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Understanding human affective states such as emotion and stress is crucial for both practical applications and theoretical
research, driving advancements in the field of affective computing. While traditional approaches often rely on generalized
models trained on aggregated data, recent studies highlight the importance of personalized models that account for individual
differences in affective responses. However, there remains a significant gap in research regarding the comparative evaluation
of various personalization techniques across multiple datasets. In this study, we address this gap by systematically evaluating
widely-used deep learning-based personalization techniques for affect recognition across five open datasets (i.e., AMIGOS,
ASCERTAIN, WESAD, CASE, and K-EmoCon). Our analysis focuses on realistic scenarios where models must adapt to new,
unseen users with limited available data, reflecting real-world conditions. We emphasize the principles of reproducibility
by utilizing open datasets and making our evaluation models and codebase publicly available. Our findings provide critical
insights into the generalizability of personalization techniques, the data requirements for effective personalization, and the
relative performance of different approaches. This work offers valuable contributions to the development of personalized
affect recognition systems, fostering advancements in both methodology and practical application.
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1 Introduction
The need to understand human affective states holds immense practical and theoretical value, as it contributes to
and influences decision making and behavior changes [17, 56]. This necessity drives the field of affective computing,
which aims to enable computers to recognize and understand human affect for intelligent and personalized
interactions [60]. Furthermore, affective computing enables building persuasive technologies for promoting
personal well-being and helping fulfill human potentialities [38]. Affect, as a multifaceted phenomenon, offers
a range of detection cues, yet there is an increasing emphasis on recognizing it through physiological and
∗Corresponding author

Authors’ Contact Information: Yunjo Han, yjhan99@kaist.ac.kr, KAIST, Daejeon, Republic of Korea; Panyu Zhang, panyu@kaist.ac.kr,
KAIST, Daejeon, Republic of Korea; Minseo Park, tim0726@g.skku.edu, Sungkyunkwan University, Suwon, Republic of Korea; Uichin Lee,
uclee@kaist.edu, KAIST, Daejeon, Republic of Korea.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).
ACM 2474-9567/2024/12-ART206
https://doi.org/10.1145/3699724

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 206. Publication date: December 2024.

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by K
A

IST
 on A

pril 9, 2025.

HTTPS://ORCID.ORG/0000-0002-8981-1293
HTTPS://ORCID.ORG/0000-0002-7014-6940
HTTPS://ORCID.ORG/0009-0002-8612-1219
HTTPS://ORCID.ORG/0000-0002-1888-1569
https://doi.org/10.1145/3699724
https://orcid.org/0000-0002-8981-1293
https://orcid.org/0000-0002-7014-6940
https://orcid.org/0009-0002-8612-1219
https://orcid.org/0000-0002-1888-1569
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3699724
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3699724&domain=pdf&date_stamp=2024-11-21


206:2 • Han et al.

behavioral signals. Physiological signals can reflect spontaneous affective responses beyond personal control,
offering reliable affective state indicators [31]. Behavioral signals such as data from accelerometers offer insights
into affective states by capturing unique movement patterns and user behaviors [63]. Utilizing these signals,
researchers have developed machine learning (ML) models for affect recognition, yielding results that produce
highly persuasive outcomes [15]. In recent years, deep learning (DL) has dominated ML research, motivating the
development of DL-based affect recognition models [14, 82]. Rather than extracting features based on fixed rules,
DL allows models to automatically learn complex information from raw physiological and behavioral sensor
data, enabling the end-to-end approach [14].
To advance affect recognition models, researchers have identified that considering individual differences in

affective responses is one key strategy for boosting model performance [9, 41, 74]. This is based on the fact that
an identical stimulus may trigger varied affective responses among different individuals [5, 22]. Thus, generalized
one-size-fits-all models, which use the aggregated data from all individuals indiscriminately for model training,
might fail to address the distinct characteristics of each individual [46, 74]. Prior studies [9, 29, 87, 88] have
presented various techniques for developing personalized models. Widely-used techniques encompass user-
specific modeling with only a target user’s data used for personalization, hybrid modeling with part of a target
user’s data aggregated into the overall training data, and fine-tuning of general models with part of a target user’s
data. There are also group-based personalization approaches, such as cluster-specific modeling, which groups
similar users and creates models for each group, and multi-task learning, which involves tailoring the learning
process to each group while simultaneously sharing information among them. These techniques have been
demonstrated to enhance recognition performance across various applications [9, 29, 87, 88].
Yet, there exists a notable gap in research, as very few studies have concurrently compared the effectiveness

of these diverse personalization techniques using multiple datasets. A comprehensive analysis is needed to
understand the differences among various personalized models and to determine whether they truly outperform
the generalized models. When evaluating such personalization techniques, it is important to iteratively hold out
an individual from the dataset as an unseen test user, while the others’ data are used as a training data set as in
leave-one-participant-out (LOPO) cross-validation. This contrasts with many prior works that have trained and
tested their models [9, 29, 74, 86] where the training data includes samples from every user, such that the test set
users are also seen in the training set. Our focus is on model testing for these new users who have limited data
available for model training, a scenario that mirrors real-world applications.
Moreover, the data analysis and model evaluations in previous studies often focused on only one or two

