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a b s t r a c t

Fine-grained place logging with Wi-Fi beacon signatures provides a useful tool for deliv-
ering various semantic location-aware services such as reminders and advertisements. Ex-
isting solutions however heavily rely on energy-hungry periodic Wi-Fi scanning for place
detection in resource limited mobile devices. In this paper, we present PlaceWalker, a
scheme that uses a low-power duty-cycled accelerometer in the background to continu-
ously monitor user’s significant physical activity changes (e.g., walking to resting) as it pro-
vides a useful clue to the change of place. Unlike existing schemes, PlaceWalker triggers
Wi-Fi scanning only when such an activity shift is detected and then determines a change
of place by comparingWi-Fi signatures. Our experimental results verify that detecting sig-
nificant activity intensity changes can precisely capture arrival/departure times, and Place-
Walker substantially lowers the energy consumption by asmuch as 60.9%, when compared
with the state-of-the-art method. We also analyze the experimental results with a simple
analytic model and validate its efficiency under varying parameter settings.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Automatically logging semantically meaningful places (e.g., home, office, and pizzeria) provides a useful tool for
delivering various semantic location-aware services [1–4]. For instance, Alice can set the location-aware alarm to remind her
of a checklist when she leaves her home, and she can also opt in selectively receiving advertisements from her favorite stores
while visiting a shopping center. The logged data can be further processed to deliver personalized services like analyzing
individual activity patterns, inferring mode of transport, recommending places/activities, etc. Part of these services require
fine-grained (sub-building level) place logging with fairly accurate entrance and departure time monitoring (e.g., detecting
when a user leaves the office). Other services require coarse-grained (building/region level) place logging with less precise
time estimates (e.g., telling roughly when a user left campus). Given that user demands on place logging granularity vary
significantly depending on the application, the support of both coarse- and fine-grained loggingwill enable awide spectrum
of semantic location-aware services even with resource limited mobile devices.

One way of logging places is to collect an individual’s location trace (using localization like GPS, Skyhook, and Place Lab)
and to perform spatial clustering of location samples (also known as geometry-based methods) [1,5,2,6–8]. Alternatively,
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we can use signature-based methods where ubiquitously available wireless beacons such as Wi-Fi hotspots and cell towers
are used as a clue to place detection [3,4,9]. The granularity of logged places varies widely depending on logging algorithms
(geometry vs. signature), density of location samples, and most importantly underlying localization methods. In general,
geometry-based methods provide coarse-grained (building/region level) logging with rough entrance/departure times,
whereas Wi-Fi signature based methods provide fine-grained (sub-building or room level) logging with fairly accurate
entrance/departure times.

The main focus of this paper is fine-grained logging with Wi-Fi beacon signatures which is still considered very
challenging as it requires energy-hungry continuous Wi-Fi scanning [3,4]. It is well known that a fully charged smartphone
can last only a few hours with continuousWi-Fi scanning. Recently Kim et al. [9] proposed an efficient place logging system
called SensLoc that suspends periodicWi-Fi scanningwhen auser arrives at a place andbecomes stationary. Usermovements
are then monitored with a low-power accelerometer to decide when to resume periodic Wi-Fi scanning. Given that people
tend to stay indoors most of their time (e.g., on average 87% [10]), SensLoc can significantly reduce the average usage of Wi-
Fi scanning. However, this efficiency (i.e., suppressing Wi-Fi scanning) is highly limited to the case that a user is in a place
without substantial movements. Whenever a user performs non-stationary activities for a long duration (say walking and
shopping in town during the weekend), the periodic Wi-Fi scanning of SensLoc will quickly drain the battery. In practice,
prolongedmobility scenarios are not uncommon in our everyday lives as reported by Klepeis et al. [10], and thus, effectively
handling such cases is very important in a ubiquitous application like place logging.

Given this observation, it is highly recommended to suppress unnecessary periodic backgroundWi-Fi scanning used for
place detection. One option is to always use a low-power accelerometer as in an accelerometer-assisted localization scheme
like AAMPL [11] where place-dependent activity intensity patterns are used for place detection based on the fact that a
person performs a fairly unique set of activities in a given place. In practice, however, this method is laborious as users need
to collect the acceleration data in each place during the training phase. Moreover, it requires a large number of acceleration
samples observed over a certain period of time to recognize a place, and thus, it is very challenging to accurately estimate
entrance and departure times.

In this paper, we propose PlaceWalker, a scheme that uses a low-power accelerometer in the background to continuously
monitor user’s significant activity intensity changes. As a humanistic geographer Seamon illustrated in his book [12], we
typically move around a small number of places in which we perform our daily routines associated with various physical
activities, ranging from low intensity activities such as resting and sitting to moderate and high intensity activities such as
walking, running, and swimming. This means that the intensity level of physical activity varies widely from place to place,
and further, the intensity level while transitioning from one place to another is typically different from the intensity level
while staying in a place. For instance, when a personmoves from one place to another, significant activity intensity changes
naturally occur due to the kinematics of normal human walking (e.g., starting walking or stopping walking) [13]. Our key
observation is that a change of place requires a series of physical activities, and the corresponding intensity levels would
vary widely. In other words, a significant intensity level change of physical activity provides a useful clue to the change of
place, and we can use it to trigger Wi-Fi scanning for place detection.

The main departure from existing work is that PlaceWalker triggers Wi-Fi scanning only when such an activity shift
is detected, and a change of place is then validated by comparing Wi-Fi signatures. When compared with existing
accelerometer-assisted localization [11,14], our approach obviates the need of using computationally expensive statistical
classifiers for place detection. At the same time, detecting a significant change of physical activity is very different from
existing movement detection schemes used in the literature [15,16] including SensLoc. For example, while SensLoc only
considers whether stationary or non-stationary (e.g., sitting or walking), PlaceWalker keeps track of intensity level changes
between stationary and non-stationary modes in a systematic way (e.g., sitting to walking and walking to sitting). By doing
so, it can provide more detailed context of place logging (e.g., arriving at a place, noise while staying in a place, leaving from
a place, and noise while moving), which will be further discussed in Section 3.2. Moreover, this systematic way of tracking
provides better chances to suppress unnecessary periodic Wi-Fi scanning for place detection.

