 % at fast speeds. 
The error rate was high, because the step detection was 
poorly done at slow speeds. The participant walked a total 
of 2398 steps, but the system detected only 1773 steps. The 
Omron pedometer missed around 10 steps, and its error rate 
was around -24.08% at slow speeds, -4. 13% at moderate 
speeds, and 14. 6% at fast speeds. While it outperformed the 
Nokia Step Counter, the constant stride length assumption 
kept the error rate high. 

Slow Moderate Fast 

Table II 
BENCHMARK STUDIES: ONE PARTICIPANT WALKED TOTAL FOUR LAPS 
ON A TRACK AT THREE DIFFERENT SPEEDS WITH OMRON PEDOMETER 

AND NOKIA STEP COUNTER. 

Nike + iPod: We make the following observations. First, 
the accelerometer-based step detector could not detect the 
steps at slow speeds even if the sensors were mounted on 
shoes. Sensors were not sufficiently accelerated to generate 
the peak value. Note that the Nike shoes use the Speedmax 
algorithm [16] that finds the peak values in order to detect 
the steps. Second, Nike shoes use a constant stride length. 
As the results show, the distance estimated at moderate 
speeds was higher than the distance estimated at high speeds 
both with and without calibration. Given the fact that the 
stride length increases when the speed is high (i. e. , a linear 
relationship), we conclude that the Nike shoes use a constant 
stride length for estimating the distance walked. 

Table III 
NIKE+ SHOES TEST RESULT 

F Testing on Multiple Users 

We tested AutoGait with multiple users in order to confirm 
that the system could be personalized. Three participants 
wore the SmartShoe-based pedometer with Nokia N810 and 
casually walked around the UCLA campus to calibrate the 
SLL by using the sum up method. The participants then 
walked four laps on a track (1 lap = . 25 mile) to find the 
error rate of the SLL learned. 

The results are shown in Table IV. The number of 
segments did not significantly affect the accuracy. The 
results show that participant B had four more segments than 
participant C, yet the error rate difference was minimal. 
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Moreover, SLL (i. e. , a and (3) learned by three different 
participants were different for individuals, which showed 
that the profile should be personalized in order to accurately 
measure the distance walked. 

Table IV 
MULTI-USER RESULTS 

VI. DISCUSSION AND FUTURE STUDIES 

A. Limitations of Using Accelerometer-Based Pedometers 

Low-Acceleration Sensing Problem: Step misdetection or 
overdetection can occur because of accelerometer measure­
ment errors and sensor misalignment. The impact of mea­
surement errors is more pronounced when users walk slowly 
[5]. As accurate step detection is a significantly important 
factor for finding the linear relation in the AutoGait system 
(i. e. , gathering GPS coordinates is based on the number of 
steps), the missing steps can cause the system to miscalibrate 
the linear walking profile. In this paper, we propose two po­
tential solutions for this problem. First, by using a statistical 
method such as autoregression modeling [11], we can predict 
the number of missed steps and their step frequencies on the 
basis of the recorded history. The predicted data can then be 
used for discovering the linear relationship. Second, after we 
discover a straight-line segment to find a sample point (i. e. , 
an average stride length and step frequency) for the linear 
regression, if the number of steps times the inverse of the 
step frequency is not close to the time difference between 
the first step and the last step in the segment, we can simply 
discard the segment and not use it for performing the linear 
regression. Thus, a straight line cannot be found if a user 
walks at a slow speed (because of the poor performance at 
slow speeds). Note that we can still use the linear regression 
method based on moderate and fast walking samples. 

Data Processing Algorithms: There are a number of ac­
celerometer data processing methods such as peak detection 
at the stance phase [17], zero crosslflat zone detection in the 
swing phase [18], or frequency analysis using FFT [9], [19]. 
Although these algorithms are suitable for finding steps from 
accelerometer data, not all of them can be used for real-time 
step detection. For instance, FFT is not suitable for our case 
because it requires buffering of data, which get decomposed 
into different frequency components in a batch, making it 
difficult for real-time step detection. On the other hand, peak 
detection and zero crosslflat zone algorithms detect steps on 
the basis of a threshold mechanism, which can be run in 
real-time. 

B. AutoGait on Indoor Navigation Systems 

Orientation Detection: In indoor navigation systems, ori­
entation detection is very important for keeping track of 
a user's location. Generally, compasses or gyroscopes are 
used for detecting orientation. However, their performance 
depends on many factors such as the location's magnetic 
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fields and the orientation of the sensors. Most recent Smart­
phones such as iPhone 3GS and Android Glare equipped 
with compasses. In a future study, we will thoroughly test 
them to see whether they can be used for indoor navigation 
systems. 

C. Consideration of Physiological Factors 

In Case of Running: As a part of a future study, we 
will consider the case of running where the physiological 
model is different from that of walking. Separate profiles 
for walking and running will be maintained, and an activity 
detection mechanism [6] would determine which profile to 
use. 