datasets (see Table 1 and Table 2). Datasets were usually unpublished, as was the analysis code [45], and in some
cases, there was a lack of detailed method descriptions. Evaluating each technique using multiple open datasets
allows us to gain valuable insights into how personalization techniques work in diverse contexts. It is beneficial
to the research community to openly share the evaluation process for further studies. This need reflects the
growing focus on ensuring reproducibility to solidify the reliability and validity of ML research findings [3, 21, 45].
It necessitates not only the release of code and datasets with comprehensive details (technical reproducibility) but
also the evaluation of models under new conditions, such as different datasets (conceptual reproducibility).
In this context, we take a step towards systematically evaluating well-known DL-based personalization

techniques in affect recognition. To ensure reproducibility, we focus on open datasets gathered in controlled
environments, rich in wearable physiological and behavioral signal data with user profile information (e.g.,
gender or personality traits). We apply a uniform data preprocessing pipeline across five different datasets,
preparing them for input into diverse deep learning models, thus facilitating end-to-end learning. We then build
well-known non-personalized (i.e., one-size-fits-all) and personalized affect recognition models proposed in prior
studies. Subsequently, we compare their performance against each other, providing a comprehensive evaluation
of the efficacy of each personalization technique across five datasets. Additionally, we have consolidated our
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Fig. 1. Overview of General Affect Recognition Modeling and Evaluation Process.

implementation of all methods and made them publicly available, promoting the exploration and refinement of
existing personalization strategies for further research.1
In this work, we present a set of contributions that advance the field of affect recognition by addressing key

challenges in personalization and reproducibility as follows:
• Systematic and Comprehensive Evaluation: We systematically evaluated personalization techniques across
multiple open datasets, offering a comprehensive comparison and revealing their consistency or lack
thereof. Our study provides valuable insights for advancing these techniques and understanding their
generalizability.

• Emphasis on Reproducibility: Our work emphasizes reproducibility by using open datasets and releasing our
evaluation models and codebase. This transparency is crucial for validating and extending personalized
models in ubiquitous computing.

• Realistic Personalization Scenarios: Unlike previous studies, we evaluate models on entirely unseen users,
providing practical insights into how personalization strategies perform in real-world conditions, crucial
for building affect recognition systems.

• Data Requirements for User-dependent Personalization:While it is acknowledged that personalization requires
data from the unseen user, our study provides detailed insights into the specific data requirements about
the amount necessary for effective personalization across different datasets.

• Novelty in Aggregation and Comparative Analysis: Our novelty lies in aggregating models and procedures
for a unified, systematic comparative analysis, offering a holistic view of personalization techniques not
previously presented.

2 Background and Related Works

2.1 Overview of Sensor-based Affect Recognition and Evaluation
With the advancement of sensor technology, recent research in affect recognition has actively utilized physiological
and behavioral signals for affect detection. Studies attach wearable sensors to users to collect signal data and
create detection models using ML algorithms after conducting ground truth labeling based on experimental
protocols or self-reports [15, 19]. Figure 1 shows an overview of affect recognition modeling and evaluation.
Commonly considered signals include electroencephalography (EEG) and magnetoencephalography (MEG)

related to brain activity, electrocardiography (ECG) and blood volume pressure (BVP) related to heart activity,

1https://github.com/Kaist-ICLab/Personalized_Affective_Computing.git
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electromyogram (EMG) related to muscle activity, electrodermal activity (EDA), respiration (RESP), skin tempera-
ture (TEMP), and accelerometer (ACC). Researchers often use multiple signals simultaneously to build detection
models. The typical affects targeted for detection are based on the dimensional affect model, classifying arousal
and valence states as defined in Russell’s circumplex model of affect [64]. In addition, we can model discrete
emotions, such as stress, anger, and happiness, as defined in existing affect models [15]. In this work, we focus on
binary classifications of arousal, valence, and stress levels as representative affect modeling. Russell et al. defined
arousal as the intensity of emotions and valence as the intrinsic attractiveness (positive) or averseness (negative)
of an emotional experience [64]. Although there is a lack of a universally accepted definition of stress, stress is
often modeled as a dynamic process reflecting our physiological and bodily responses to emotional and physical
stressors [53].
Two main labeling approaches have been introduced to obtain ground truth data for these states [79]. The

stimulus approach involves labeling based on the presence or type of stimuli for emotion elicitation in controlled
settings. Researchers use various stimuli, such as showing videos and pictures or administrating well-known
stress-inducing tasks like the Trier social stress test (TSST). Affect labels are then assigned based on the elicited
emotions or the presence of a stress task [15, 53]. Alternatively, the self-report approach uses affect annotations
from study participants. Affect annotations can be labeled per event or continuously by retrospectively reviewing
recorded events [58, 69]. Likert scale questionnaires have been frequently used, later classified into high or low
affective states based on a specific threshold manually.

Subsequently, detection models are built and evaluated. Before signals are input into these models, they undergo
preprocessing steps such as noise removal, normalization, and downsampling [14, 71]. Then, time- and frequency-
domain features are calculated within a specified window, or automatic feature learning is performed using
autoencoders [53, 71]. Extracted features are fed into traditional ML algorithms such as support vector machine
(SVM), random forest (RF), or DL models such as convolutional neural networks (CNNs), long-short-term-memory
recurrent neural networks (LSTM) to classify label values. Recently, the use of DL models for end-to-end learning
has increased, and a growing number of studies show their potential [14, 39]. Preprocessed signals are segmented
and directly fed into the model, reducing the complex process of feature engineering [43, 71].