To validate its efficiency, we build a prototype system and evaluate the performance via extensive experimentation. Our
results show that detecting a significant change of physical activity can precisely capture arrival/departure at/from a place
and can triggerWi-Fi scanning for place detection only when it is needed. As far as false triggering and detection failures are
concerned, our experimental results confirm that their impacts are minimal. PlaceWalker significantly lowers the energy
consumption by as much as 60.9%, when compared with the state-of-the-art method [9]. We validate the experimental
results with a simple analytic model and analyze energy efficiency under varying parameter settings.

2. PlaceWalker overview

The overall architecture of PlaceWalker platform is presented in Fig. 1. Amobile device runs client software thatmonitors
the activity intensity changes and detects places. When a client detects a place, it reports this event to the remote server.
If a user does not have always-on Internet connectivity, this information can be synchronized later on (e.g., when a user
re-connects to a local Wi-Fi). From this, the remote server learns places and populates aWi-Fi fingerprint database that will
be used for place matching. The web front-end allows users to review the place visit history and the associated path trails,
and to manage places from their perspectives.



26 D.-K. Cho et al. / Pervasive and Mobile Computing 19 (2015) 24–36

Fig. 1. Overview of PlaceWalker architecture.

We perform place logging in three steps, namely (1) activity intensity change detection, (2) place detection, and (3) place
learning/matching. In activity intensity change detection, we leverage the fact that there is a strong correlation between
a significant intensity change of physical activity and a change of place. For example, when a user moves from one place
to another, there are clear changes of physical activity due to the kinematics of normal human (e.g., starting walking or
stopping walking) [13]. PlaceWalker periodically monitors the intensity change of user’s physical activity by using a low-
power accelerometer in the mobile device. In PlaceWalker, a change is detected when two consecutive windows of user’s
acceleration data are significantly different. However, a significant change of physical activity may not always guarantee
a change of place. When an activity intensity change is detected, we verify whether a place has actually changed or not,
through checking if there is a significant change of the neighboring Wi-Fi beacon set.

Once the mobile device detects a place (i.e., arrival to a place), PlaceWalker performs either place learning or place
matching. TheWi-Fi beacon fingerprint of a detected place is transmitted to a remote PlaceWalker serverwith the timestamp.
The server then performs place matching by comparing this fingerprint with the fingerprints of existing places in the
database. If there is a matched fingerprint, then the server retrieves the corresponding place information to the mobile
device. Otherwise, the server registers a new place with the received fingerprint. In the latter case, for geo-tagging the
server asks the mobile client of its current location, which can be obtained by GPS, cell-tower based localization, or Wi-Fi
Positioning System (WPS). As soon as the server receives the geo-location from the mobile, it registers the new place to the
database along with the place’s beacon fingerprint so that the place can be identified in the future matching.

3. Place logging algorithm

We illustrate the key components of place logging, namely activity intensity change detection, place detection, and place
learning/matching.

3.1. Activity intensity change detection

Wemove around a small number of places in which various activities are performed (or the interactions of an individual
and space-time activities associated with places), and explore/encounter the rest of the world [12]. In most cases, we walk
while moving around places, except for a few cases of entering a place with a vehicle (e.g., a drive-in theater). In physiology,
normal human walking is described as a series of distinct stages: (1) development stage (from rest to some velocity);
(2) rhythmic stage (some constant average velocity); and (3) decay stage (coming back to rest) [13]. When moving from
one place to another, we will have a series of such stages. Even when we are interrupted in the middle while moving (e.g.,
waiting for a green light), we will have a sequence of this series.

Our observation is that the normal human walking pattern (when moving around places) is significantly different
from the routine activities in places (e.g., standing, browsing, sitting, etc.). The walking stages can effectively characterize
entrance/departure to/from a place: i.e., a user starts walking to leave a place (development stage), continues walking
(rhythmic stage), and arrives at a next place (decay stage). There will be significant activity intensity changes at the
development and decay stages (departure/arrival). This means that an event of a significant activity intensity change
provides a reasonable clue for detecting entrance or departure points. After detecting a significant activity intensity change,
we will then performWi-Fi scanning to confirm whether entrance or departure has actually happened.

We use a low-power accelerometer to measure the activity intensity of a user. For a given window size of Tw , we es-
timate the activity intensity using variance of the acceleration readings. Assume that a series of n acceleration samples =

{a1, a2, a3, an} were collected. For each sample ak, we calculate the magnitude of the force vector by combining the accel-
eration values from all three axes: i.e., M(ak) =


ak, x2 + ak, y2 + ak, z2. The variance is then simply given as 1/(n − 1) ∗n

i=1(M(ai) − Avg(M))2. We use activity intensity from two consecutive windows (denoted as A1 and A2) and calculate the
Rate-of-Change (ROC): |A1−A2|/min{A1, A2}. The ROC indicator has beenwidely used to analyze trends of stock prices in the
field of technical analysis [17]. If the resulting ROC is above a threshold value Tac , then we declare that there is a significant
change of physical activity. One caveat is that the ROC indicator is susceptible to background noise. For instance, ROC may
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Fig. 2. Activity intensity change detection example (Tvar , Tac ).

be large if we compare two small values (e.g., 0.001 vs. 0.0001). To suppress this case, we perform ROC calculation only if
there is a considerable movement; i.e., at least one of the windows has activity intensity greater than Tvar .