Impact on Age Variance: Zijlstra et al. showed that the 
linear walking profile applies to everyone, regardless of age 
[7]. Hence, we believe that the AutoGait system can benefit 
a wide range of people, from the young to the elderly. 
However, we have not evaluated our prototype with diverse 
age groups. We will validate this hypothesis in the future. 

Walking UphilllDownhill vs. Stride Length: Depending 
on the slope of inclination or declination, the stride length 
varies although the walking profile still follows the linear 
relationship [6], [20]. More precisely, the stride length 
reduces when the user walks uphill, and it increases when 
the user walks downhill. Unfortunately, our system does not 
account for this aspect yet. We will take advantage of altitude 
data from the mobile's GPS to estimate variations in steps 
when the user walks uphill or downhill. 

VII. RELATED STUDIES 

GPS-based pedometer products such as Garmin Forerun­
ner and Nokia Sport Tracker [21] use GPS to offer athletes 
a personal training device that measures speed, distance, 
trace, calories burned, and pace. However, GPS does not 
work indoors, and continuous GPS data sampling is power 
hungry. Moreover, we focus on the calibration methodology 
of human walking profiles using GPS rather than finding the 
distance walked. Therefore, these devices are not suitable for 
our purposes. 

Several studies investigated the human walking profile to 
compute stride lengths. Scarlett et al. [19] proposed an al­
gorithm to estimate the travel distance by double integrating 
the raw accelerometer data from a hip-located device that re­
quires an accurate sensor alignment. This technique has been 
applied to indoor localization or pedestrian navigation such 
that a mobile system can track a user's current position using 
a known starting point and a two-dimensional relative trace. 
Researchers showed that a linear relationship between stride 
length and step frequency is an important feature of a human 
walking profile [6]. Lee et al. [22] proposed a calibration 
method that estimates the stride length based on acceleration 
measurements that are carried out on a treadmill. Ladetto et 
al. [9] developed the Pedestrian Navigation Module (PNM) 
for Leica Vectronix AG using the linear relationship. In 
practice, the main drawback of these approaches is that 
estimating the distance using accelerometers is error-prone 
because of sensor misalignment and low acceleration in the 
case of slow walking speeds. 
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There were several approaches that explore auto­
calibration using GPS [9], [23]. Leick et at. showed that 
accurate calibration is feasible, but the performance mainly 
depends on the accuracy of GPS because it requires stride­
level distance measurement [23]. To the best of our knowl­
edge, all the existing solutions are based on DGPS for 
accurate distance estimation. In practice, it is neither feasible 
nor convenient for mobile users to carry a bulky, expensive 
DGPS device in their everyday lives. The main departure 
from existing studies is that we propose an algorithm that 
processes noisy COTS GPS readings and calibrate the linear 
profile on the background. 

Ultrasound sensors have been considered for measuring 
stride length; a source sensor can measure the time for 
an ultrasound signal to echo back from the destination 
sensor. The distance between two sensors can be estimated 
by multiplying the time-of-flight by the speed of sound. 
Koss et at. [24] used ultrasonic sensors at anatomical and 
anthropometrical points to measure human motion. In addi­
tion, a portable walking distance measurement system was 
developed using ultrasonic wave characteristics [25]. Yeh 
et at. elaborated the design, implementation, and evaluation 
of a footstep-based indoor location system by attaching the 
ultrasound sensors to traditional Japanese GETA sandals 
[26]. However, ultrasound sensors have several limitations 
in practice: (1) they require additional sensors such as gyro­
scopes to differentiate the steps taken sideways or backwards 
from steps taken forward because of the dynamics of human 
motion, (2) they may interfere with other ultrasonic devices 
nearby or background noise, and (3) they consume more 
energy for acoustic transmissions. 

VIII. CONCLUSION 

Conventional pedometers use a constant stride length for 
estimating the total distance walked. We argued that the 
constant stride length is a major source of error in accurately 
estimating the distance walked. To overcome this problem, 
we exploited the fact that there exists a linear relationship 
between the stride length and the step frequency and de­
veloped AutoGait, a mobile platform that opportunistically 
calibrates a user's linear walking profile using a mobile's 
COTS GPS while the user is walking outdoors. AutoGait 
uses a novel GPS filtering algorithm to calibrate a walking 
profile with noisy COTS GPS readings. By implementing 
the AutoGait prototype in the Nokia N810 and interfacing it 
with the SmartS hoe-based pedometer, we demonstrated that 
the platform is applicable to any pedometer software running 
on Smartphones or handheld devices. Our extensive ex­
periments confirmed that the AutoGait system outperforms 
existing solutions and significantly lowers the error rates, 
achieving more than 98% accuracy in our testbed scenarios. 
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