To evaluate the performance of the built models, the cross-validation (CV) method is primarily used, allowing
for the evaluation of the model’s generalizability using data not seen during the learning process. This process
includes K-fold CV, where each participant’s dataset is divided into K equal segments, and each fold is used
as a test set once while the others are used for training. It also involves leave-one-participant-out (LOPO) CV,
where the model is trained on data from all participants except one, which is then used for testing, and this cycle
is repeated for each individual participant. Lastly, metrics used for evaluation include classification accuracy,
f1-score, area under the receiver operating characteristic (AUROC), and mean absolute error (MAE) [79].

2.2 Personalized Affect Recognition Modeling
Personalization in machine learning refers to creating models targeted towards specific individuals by under-
standing their unique characteristics [68]. In the field of affect recognition, various personalization methods have
been used to overcome the inability of generalized models to account for individual differences, showing they can
help recognize an individual’s affect [41, 74]. Personalization methods used in previous studies can broadly be
classified into data-level andmodel-level approaches. Data-level personalization is performed before inputting
data into the model or classifier, whereas Model-level involves making changes to the model itself [41].
Data-level techniques include user-specific modeling, which involves creating separate models for each

individual using only their data, and cluster-specific modeling, which involves creating separate models for
groups classified based on certain criteria. Table 1 summarizes previous works utilizing data-level personalization
techniques. For example, Zenonos et al. [88] conducted user-specific modeling for four users using only their
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Table 1. Summary of Previous Works on Personalized Affect Recognition: Data-level. Dataset column contains detailed
information about the datasets used for the evaluation. It indicates, in order, whether the datasets were self-collected by
authors or are open datasets, whether they were collected in a controlled environment or in the wild, the type of data authors
included (P: physiological, B: behavioral, C: Contextual), and the affect labels for detection.

Technique Ref. Method Dataset Evaluation Result

User-
specific

[88] Only include individual’s
data for model training
• Traditional model

• Self/Closed
• In-the-wild
• P, B
• Mood

Compare personalized (Leave-one-
out CV) and generalized (LOPO CV)
model

Personalization increased ac-
curacy

Cluster-
specific

[2] Only include the k-nearest
neighbors to target partici-
pant’s mobile sensing behav-
ioral features formodel train-
ing
• Traditional model

• Open data
[80], [81]
• In-the-wild
• B, C
• Mood, Stress

Compare including only k neigh-
bors (5,10,50,100,500) and all neigh-
bors using LOPO CV

Including more neighbors
generally decreased MAE

[29] Only include participants
with same gender for model
training
• DL model

• Self/Closed
• In-the-wild
• C
• PHQ

Compare personalized and gener-
alized model using 3-Fold CV (for
each participant, one hold-out fold
as a test, 80% data of the remaining
two folds as train, and 20% of the
remaining as a validation set)

For daily prediction, person-
alization had little impact
on MAE, similar to one-day-
ahead forecasting

Both [9] Only include participants
within same cluster based on
PSS-14 for model training
• Both Traditional and DL
model

• Self/Closed
• Controlled
• P
• Stress

Compare user-specific, cluster-
specific, and generalized model
(10% data as test set)

User-specific model’s accu-
racy was the highest, fol-
lowed by cluster-specific and
generalized

[77] Only include participants
within the same cluster
based on a mean and
standard deviation of each
feature value
• Traditional model

• Open data [67],
Self/Closed
• Controlled, In-the-wild
• P, B, C
• Stress

For [67], compare user-specific (20%
data as test set), cluster-specific
(LOPO CV), and generalized (LOPO
CV) model For Self/Closed, com-
pare user-specific (Leave-one-day-
out), cluster-specific (LOPO CV),
and generalized (LOPO CV) model

For [67], user-specific model
increased accuracy and f1
score, but cluster-specific
didn’t
For self-collected, personal-
ization did not increase accu-
racy and f1 score

Others [39] While using autoencoder for
automatic feature extraction,
fine-tune the encoder using
each individual’s data

• Self/Closed
• In-the-wild
• P, B
• Mood, health, stress

Compare personalized and general-
ized model in user-dependent set-
ting (for each participant, 60% as
train, 20% as validation, and 20% as
test set)

Fine-tuning the autoencoder
did not have impact on MAE

past physiological data and compared the performance with a generalized model that uses all other users’ data,
showing an average increase of about 8% in mood recognition accuracy. Can et al. [9] compared the performance of
user-specific, cluster-specific (based on clustering using perceived stress scale scores), and generalized approaches
for ambulatory stress detection using heart rate (HR) and EDA data. They found that user-specific, cluster-specific,
and generalized approaches had decreasing levels of accuracy, respectively, suggesting that cluster-specific
modeling could be an effective approach when user-specific data is insufficient. Tervonen et al. [77] also compared
stress detection accuracy using user-specific, cluster-specific (based on clustering using individual averages and
variances of extracted features), and generalized models, finding that user-specific models performed better than
generalized ones, while cluster-specific models showed similar performance.
Model-level techniques include a fine-tuning approach and multi-task learning (MTL) approach. Table 2

summarizes previous works utilizing model-level personalization techniques.
Fine-tuning, a transfer learning technique, involves initializing a target network with a base network trained

on a large amount of base data and then tuning it with a smaller amount of target data [85]. In affect recognition
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Table 2. Summary of Previous Works on Personalized Affect Recognition: Model-level.