For accurate intensity change detection, we have to carefully tune three important parameters, namelywindow size, duty
cycling, and sampling rate. Since a single value of acceleration is not meaningful to determine movement, we measure the
activity intensity by computing the variance of a group of acceleration readings in a sampling window. Duty cycling is used
to save energy because continuous accelerometer sampling is energy consuming. Sampling rate is defined as the number
of readings returned by an accelerometer per second. As shown later, the higher the rate of sampling, the more the energy
consumption, and yet we need enough readings for variance calculation. In PlaceWalker, we use 3–5 Hz sampling rate (i.e.,
Normal mode in Android platform).1

We then need to carefully select the window size (denoted Tw) as it determines the minimum duration of a detectable
activity. As illustrated earlier, normal walking when moving from one place to another lasts for a certain duration (based
on the distance between places and the average speed). Given that the window size is Tw , the minimum duration of an
always-detectable activity is 2 ∗ Tw as a windowmay start at an arbitrary point. In PlaceWalker, we use the window size of
Tw = 30 s with duty cycling rate of 20% for energy efficiency (i.e., sampling only for 6 s). There is a trade-off in the window
size: if we lower the window size (and accordingly increase the duty cycling rate), the minimum duration of a detectable
activity will reduce (i.e., shorter walking can be captured), but this comes at the cost of more energy consumption. Also,
there is a concern of false alarms. As shown later, a false alarm will trigger Wi-Fi scanning which is used to check whether a
user is arriving/departing. Given that human walking patterns are not random and tend to last certain duration, the impact
of false alarms would be limited. Our experimental result confirms that the occurrence of false alarms is small enough, and
thus, PlaceWalker can significantly reduce the energy consumption without any impact on fidelity (on average 60.9%).

Fig. 2 illustrates the process of our activity intensity change detection. In the top figure, we depict the accelerometer data
with 20% of duty cycling (shaded area on the top) using the magnitude of a reading. The middle figure shows the activity
intensity that is the variance of the magnitude values in a sampling window. The bottom figure shows the resulting rate-of-
change. This figure clearly shows that our approach could accurately detect both departure (standing towalking) and arrival
(walking to sitting).

3.2. Place detection based on Wi-Fi beacons

The activity intensity change detectionmodule continuouslymonitors the user’s physical activity.When there is a change
of physical activity, it could be one of the following scenarios: (1) arriving at a place, (2) noise while staying in a place,
(3) leaving from a place, and (4) noise while moving. This section presents how the system distinguishes these cases.

Case 1—arriving at a place: We begin with the case when a user arrives at a place. As soon as a change of physical activity
is detected, the system turns on the Wi-Fi interface to scan nearby Wi-Fi beacons. Scanning is performed twice: one scan is
followed by another, and interval between scans is 30 s (called scan interval), which is an adjustable system parameter. The
system then computes the cosine similarity between those two consecutive scanned beacon sets bymeasuring the cosine of
the angle between two vectors of RSSI values. The resulting similarity ranges from 0 indicating independence, to 1 meaning
exactly the same and in-between values indicating intermediate similarity. If the similarity is greater than a threshold, Tsim,
then we consider the user has just arrived at a place, and a place flag is set to be true. For robustness, if the similarity is
in range between Tsim_retry and Tsim, then we scan Wi-Fi beacons one more time and compute the similarity using the latest
beacon sets. When a place is detected, the mobile combines two consecutive scan sets and builds a Wi-Fi signature for
the detected place. The mobile reports the information of the detected place (i.e., Wi-Fi signature and timestamp) to the
PlaceWalker remote server for a learning/matching process.

1 Note that Android has a set of fixed sampling rates, and ourmeasurement using aNexusOne shows the following results: Normal (3–5Hz), UI (8–10Hz),
Game (14–16 Hz), and Fastest (22–25 Hz).
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To be precise, an RSSI vector of the scan result is defined as r⃗ = (rssi1,r , rssi2,r , . . . , rssit,r) where t is the total number of
distinct Wi-Fi hotspots, and rssik is the RSSI value fromWi-Fi beacon index k. Given two RSSI vectors r⃗1 and r⃗2, the cosine of
the angle between r⃗1 and r⃗2 is given as:

sim(r⃗1, r⃗2) =
r⃗1 · r⃗2

|r⃗1 × r⃗2|
(1)

=

t
i=1

rssii,r1 rssii,r2
t

i=1
rssi2i,r1


t

i=1
rssi2i,r2

. (2)

Case 2—noise while staying in a place: The activity intensity change detection could be also triggered while a user is in a
certain place or is on the move. The mobile then scans Wi-Fi beacons and computes the similarity of the current scan result
and the scan result of previously detected place. If they are similar, then we consider this case as a false alarm and simply
ignore it. In this case, uninteresting movements are captured within the sampling window such as short browsing.

Case 3—leaving from a place: When they are not similar, the user might be moving to a new place. Wi-Fi beacon sets will
be significantly different since the second beacon set is scanned after the scan interval (a user has already departed). Thus,
Tsim will be close to zero. When it happens, the mobile notifies the remote server that a user has left the place.

Case 4—noisewhilemoving:While a user is on themove, false positives could occur particularlywhen a user is interrupted
in the middle (e.g., stopping at the red light). If a user waits for a significant amount of time, then it could be detected as a
new place (Case 1). Otherwise, the user resumes walking; the Wi-Fi beacon sets will be different, and thus, no place will be
detected.

3.3. Place learning and matching

The place learning/matching is done in the remote server. As soon as a mobile transmits a beacon signature collected
in a discovered place, the server finds the best match from the previously logged information using the cosine similarity. If
the database is empty or the matching fails, then we consider the detected place is a new place, and the server registers the
place information to the database. While the geographical coordinate is submitted by the mobile device, the details of the
place information such as name and type can be manually updated by the user later or semi-automatically by the system.
In the beginning, most discovered places will find nomatch. As time passes, the database size will grow, and the probability
of matching will increase.