Technique Ref. Method Dataset Evaluation Result

Fine-
Tuning

[29] First trains a baseline model using all
participant data, then fine-tunes the
last fully-connected and output layers
for each individual
• DL model

• Self/Closed
• In-the-wild
• C
• PHQ

Compare personalized and generalized
model using 3-Fold CV (for each par-
ticipant, one hold-out fold as test, 80%
data of the remaining two folds as train,
and 20% of the remaining as validation
set)

For daily prediction person-
alization had little impact
on MAE, but for one-day-
ahead forecasting, personal-
ization decreased MAE

[7] First trains a baseline model using all
participant data, then fine-tunes all lay-
ers using a small amount of partici-
pant’s data
• DL model

• Open data
[67], [34]
• Controlled
• P
• Stress

Compare using personalized and gen-
eralized model using LOPO CV (use
different portions, 1, 5, and 10% of test
participants for tuning)

For [67], accuracy and f1
score increased with tuning
above 5%
For [34], accuracy and f1
score increased with tuning
above 1%

[87] First trains a baseline model using all
participant data, then fine-tunes all lay-
ers or last LSTM layer and output lay-
ers for each individual
• DL model

• Self/Closed
• In-the-wild
• P, B, C
• Mood, health,
stress

Compare personalized and generalized
model
(use 80% of users for training, 20% for
testing)

MAE decreased as portion
sizes increases
Using more than 30% for
tuning all and 10% for tun-
ing last layers had lower
MAE

Multi-task
Learning

[39] User-as-task and cluster-as-task based
on gender and personality cluster
• Traditional model

• Self/Closed
• In-the-wild
• P, B
• Mood, health,
stress

Investigate the impact of the number
of clusters both in user-dependent (for
each participant, 60% as train, 20% as
validation, and 20% as test set) and user-
independent (each participant to one
of the train, validation, test set) setting

For both settings when the
number of clusters is equal
to the number of users in
the training set, i.e., user-
as-task, resulted in lowest
MAE

[65] User-as-task
• DL model

• Open data
[23] [73], Self-
collected
• Controlled,
In-the-wild
• P
• Stress

Compare personalized and single-task
model (for each participant, 80% as
train and 20% as test)

For [23], personalization in-
creased AUROC and kappa
For [73], personalization in-
creased AUROC and kappa
For self-collected, personal-
ization increased AUROC
and kappa

[86] User-as-task and cluster-as-task based
on gender and personality cluster
• Traditional model, DL model

• Self/Closed [66]
• In-the-wild
• P, B, C
• Mood, health,
stress

Compare personalized and single-task
model (for each participant, 60% as
train, 20% as validation, 20% as test set)

Personalization decreased
MAE and increased f1 score,
especially with user-as-task
rather than cluster-as-task

[61] User recognition and stress detection
as tasks
• DL model

• Open data [67]
• Controlled
• P, B
• Stress

Compare personalized and generalized
model using LOPO CV

Personalization increased f1
score

[74] Moods-as-task and cluster-as-task
based on gender and personality
cluster
• Traditional model, DL model

• Self/Closed [66]
• In-the-wild
• P, B, C
• Mood, health,
stress

Compare personalized and single-task
model (for each participant, 8% as train,
20% as test set)

Personalization increased
accuracy and AUROC, es-
pecially with cluster-as-task
rather than moods-as-task

Others [70] Modify SVM objective function by
adding participant-specific parameter

• Self/Closed
• Controlled
• P
• Stress

Compare personalized and generalized
model using LOPO CV

Suggested algorithm in-
creased precision value at
80% recall

research, models initially pre-trained on extensive group data are employed to capture broadly useful representa-
tions. These models are then fine-tuned to identify features uniquely characteristic of the target user [41]. Yu
et al. [87] pre-trained a deep LSTM model for wellbeing prediction on all other users’ data and fine-tuned the
last LSTM and the final layers using the target user’s data, showing a lower MAE than the generalized model
even with only 10% of the target user’s data. Kathan et al. [29] compared the MAE of fine-tuned and generalized
models, finding little difference in depression prediction for the same day but a reduction of about 0.2 in MAE for
one day ahead forecasting.
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MTL aims to improve the performance of each task by learningmultiple related tasks simultaneously and sharing
representations [10]. In this approach, representation sharing between tasks can be realized by sharing layers
between tasks in deep learning networks or by applying similarity constraints to the weights of classifiers [10, 27].
Personalization has been achieved by defining users or clusters as tasks and creating models specific to each
individual or cluster [74]. Saeed et al. [65] created a driver’s stress detection model using HR and EDA data,
defining individual users as tasks, and compared the performance of the multi-task neural network (NN) model
with a single-task NN model. They found that multi-task models showed an accuracy improvement of about
1–6% over the single-task model across three different datasets. Taylor et al. [74] created a wellbeing prediction
MTL model by clustering users based on personality and gender and defining each cluster as a task. They found
that defining clusters as tasks allowed for more accurate predictions for new participants not seen during the
training process, with an accuracy improvement of about 11-21% compared to a single-task model.

Beyond data- and model-level classifications, Ferrari et al. [16] presented a spectrum of personalization based
on how a target unseen user’s data is used for personalization; i.e., user-dependent personalization (= user-specific
personalization) where only a target unseen user’s data is used for training and testing, and hybrid personalization
where part of a target unseen user’s data along with all the other users’ data is used for model training. Further,
when a target unseen user’s data is not used for model training, that approach is called user-independent modeling.
In this work, we extend this concept to classify personalization techniques based on whether a target unseen user’s
data is used for personalization: unseen user-dependent vs. user-independent models. Unseen user-dependent
models include user-specific personalization, fine-tuning of user-independent models using an unseen user’s
data, and hybrid personalization. In contrast, unseen user-independent models do not use an unseen user’s data
for personalization by assuming that there are similar people like the unseen user (i.e., user groups to which the
unseen user belongs in the training data). We call this approach group-based personalization. This concept is
similar to “collaborative filtering,” where responses by similar users are used for item recommendation (e.g., same
personality traits or gender). For unseen user-independent modeling, we can build separate models for each user
group (or a cluster of similar users) or a unified multi-task model (e.g., cluster as a task).
Note that it is crucial to consider the practical challenges of building user-dependent models. Such models

often rely on a user-in-the-loop personalization approach, where systems prompt users to label their current
affective states [13, 48]. While this can lead to highly personalized outcomes, the burden of frequent labeling
in everyday contexts can become overwhelming for users [78]. To address this, recent advances in adapting
models for new participants have shown promising results. By treating users as tasks, meta-learning (or few-shot
learning) enables models to rapidly adapt to a new user with only a few labeled data points. Meta-learning
implements transfer learning with many source tasks to solve new tasks using only a few labeled data points from
the new tasks (known as few-shot adaptation). This approach’s effectiveness has been demonstrated in sensor-
based human activity recognition [20], video-based physiological measurement [42], and emotion/depression
recognition [83, 90]. In general, we can use domain adaptation where target domain (i.e., person) data are used
for training (which belongs to transductive learning) [11]. In particular, unsupervised domain adaptation uses
only unlabeled target domain data; this means that a target user’s passive sensor data is used for training, but no
user involvement is required for labeling. Typical domain adaptation methods handle differences in input data
distributions via data reweighting, feature alignment, or domain translation [35]. Recent studies highlighted the
potential benefits of unsupervised domain adaptation for activity and mood classification [11, 47]. Additionally,
recent domain generalization techniques showed that such domain shifts can be simulated during training [40],
thereby obviating the need to use target data at all. While recent studies explored advanced ML approaches, our
focus remains on well-known techniques to systematically evaluate whether they demonstrate consistent results,
addressing the personalization challenges by establishing baselines.
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2.3 Reproducible Research and Open Datasets for Affect Recognition
Given that the goal of machine learning research is to develop algorithms capable of reliably solving large-scale
complex problems, the importance of reproducibility is increasingly emphasized [3, 21, 45]. Recently, McDermott
et al. [45] stated that for ML research to be fully reproducible, it must meet three reproducibility criteria. First
is technical reproducibility, which requires the ability to fully replicate the exact results reported in a paper
technically. This necessitates the release of the code and dataset used in the paper, including sufficient details
to run them correctly. Second is statistical reproducibility that minor numerical differences in results due to
processes like resampling should not statistically significantly impact the main results or conclusions of the
research. This represents internal validity, which requires detailed reporting of randomized trials, such as listing
both the mean and the standard deviation of performance metrics over several random initializations. Third
is conceptual reproducibility, which entails obtaining results under new conditions that align with the original
experiment’s theoretical explanations, representing external validity. For example, model evaluation with multiple
datasets can demonstrate that the presented model can properly adapt to new, previously unseen data.

As AI-powered healthcare tools, which can directly impact human health, become more prevalent, reproducible
results in machine learning for health research are in the public interest [45]. However, reproducibility was not
thoroughly considered in prior personalized affect recognition research. More than half of the studies listed in
Table 1 and 2 evaluated proposed methods using self-collected, unpublished (closed) datasets. Only one paper
conducted evaluations using more than two datasets [65]. Additionally, a lack of detailed descriptions of actual
implementation, such as hyperparameter settings, is prevalent, and only two studies have open-sourced their
code [2, 74]. Consequently, this might complicate the process of reproducing the research results.
This work aims to evaluate well-known personalization techniques in affect recognition. We evaluate four

different personalization methods using five open datasets to verify their conceptual reproducibility as in recent
work on reproducible stress detection [89]. We considered open datasets, which include physiological and
behavioral signals collected in a controlled environment, as listed in Table 3. We also open-source the entire
process code, from data preprocessing to final evaluation, to ensure that it is technically reproducible, and other
researchers can use our code to evaluate their personalization techniques rigorously.

3 Methods

3.1 Datasets
In our evaluation, we used five open datasets in Table 3: AMIGOS, ASCERTAIN, WESAD, CASE, and K-EmoCon.
These datasets were chosen because they include the necessary user profile survey information necessary for
identifying a group of individuals similar to the unseen user, which is essential for evaluating cluster-specific and
multi-task learning personalized models. The other datasets were excluded due to the lack of this profile survey
information. Regarding emotion annotations, AMIGOS, ASCERTAIN, CASE, and K-EmoCon utilize a self-report
approach for emotion annotation, while WESAD employs a stimulus-based approach. Specifically, AMIGOS and
ASCERTAIN provide a single self-report value for each stimulus (i.e., video), whereas CASE and K-EmoCon
offer continuous annotation throughout the entire experiment. Detailed information about each dataset and data
source can be found in Appendix A and Table 12, respectively.

3.2 Preprocessing
For the purpose of using each sensor signal in an end-to-end DL system, a preprocessing procedure was carried
out. As proposed by Dzieżyc et al. [14], a sequence of winsorization, filtering, downsampling, normalization, and
segmentation was applied. The resulting data were used as the input for the model. By adopting a participant-
dependent approach in all preprocessing steps, where each participant’s data was processed individually, we
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Table 3. Open datasets including physiological or behavioral signals collected in a controlled environment.