4. Experiment

4.1. Data gathering and energy profiling

Data gathering:We collected accelerometer,Wi-Fi, andGPS data usingGoogleNexusOnemobile phones that runAndroid
3.2 (Honeycomb). The accelerometer sensor mode was set to Normal mode with sampling rate of 3–5 Hz, and the sampling
intervals of Wi-Fi and GPS were set to 15 s and 2 min, respectively. We elected eight participants who use Google Nexus
One as their primary phone in daily lives, and installed our logging software in their phones. We drew participants from
researchers and graduate students and collected data from total 8 participants (6 males, 2 females). Participants varied in
age; 3 were between 21 and 30 years; 3 were between 31 and 40 years. Participants were asked to always carry the phone
with them for about a week. Since continuous logging drains the battery in 6–8 h, we asked each participant to occasionally
charge the phone when the battery level is low while staying at a place. To collect the ground-truth, we developed a piece
of software as a part of our logging system that allows the participants to click the media button on the earpiece for voice
tagging of the current place information (i.e., entrance and departure). We use pseudonyms to protect participants’ privacy,
namely Allan, Bobby, Clayton, Darren, Erik, Faith, George, and Hannah who collected 8, 7, 7, 6, 4, 6, 7, and 6 days of logged
data, respectively.

Energy measurement: We performed fine-grained energy profiling of Google Nexus One. We disassembled a Nexus One’s
battery by separating the battery pack from the battery compartment. We then inserted a 0.02 � measurement resistor in
series between a battery terminal and its connector on the phone. We used a National Instruments USB-6210 DAQ (up to 16
channels at 250 kHz) tomeasure the voltage drop across the phone battery and also the voltage drop across ourmeasurement
resistor. We collected the data directly from DAQ using Matlab. We started the measurement in the airplane mode with the
screen off (23.8 mW). We then activated each component to measure the power consumption and the measurement lasts
for 10 s. We repeated this process 20 times and reported the average power consumption in Table 1.

Our findings can be summarized as follows. First, Wi-Fi’s power consumption in the idle mode (no association or
scanning) is minimal (only 5.39 mW). It appears that Android puts the Wi-Fi interface into the sleep mode when it is idle. A
single Wi-Fi scan takes around 3 s and consumes 915 mJ (over the entire steps in Android: registering call-back, starting a
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Table 1
Power consumption of Nexus One. Wi-Fi scanning is performed once in each measurement period, and a single Wi-Fi scanning costs 915 mJ on average.

Wi-Fi
idle

Wi-Fi
scan

3G idle Wi-Fi/3G
idle

Acc Acc+NO Acc + UI Acc+GM Acc+ FA GPS/In GPS/Out 3G/Net

5.3 mW 305.0mW 10.4mW 16.9 mW 8.3mW 61.1mW 120.1mW 160.5mW 168.5mW 417.4mW 387.1mW 405.7 mW

scan, and receiving the results via call-back, and unregistering call-back). Second, we find that an accelerometer consumes
8.25 mW in the idle mode. Nexus One is equipped with BMA150 3-axis accelerometer; its energy consumption in the
specification is under 1mW, which is much lower than themeasured value. Further, we find that most energy consumption
comes from reading values from the accelerometer; i.e., whenever a call-back function is invoked, we observe a spike in
the measured data. Thus, energy consumption is roughly proportional to the sampling rate, but as rate increases, it starts
deviating; i.e., Normal: 61 mW (<5 Hz), UI: 120 mW (<10 Hz), Game: 160.51 mW (<16 Hz), and Fastest: 168.47 (< 25 Hz).
Finally, we measured the energy consumption of localization (which is used for geo-tagging). We find that turning on/off
GPS takes about 0.2 and 2 s, and GPS fix takes about 2 s, which was also reported in the literature [15]. GPS consumes less
power outdoors.

4.2. Experiment results

The goal of our experiments is three-fold: (1) evaluating the performance of activity intensity change detection under
various configurations of system parameters, (2) evaluating the performance of place detection with activity change
monitoring, and (3) comparing the energy consumption of PlaceWalker with that of existing works.

Activity intensity change detection: In Fig. 2, we presented two important threshold values: Tvar and Tac , which have a
great impact on the performance of activity intensity change detection. Recall that a window with variance over Tvar is
considered for ROC calculation, and if the ROC is over Tac , then an activity change is detected. We introduced Tvar to reduce
the number of false alarms (or false positives (FP)). Nonetheless if we set this value too high (hoping to reduce FPs), then we
will experience many cases of failing to detect places; we call this misdetection or false negative (FN). Likewise, decreasing
Tac makes more false positives, while increasing Tac makes more false negatives (or more cases of detection failures). We
performed a sensitivity analysis of these parameters to systematically understand the impact.

For the analysis, we introduce another metric called time offset that is the time difference between the ground-truth and
the nearest event of a change of physical activity. We use time offset to show how these thresholds affect the performance.We
use the entire dataset collected by eight participants. We consider the two different duty cycling scenarios, 20% and 100%
and use the window size of 30 s. Our manual investigation shows that there are total 671 ground-truths in the dataset. The
ranges of Tvar and Tac are from 0.05 to 1 and from 0.5 and 10 with 0.05 and 0.5 intervals, respectively. We consider possible
combinations of Tvar and Tac and calculate the time offset, the number of false positives, the number of false negatives
(misdetection). Note that we assume that a false negative or misdetection has occurred if we find no change of physical
activity within ±8 min from the ground-truth. The results are reported in Fig. 3.

The result shows that there is a trade-off between the time offset and the number of FPs in both duty cycle settings. If Tvar
and Tac are set to be low, then the detection time will be much faster (shorter time offset and lower false negatives), but we
spend more energy since there are more false positives each of which triggers Wi-Fi scanning. In contrast, if both values are
increased, then we have a less number of false positives, but experience more delays for detection. In PlaceWalker, we put
more weight on the energy consumption because 10–20 s of delay is acceptable, as long as false negatives are reasonably
low. Note that the average offsets are abnormally high in Fig. 3(b) especially when Tvar and Tac are higher than 0.75 and 2.5.
This irregularity is caused by false negatives or misdetections. Since for time offset calculation, we use the nearest event of
an activity change from the ground-truth, false negatives will significantly increase the average offset.

The figure also shows that we can set Tvar and Tac to larger values when using 20% of duty cycling. Surprisingly, there are
more false negatives if duty cycling is not used. This phenomenon is due to the fact that in normal humanwalking, the activity
intensity (in terms of variance) gradually increases during the development stage (start walking), reaches its maximum
during the rhythmic stage, and gradually decreases during the decay stage (stop walking). Suppose walking begins in the
middle of a window, the variance of this window will be small. As a user continues walking, the activity intensity gradually
increases, and the variance of the next window could be greater than Tvar . However, the resulting ROC may be smaller than
Tac . Therefore, both Tvar and Tac should be set to smaller values to guarantee 100% detection when using no duty cycle. If 20%
of duty cycling is used (e.g., 6 s out of 30 s), then we can avoid sampling the period of development/decay stages and thus,
we can better detect a change of activity (even with much lower energy consumption).

We then analyzed how the window size and the duty cycle affect the accuracy of activity intensity change detection. We
set Tvar to 0.75 and Tac to 5 and measured the time offset distribution by varying the duty cycle and window size. We set
the duty cycle rate from 10% to 100% with a 10% interval and use two different window sizes, 30 and 60 s. The results are
illustrated in Fig. 4. When the window size is 30 s, we observe that the duty cycling rate of 20%–30% performs the best. If the
duty cycling rate is set too low (to save energy), then we will have higher delay and more false negatives (because smaller
number of samples results in less accuracy).When thewindow size is 60 s, regardless of the duty cycle rates, the occurrences
of false negatives are much higher than those with 30 s. The reason is that the large window results in misdetections of the
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(a) Duty cycle: 20%.

(b) Without duty cycle.

Fig. 3. Threshold analysis (avg. time offset, number of FPs, and number of FNs).

Fig. 4. Impact of duty cycling and window size (left: 30 s, right: 60 s).

activities whose duration is not long enough (say less than 2min). To this reason, we decided to set the default values of our
system parameters as follows: Tvar = 0.75, Tac = 5, duty cycle = 20%, and 30 s of window size.

When the participants collect data, they are asked to logwhen they arrive/leave to/from a place. Through the experiment,
we notice that people have a diverse sense of place. For instance, a participant stopped by a bus stop for a while but she did
not log the place as a place while another participant did. This diversity of place definition makes it hard for us to evaluate
the systembecause our systemwill find the bus stop as a place as long as there is a change of activity and stableWi-Fi beacon
observations. To make this clear, we divide the detected places into two groups: Interested Place, and Not Interested Place
(NI). Not-interested places are the places that the system detects, but participants did not label them with voice tagging.
Note that the chance of missing labeling is low (as we asked users to record twice: entrance and departure). In Fig. 5, a true
positive (TP) means the correct detection of a place of interest. We consider the event of detecting a not-interested place
as a false positive (FP-NI). A false positive can also occur in a place (FP-IP) or while moving (FP-WM). For instance, a user
might move for a very short time to grab a cup of coffee. Or, the user might frequently stop while moving from one place to
another at the stop signals.
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Fig. 5. Distribution of True Positive (TP) and False Positive (FP) with Not-Interested (NI), In Place (IP), and While Moving (WM).

Table 2
Results on place detection, learning, and matching.

Allan Bobby Clayton Darren Erik Faith George Hannah

Interested 73 50 48 43 12 34 43 30
Not Interested 18 9 26 11 6 11 23 11
False 0 0 0 0 1 0 0 0
Merged 1 1 2 0 0 0 1 0
Divided 4 12 3 7 3 1 5 4

Learned 39 55 41 34 15 43 49 34
Matched 56 24 33 24 6 5 24 15

We now compare the rates of TP and FP. In our dataset, we do not find any false negative with the current parameter
setting. The results are shown in Fig. 5. This graph reveals several interesting observations. First, activity intensity change
detectionworkswell in general (no false negative). The rate of false positives is not significant; around thehalf of the detected
activity changes identify the change of place, i.e., TP + FP (NI). Bobby has higher false positives compared with others. After
an interview with him, we found that he cleaned his office for several hours (most FPs caused by this), and he also visited
several large places such as a grocery store, and a large sushi buffet restaurant. Even with this false positive rate, we were
able to significantly save energy on average when compared with other schemes. Second, the definition of place is very
diverse. We observe that the range of places that Allan, Bobby, Darren, Erik, and Hannah defined is quite wide (i.e., low rate
of non-interested places, (FP-(NI))), whereas that of the rest is somewhat strict; for instance, for them, a bus stop and a place
for smoking are not considered as a place.

Place detection, learning, andmatching:We present the place detection, learning, matching results in Table 2.We counted
the number of detected interested, detected not interested places, false negatives (i.e., misdetection), merged places,
divided places, learned places, and matched places. If two places are too close, then the Wi-Fi beacon signature may fail
to differentiate one from another, and the system will report that a user was at a single place (we call this a merged place).
If a place has a number of sub-places (e.g., a building and a mall with distinct names), then we simply call these sub-places
divided places. As time passes, the system will learn new places. The number of learned places is the number of distinct
places that the system learned over time. The number of matched places counts places for which the system foundmatched
places in the database.

Most of detected-interested places were home, work, and restaurants. Detected-not-interested places include parking
lots and waiting/stopping places while moving. PlaceWalker found all the interested places except one restaurant visited by
Erikwhere therewere noWi-Fi beacons nearby. This error can be corrected by using GPS and 3G networkmixed localization,
which is part of our future work. Bobby and Darren have a number of divided places, because they often visited grocery or
department stores. For place learning, we observe that the learning rate dramatically decreases after a few days and the rate
increases over the weekends. This confirms the fact that people move around a small number of familiar places.