Dataset Signal Label # of
Ps

Duration Profile Survey

DEAP [33]
(2012)

• Physiological (EEG, EDA, BVP, RESP,
TEMP, EMG, EOG)

• Per stimuli annotation
• SAM

32 40 mins;
40 videos

Not
specified

SWELL [34]
(2014)

• Physiological (ECG, EDA) • Per stimuli annotation
• SAM, stress

25 3 hours Not included

DECAF [1]
(2015)

• Physiological (MEG, hEOG, ECG,
tEMG)

• Per stimuli annotation
• PANAS

30 88 mins;
75 videos

Not included

ASCERTAIN [72]
(2016)

• Physiological (ECG, EDA, EEG)
• Behavioral (ACC)

• Per stimuli annotation
•Arousal, valence, engagement, lik-
ing, familiarity

58 50 mins;
36 videos

Big-Five
personality traits

DREAMER [30]
(2017)

• Physiological (EEG, ECG) • Per stimuli annotation
• Arousal, valence, dominance

23 1 hour;
18 videos

Not included

WESAD [67]
(2018)

• Physiological (RESP, ECG, EDA, EMG,
TEMP)
• Behavioral (ACC)

• Per stimuli annotation
• PANAS, STAI, SAM, SSSQ

15 1 hour Age, gender

CASE [69]
(2019)

• Physiological (ECG, RESP, BVP, EDA,
TEMP, EMG)

• Continuous annotation
• Arousal, valence
# of labels per participant: 49,000

30 21 mins;
8 videos

Age, gender

K-EmoCon [58]
(2020)

• Physiological (EEG, ECG, BVP, EDA,
TEMP)
• Behavioral (ACC)

• Continuous annotation
• Arousal, valence, affective cate-
gories
# of labels per participant: 120–180

32 10 mins Age, gender

AMIGOS [50]
(2021)

• Physiological (EEG, ECG, EDA) • Per stimuli annotation
• PANAS, SAM, Ekman’s basic emo-
tions

40 79 mins;
20 videos

Big-Five
personality traits

aligned with the findings of Kathan et al. [29] and Tervonen et al. [77], who demonstrated that such personalized
processing significantly enhances performance outcomes. Figure 2 shows the overall steps for data preprocessing.

Fig. 2. Overview of Data Preprocessing.

Firstly, outliers in the upper and lower 3% range were removed for each sensor signal. Subsequently, a
Butterworth low-pass filter with a 10 Hz cut-off was applied to eliminate signals above 10 Hz. Next, to prevent
an excessive number of parameters in deep learning models, downsampling was performed on each sensor
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Table 4. Summary of Data Used for Further Analysis.

Dataset Used Signal Label Label
Distribution

Used
# of Ps
(N)

Used
Duration

Average
# of
Segments
per Ps

Used
Survey

AMIGOS Total: 20
EEG (14)
ECG (2)
EDA (1)
ACC (3)

Arousal
Valence
(Self-report based)

50:50
48:52

31 22.6mins 292.00 Big-five
personality,
Age,
Gender

ASCERTAIN Total: 6
ECG (2)
EDA (1)
ACC (3)

Arousal
Valence
(Self-report based)

50:50
47:53

58 30mins 357.55 Big-five
personality

WESAD Total: 14
Chest ECG
Chest ACC (3)
Chest EMG
Chest EDA
Chest TEMP
Chest Resp
Wrist BVP
Wrist ACC (3)
Wrist EDA
Wrist TEMP

Stress
(Stimulus based)

64:36 15 16.5mins 207.20 Age,
Gender

CASE Total: 8
ECG
BVP
EDA
RESP
TEMP
EMG (3)

Arousal
Valence
(Continuous
Self-report based)

57:43 30 21mins 263.10 Age,
Gender

K-EmoCon Total: 6
EDA
ACC (3)
TEMP
BVP

Arousal
Valence
(Continuous
Self-report based)

64:36 21 10mins 125.62 Age,
Gender

signal, referencing the rate from previous literature [14]. The original sampling rate and the post-downsampling
rate for each dataset are presented in Appendix B. Following this, normalization was applied. Normalization
typically involves adjusting data either by scaling it according to the maximum and minimum values of that
specific participant’s data (i.e., min-max normalization) or by subtracting the mean and then dividing by the
standard deviation [8]. Min-max normalization was used to bring all the signals into the same range of 0–1, as in
the previous works [14, 39]. The final step involved segmentation, where all sensor signals were divided in a
fixed time length. When using autonomic nervous system activity measures such as BVP, EDA, and TEMP, a
common window size ranges from 10 to 30 or 60 seconds [36]. Prior work showed mixed findings on the effect of
window size in that best-performing window sizes varied based on ML models and evaluation methods. When
considering a scenario of real-time affect state detection using wearable sensors, researchers typically use a
10-second window [12, 18, 54, 55]. In line with this practice, our study adopted a 10-second window with 50%
overlapping. As a result, on average, AMIGOS generated 292.0 windows, ASCERTAIN 357.6 windows, WESAD
207.2 windows, CASE 263.20 windows, and K-EmoCon 125.62 windows per participant.