Benchmark study: We compared PlaceWalker with continuous Wi-Fi scanning and SensLoc that is the most recent work
on place logging and is known as the most energy efficient scheme [9]. Given that both PlaceWalker and SensLoc use Wi-
Fi signature for place detection, and PlaceWalker does not have any false negatives (i.e., misdetection), the performance
of place detection would be on par. We now shift our focus on the energy consumption by comparing PlaceWalker with
SensLoc and a naïve periodic Wi-Fi scanning.

The following configurations were used for the evaluation. In PlaceWalker, we uses two thresholds Tvar and Tac for the
activity detection and one threshold Tsim for the Wi-Fi beacon comparison. We set Tvar and Tac as 0.75 and 5, respectively.
Tsim was set to 0.65. The window size was 30 s and the accelerometer duty cycle was 20%. For SensLoc, we used the same
parameter setting as shown in the original paper [9]. The Wi-Fi scanning interval was set to 10 s, and a window size of
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Fig. 6. Energy consumption comparison.

30 s was used. As it uses multiple scans in a window, they use the similarity threshold of 0.7 for the place detection.2
After a user enters a place and spends at least 5 min with less movement (e.g., sitting), SensLoc suppresses Wi-Fi scanning,
and an accelerometer is then turned on to detect a movement. The accelerometer was duty cycled at 50%, and a variance
threshold vmov was set to 0.2 for the movement detection. In continuous Wi-Fi scanning, we use two different periodic
scanning intervals, i.e., 10 and 30 s.

For each participant, we compute the average power consumption in each day (in Watts) by dividing the total energy
consumption (in Joules) by the duration of logged data (in seconds). Daily power consumption statistics of participants
are averaged, and we present the average value with standard deviation in Fig. 6. As the result shows, PlaceWalker
significantly reduces the energy consumptionwhen compared to continuousWi-Fi scanning and SensLoc. More specifically,
PlaceWalker lowers the energy consumption by 60.9% on average when comparing to SensLoc. Comparing to continuous
Wi-Fi scanning, PlaceWalker improves the energy consumption by 82% and 46% when the scanning intervals are 10 and
30 s, respectively. From the study, we have found that SensLoc consumes more energy particularly when a user stays
outdoor longer. PlaceWalker’s energy efficiency is attributed to the following reasons: (1) PlaceWalker uses duty cycling
aggressively (only 20% of a window) and yet, this provides better change detection when compared with no duty cycling,
(2) an accelerometer in the mobile device is energy efficient, and its cost is cheaper than Wi-Fi scanning especially when it
is duty-cycled, and (3) the use of activity intensity change detection significantly reduces the number of Wi-Fi scanning.

5. Energy efficiency analysis

We perform a simple mathematical analysis on the energy consumption of PlaceWalker and SensLoc to systematically
understand the impact of the false positives and the fraction of time being outdoors (or for non-stationary activities).

As illustrated in Fig. 7, we use the following configuration for modeling. In PlaceWalker, we use the window size of Tw,pw
for activity monitoring, which consumes on average Wa,pw Watts (accelerometer). In SensLoc, we use the window size of
Tw,sl, and Wi-Fi scanning is periodically performed for every Tw,sl/m seconds where m is the number of Wi-Fi scans per
window. For the fair comparison, we simply assume the same window size in both cases, namely Tw,pw = Tw,sl. In the
following, we simply use Tw to denote the window size. If an event (arrival or departure) happens, then both schemes will
attempt to detect the event. For the sake of analysis, we simply assume that both schemes will perform Wi-Fi scanning
for m = 3 times, which consumes Tw ∗ mWw mJ.3 If a user arrives at a place, then we assume that SensLoc immediately
switches to the movement detection mode; i.e., it monitors the accelerometer for every Tw,sl seconds to detect whether a
user becomes non-stationary.

As shown in the figure, event detection happens over a block of two consecutive windows.We can generally assume that
event detection in a block is independent from previous blocks. Thus, we can simply treat that an event actually happens
randomly in any window (or random shuffling of windows has happened), and the analysis of a single block of consecutive
windows is sufficient for energy modeling. For a given day, if a user has visited total NP places over N ∗ Tw period of time,
then the total number of events (entrance and departure) is 2NP , and a randomwindow observes an event with probability
Pt = 2NP/N . The probability of false alarms is denoted as Pf = NF/N where NF is the average number of false alarms
observed. The probability of false positives of PlaceWalker and SensLoc is defined as Pf ,pw and Pf ,sl respectively. Given that
SensLoc’s performance depends on the probability of being outdoors, we assume that a random window is being observed
outdoors with probability Po.

2 If we use two scans in a window with the same threshold as ours, PlaceWalker still outperforms SensLoc by 40.1% on average.
3 PlaceWalker basically performs Wi-Fi scanning twice by default and an additional Wi-Fi scanning is performed only when the results are less

satisfactory. In practice, the average number of Wi-Fi scanning should be smaller than three.
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(a) PlaceWalker.

(b) SensLoc.

Fig. 7. Illustration of model parameters. The scan window of PlaceWalker and SensLoc is given as Tw,pw and Tw,sl respectively. The average power
consumption of accelerometer monitoring of PlaceWalker and SensLoc is given as Wa,pw and Wa,sl respectively. The average power consumption of single
Wi-Fi scanning over the scan interval Tw is Ww . Here, the subscript ‘‘pw’’ denotes PlaceWalker, and ‘‘sl’’ denotes SensLoc.

We first model the energy consumption of PlaceWalker. We consider the energy consumption in a block of two consec-
utive windows. If an event happens in the first window (probability of Pt ), then a series of Wi-Fi scans will be performed in
the secondwindow. The expected energy consumption is given as TwPt(Wa,pw+mWw). Wi-Fi scanning can be also triggered
by a false alarm, which happens with probability Pf ,pw. Thus, the expected energy consumption is TwPf ,pw(Wa,pw +mWw). If
nothing happens, then the expected energy consumption is simply given as Tw(1 − Pt − Pf ,pw)2Wa,pw. The expected power
consumption can be derived by dividing the total expected energy consumption by the duration of a block (i.e., 2Tw).

WPW =
1
2


Wa,pw + PtmWw + Pf ,pwmWw + (1 − Pt − Pf ,pw)Wa,pw


. (3)

This equation shows that PlaceWalker’s energy consumption is largely dependent on Wa,pw and Pf ,pw. PlaceWalker can
use duty cycling more aggressively to reduce the power consumption. However, this comes at the cost of increased false
positives andnegatives. Our experiment results clearly show this trade-off.When comparing duty cycling of 20% and 10%,we
find that the average number of false positives/negatives per day has changed from 19.9 and 0 to 20.7 and 0.23, respectively.
Thus, we conclude that if users are willing to tolerate the false negatives, then it is better to perform duty cycling more
aggressively.

To model the energy consumption of SensLoc, we consider a block of two consecutive windows as earlier. When a user is
outdoors and performs non-stationary activities, the average power consumption is alwaysmWw regardless of whether an
event happens or not. Recall that in SensLoc, Wi-Fi scanning is periodically performed in the background to detect a place.
Thus, the expected energy consumption of a block is simply Po ∗ 2Tw ∗ mWw . We now consider the case when a user is
indoors and becomes stationary. The overall calculation of energy consumption is very similar to that of PlaceWalker except
that the departure events are only considered in SensLoc. When a departure event from a place happens in the first window
(with probability of Pt/2), a series of Wi-Fi scans will be performed in the second window—SensLoc is then transitioning
to the continuous Wi-Fi scanning mode. In this case, the expected energy consumption is given as TwPt/2(Wa,pw + mWw).
Wi-Fi scanning triggered by a false alarm costs TwPf ,pw(Wa,pw +mWw)mJ. If none of these events happen, then the expected
energy consumption is simply given as Tw(1 − Pt/2 − Pf ,pw)2Wa,pw. Thus, the expected power consumption of SensLoc is
simply given as follows:

WSL = PomWw +
(1 − P0)

2


Wa,sl +

Pt
2
mWw + Pf ,slmWw +


1 −

Pt
2

− Pf ,sl


Wa,sl


. (4)

Given these equations, we now find the upper bound probability of false positives in PlaceWalker. If the false positive
probability is greater than this threshold, then the energy consumption of PlaceWalker becomesworse than that of SensLoc.
We can find the upper bound by using the inequality, namelyWPL ≤ WSL. By arranging this inequality,we have the following:

Pf ,pw ≤
2(Wa,sl − Wa,pw)

mWw − Wa,pw  
T1

+
mWw − Wa,sl

mWw − Wa,pw  
T2


2Po + (1 − Po)


Pt
2

+ Pf ,sl


  

T3

−Pt . (5)
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Fig. 8. Expected power consumption under varying fractions of time being outdoors (or non-stationary activities).

From this inequality, we find that the upper bound probability of false positives in PlaceWalker depends on several factors.
First of all, accelerometer duty cycling efficiency is critical. This factor is captured by T1 and T2 in Inequality 3. As PlaceWalker
uses more aggressively duty cycling, these values will increase, and so does the upper bound. Yet, the caveat is that as
illustrated earlier, aggressive duty cycling will in turn increase false positive/negative probabilities. The term T3 shows that
the upper bound is also dependent on the probability of being outdoors (or performing non-stationary activities). When a
user is outdoors, the gain is a factor of 2T2. Otherwise, the gain is mainly attributed to SensLoc’s false positive probability.
Interestingly when both systems use the same value for accelerometer duty cycling, namely Wa,sl = Wa,pw, the inequality
reduces to Pf ,pw ≤ Po(2 − Pt) + (1 − Po)Pf ,sl − Pt/2—as before, the upper bound is mainly dependent on the probability of
being outdoors, and SensLoc’s false positive probability.

We now plug the measured values of one of the participants Bobby into the model. From Table 1, we have Ww =

30.5 mW,Wa,sl = 30.5 mW (50% duty cycling over a 30 s interval), Wa,pw = 12.2 mW. Since he visited 6.58 places per
day over 10.06 h on average (i.e., 1208 windows), the probability of an event is given as Pt = 0.011 (i.e., 13.16 events over
1208 windows). The false positive probability is calculated using NF/NO where NF is the number of false positives, and NO is
the number of windows in which accelerometer monitoring has been used. Recall that our experimental results show that
we have fairly low false alarm probabilities, namely Pf ,pw = 0.091 (on average 109.98 events per day), and Pf ,sl = 0.033
(on average 32.71 events per day). In Fig. 8, we plot the expected power consumption under varying fraction of time being
outdoors. Our model well approximates the actual power consumption (e.g., 16.8 mW vs. 18.0 mW for PlaceWalker). The
figure shows that as the fraction of time being outdoors increases, SensLoc’s power consumption linearly increases, whereas
PlaceWalker’s power consumption is not influenced by this factor. For Bobby, SensLoc’s power consumption is given as
44.15 mW, and this means that the average fraction of time for non-stationary activities is around 21%, which is close to
the measured value. In Fig. 9, we plot the cumulative distribution of the fraction of time for non-stationary activities for all
the participants. The figure clearly shows that participants occasionally performed prolonged non-stationary activities, and
PlaceWalker effectively handles such cases.

To summarize, our analytic model shows that (1) aggressive duty cycling can be used to save energy as long as users can
tolerate the errors, namely false negatives, and (2) the larger the fraction of non-stationary activities per day, the higher the
energy saving of PlaceWalker over SensLoc.