Subsequently, affect labels were assigned to each window. Stimulus-based labeling was employed for WESAD,
which underwent labeling only once after each experimental session (non-stressed for amusement vs. stressed
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for social/mental stressors) (see the scenario in Figure 12). Meanwhile, AMIGOS, ASCERTAIN, CASE, and K-
EmoCon had self-report labels. For fair comparisons across different datasets, we considered a labeling process
by setting a threshold for the binarization of annotation responses. Although many studies used an absolute
value threshold for binarization, recent studies have employed personalized, participant-specific thresholds to
address the individual differences in subjective self-report responses [12, 32]. The binarization threshold for each
participant was calculated using the average of all self-reported values provided by each participant. Then, if
the average label values within each window were less than the computed threshold, a label of low affect was
assigned; otherwise, a label of high affect was assigned. Specifically for AMIGOS and ASCERTAIN, each video
had a rating, resulting in all segments of each video being labeled with the corresponding label.
Table 4 summarizes the data used for further analysis. All the physiological and behavioral signals, except

for the EEG signal in ASCERTAIN and K-EmoCon dataset, are utilized for practical considerations. EEG in
ASCERTAIN dataset was excluded due to inconsistent collection frequency across users, and in the K-EmoCon
dataset, it was excluded due to its significantly lower sampling rate than reported. Participants with issues in
data completeness and unnecessary experimental periods such as baseline, meditation, and rest were excluded,
and the table indicates the final number of participants and duration used.

3.3 Non-Personalized Model
We created a non-personalized model as a baseline to investigate whether existing personalized methods demon-
strate a significant performance benefit. To build such models, we employed three different DL architectures,
namely the Fully Convolutional Network (FCN), Residual Network (ResNet), and Multi-Layer Perceptron with
LSTM (MLP-LSTM) throughout all methods. Dzieżyc et al. [14] compared ten end-to-end architectures for emotion
classification using four physiological signal datasets and found that FCN and ResNet demonstrated the best
performance. The inclusion of LSTM was justified as it remains one of the most commonly used architectures
in DL-based emotion recognition systems research [43]. In the given architectures, individual signal channels
are treated as separate branches, each consisting of stacked layers. These branches eventually come together to
generate the final output prediction of the model, as shown in Figure 3. Detailed explanations for each architecture
can be found in prior studies [14, 25].

Leave-one-participant-out evaluation: Each DL architecture was trained using all participants’ data except
for the target participant’s and then evaluated on the target participant’s data. Out of a total of N participants in
each dataset, 1 participant was designated as the target. The remainingN -1 participants were used for the model
training. This process was iteratively repeated for all N participants, designating each as the test participant in
turn. Finally, the average and the standard deviation of all results were computed.
In Figure 4, we illustrate the training and evaluation process of a non-personalized model. For the sake of

illustration, in the figure, we assumed that there are five participants. We denoted the data from the target
participant as DT , and the remaining four participants as 𝐷1 to 𝐷4.

3.4 Personalized Models
Our focus is on developing personalized models for unseen users who have limited available data, i.e., sensor
signals and corresponding labels. This addresses the practical challenge of acquiring a substantial amount of data
for new users. Consequently, we exclude user-specific model that necessitates a substantial amount of labeled
data for each individual. Approaches to building personalized models for unseen users can be classified based on
whether they involve using limited data of these users during the training process. In other words, if a model
uses some part of an unseen user’s data, it is classified as an (unseen) user-dependent approach; otherwise, it is an
(unseen) user-independent approach.
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Fig. 3. DL architectures Fig. 4. Training and Evaluation Process of
Non-Personalized Model

The fine-tuning model represents a user-dependent approach, where a certain amount of unseen users’ data is
utilized to refine a non-personalized model. Alternatively, a hybrid model that is trained using the data of an
unseen user along with the data from N-1 other users also falls under the user-dependent category. Cluster-
specific and multi-task learning models can be used to enable a user-independent approach. These methods can
train models without using the unseen user’s data. As shown later, we can leverage participant profile information
to identify similar users, and the unseen users can use the existing models trained for similar users based on
user profiles. Note that it is also feasible for cluster-specific and multi-task learning models to implement a
user-dependent approach by integrating the unseen user’s data into the training (as if it belongs to a similar user).
In this work, we only consider a user-independent approach for constructing and evaluating these methods.
This enables us to examine whether personalization methods are applicable to unseen users without any use of
personal data except profile information, which contrasts with user-dependent approaches, such as fine-tuning
and hybrid models. The following subsections provide detailed explanations of each method.

3.4.1 Unseen User-Dependent. We consider fine-tuning and hybrid modeling for unseen user-dependent models.
Figure 5 and 6 show the training and evaluation process of a fine-tuning and hybrid model, respectively.