6. Related work

Most place learning methods use spatial clustering over periodically sampled location trace data to discover significant
places that a user has visited (known as geometry-based methods). A number of different spatial clustering strategies were
used in the past, ranging from simple fixed radius based clustering [1] to more sophisticated clustering based on multiple
radii [5], k-means [2], density [18], andDirichlet processes [6]. Temporal information of a location trace can be also leveraged
to realize spatio-temporal or multi-level clustering of location traces [19,7,20].

Unlike spatial clustering, Hightower et al. [3] showed thatWi-Fi beacons can be used to enable fine-grained place logging.
This approach ismuch simpler than the existing room-levelWi-Fi localization in thatwe do not need to buildWi-Fi signature
database for every place a priori [21]. The main benefit of the Wi-Fi signature based method is that it supports fine-grained
place learning/detection (sub-building level). Further, Kim et al. [4] systematically showed that it is possible to capture
entrance and departure times. If accurate time estimates are not required and short stops can be safely ignored, then a long
scan interval (say as large as 2–5 min) can be also used for place logging as in i-Loc [22]. For accuracy existing schemes
mostly use short scan intervals of 10–30 s [3,4,9], all leading to quick battery drainage. To lower the energy consumption,
Kim et al. [9] recently proposed SensLoc that uses a low-power accelerometer to suppressWi-Fi scanning while a user stays
at a place with less mobility (e.g., sitting). As illustrated earlier, this approach is less effective when users engage in outdoor
activities (e.g., travelling and shopping). The main departure from existing work is that PlaceWalker removes the root cause
of battery drainage, namely continuous background Wi-Fi scanning. We use a low-power duty-cycled accelerometer to
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Fig. 9. Cumulative distribution of the fraction of time for non-stationary activities.

detect a significant activity intensity change. Further, PlaceWalker is much simpler and more energy efficient than existing
accelerometer-assisted localization schemes [11,14] in that it does not require laborious training, energy hungry periodic
sensing with multiple sensors, and sophisticated classification algorithms.

Recently Chon et al. [23] proposed SmartDC that uses mobility prediction to adaptively schedule Wi-Fi scanning based
on the learned mobility patterns. However, the energy saving of SmartDC comes at the cost of detection failures and less
accurate time estimates. While predicting next significant places to visit can be done fairly accurately [24], it is challenging
to accurately predict arrival/departure times due to the innate uncertainties of human behavior. While SmartDC does not
use a low-power accelerometer, PlaceWalker’s activity intensity change detection module can be integrated to improve the
energy efficiency and detection accuracy of SmartDC. It is part of our future work to enhance PlaceWalker with mobility
prediction capabilities.

7. Discussion

As illustrated earlier, one of the key system components of PlaceWalker is activity intensity change detection.Wemainly
used themetric to detect activity change and thereby to discover a change of place. In general, thismetricwould be applicable
to activity detection such as transport mode recognition (still, walk, run, bike, motor) [25]. We expect that activity intensity
would be very different from one another (e.g., still vs. walk; andwalk vs. run). For a given activity change, ROC valueswould
varywidely.We canmeasure the range of these values and properly set the threshold values to accurate activity recognition.
Moreover, prior knowledge about activity changes can be used to further optimize the detection algorithms; e.g., considering
transition probabilities fromone to another activity. One concern is that if a user is on amotor, thenwemay falsely recognize
it as ‘‘still’’ due to low acceleration in a motor. Our measurement data show that there is constant background acceleration
due to vehicle movements. Yet, due to low variances (when compared with those of other activities such as walk, run, and
bike), accurate detectionwould be challenging. Fortunately, as long aswe can detect a change of activities (e.g., fromwalking
to still in a motor), we can useWi-Fi scanning to confirmwhether a user is in a stationary place. If Wi-Fi signatures continue
to change rapidly, thenwe can infer that a user is in amotor. Alternatively,whenGPS is used,we can use speed ofmovements
for more accurate detection. It would be an interesting future work to experiment with activity detection.

For localization, Wi-Fi fingerprints have been widely used due to fine-grained location learning/detection (e.g., RADAR).
In the context of localization, we can treat PlaceWalker as a localization algorithm that provides room-level location
information. As in existing localization schemes that consist of two steps: learning and detection, PlaceWalker has learning
and detection components. Since users are moving from one place to another, our algorithm can be considered that a
location map is continuously built, although labels of detected places should be manually tagged by the users. Existing
localization algorithms have varying range of detection latency (e.g., from few hundreds of milliseconds to tens of seconds).
PlaceWalker’s detection latency would be much greater than existing localization algorithms. However, as shown in our
analysis section, we can trade latency improvements for energy consumption. Depending on the application types, we can
set proper system parameters in order to meet the application requirements.

However, key application of PlaceWalker is logging user’s place transitions in an energy efficient manner so that it
only requires a place-level granularity. To achieve this, Wi-Fi beacons can be used to enable place logging, which does not
require building laborious Wi-Fi signature database for every place a priori, energy hungry periodic sensing with multiple
sensors, and sophisticated classification algorithms. As PlaceWalker uses a low-power duty-cycled accelerometer to detect
a significant activity intensity change, this will cause 10–20 s of delay, which limits real-time pedestrian navigation. Further
investigation on localization granularity and system analysis on user activity monitoring also remain as our future work.

8. Conclusion

We proposed PlaceWalker, an energy-efficient, fine-grained place logging platform. Given that there exists a strong
correlation between a significant change of physical activity and a change of place, PlaceWalker monitors any significant
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activity intensity changes using a low-power duty-cycled accelerometer and triggers Wi-Fi scanning only if such an
activity shift is detected. Our experimental results showed that activity intensity change detection can precisely capture
arrival/departure times and PlaceWalker significantly lowers the energy consumption without a noticeable fidelity loss. We
validated the experimental resultswith a simple analyticmodel and analyzed the energy efficiency under varying parameter
settings.
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