Fine-Tuning: The training process proceeds as follows. Initially, all layers of the network undergo pre-training
with data from N-1 participants, establishing a foundational understanding of the task. This is followed by
retraining (i.e., tuning) the network using a small number of data from the target participant, aiming to create a
model that is tailored specifically to that individual while avoiding overfitting. To ensure a balanced dataset for
tuning, we used a specific number of data points from each label in the target participant’s data. Also, given the
high temporal dependency inherent in time series data, selecting data points randomly from the entire range
could result in a biased evaluation. Therefore, we chose the initial sequence of data points from each label. Here,
the tuning process can be applied either to the whole network or limited to the final layer. It is known that the
final layer of deep neural networks greatly depends on the chosen dataset and task [85]. Thus, by retraining just
the final output layer, the model can be more effectively tailored to reflect the unique attributes of the target
participant. Moreover, in line with approaches in prior studies [7, 87], we examined the impact of varying the
number of data used for this fine-tuning phase. We evaluated the model’s performance using different quantities,
20%, 30%, 40%, and 50% of a target participant’s data. The final step involves testing the fine-tuned model with
the remaining data points of the target participant. For a given dataset, this procedure was repeated for each
participant, treating each one in turn as the target.
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Systematic Evaluation of Personalized Deep Learning Models for Affect Recognition • 206:13

Hybrid (Partially Personalized): Recent studies have proposed a hybrid model known as the partially
personalized approach for personalization, which is similar to, yet distinct from, traditional fine-tuning [46, 76].
Contrary to fine-tuning, where a pre-trained model is adjusted with the target participant’s data, this approach
simultaneously utilizes data from N -1 participants and the target participant to train the model. As a result, the
model undergoes training only once, other than the twice-required training in fine-tuning. In line with these
prior works, the training process unfolds as follows. The network’s layers are trained using the data from N -1
participants and 50% of the data from the target participant [46, 76]. The remaining 50% of the target participant’s
data is then used to test the trained model. Similar to the previous method, this process is iteratively conducted
for each participant as the target.

Fig. 5. Training and Evaluation Process of
Fine-Tuning Model

Fig. 6. Training and Evaluation Process of
Hybrid Model

3.4.2 Unseen User-Independent. We consider cluster-specific andmulti-task learningmodels for user-independent
personalization. Figure 7 and 8 show the training and evaluation process of a cluster-specific and multi-task
learning personalized model, respectively.
Cluster-Specific: The cluster-specific method is rooted in the assumption that building a model using only

data from ‘similar’ participants to the target unseen participant would be more helpful than using data from all
the other participants. It is important to note that there is no architectural difference from the generalized model,
but the difference lies in the data used for training.

In order to find similar participants, previous research employed demographics or psychological information
such as gender, age, and personality traits and performed K-Means clustering on participants [29, 39, 74]. The
number of clusters, K, used in prior studies varied—it was sometimes a fixed value or determined by the highest
mean Silhouette score [9, 29, 77]. In our study, we similarly applied K-Means clustering, utilizing age and
gender information for WESAD, K-EmoCon, and CASE. For AMIGOS and ASCERTAIN, we utilized personality
information derived from the Big Five Inventory questionnaire [59].
The training is initiated by creating clusters based on trait information of N-1 participants, leading to the

development of a distinct model for each cluster. Only the participants within the same cluster were used for
training their respective models. For testing, the target participant’s cluster was identified using his or her trait
information (i.e., age/gender or personality), and the model corresponding to that cluster was used for evaluation.
This approach ensured that the target participant’s physiological and label data remained unseen until the final
testing phase. The procedure was repeated for each subject in the datasets, treating them as the target in turn.
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Moreover, we explored the impact of varying the number of clusters. We compared performances using fixed
K values ranging from 2 to 5 and dynamically calculated K values based on the Silhouette score. We limited K
values to 5 because larger values resulted in clusters with too few participants due to the small overall number of
participants in each dataset.

Multi-task Learning: Multi-task Learning (MTL) is a learning method that simultaneously trains on multiple
similar tasks by sharing information between them. In the context of DL, MTL is implemented through a
combination of shared layers which are common across all tasks, and task-specific layers which are unique to
each task. This structure not only allows for the acquisition of general knowledge applicable across various tasks
but also supports tailored learning for individual tasks [10].

As in the previous research, we compared the distinct task definitions: i.e., user-as-task and cluster-as-task [39,
65, 74, 86]. Both approaches train all network layers except the last fully connected (FC) layer and the output
layer, using data from N-1 participants. In the user-as-task approach, the last FC layer and output layer are
trained using each participant’s data (excluding the target), calculating weights for each participant. Then, we
find the participant who is the most similar to the target and apply weights trained on that participant. Likewise,
in the cluster-as-task approach, the last FC layer and output layer are trained using all the participants’ data in
each cluster, calculating weights for each cluster. We then find the cluster the target participant belongs to and
apply the weights trained on that cluster to the target. In both approaches, the similarity was determined using
the demographics or psychological information, just as in the cluster-specific method. The number of clusters
K in the cluster-as-task approach was determined based on the highest mean Silhouette score, a method most
commonly preferred in previous research [39, 74, 87]. Finally, using the unseen target participant data, we tested
the model, repeating this for all N participants.

Fig. 7. Training and Evaluation Process of
Cluster-Specific Model

Fig. 8. Training and Evaluation Process of
Multi-task Learning Model (User-as-task)

3.5 Evaluation Methods
In each dataset, every participant was designated once as the target, forming the test set. The others, excluding the
target, were randomly divided into training and validation sets at an 80:20 ratio [29]. To ensure a fair comparison
among the methods, the DL architecture-related hyperparameters were fixed in line with those used in previous
research on DL for time series classification [25]. These settings are detailed in the accompanying code. Notably,
the validation set’s role was not to tune the architecture-related hyperparameters but to prevent overfitting on
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the training set. A maximum of 100 epochs was set for the training, with early stopping implemented if there
was no improvement in the validation loss for 15 consecutive epochs. This procedure was replicated for each
participant, treating each in turn as the target. As mentioned earlier, the average and standard deviation of the
results were calculated and reported, providing a detailed assessment of the model’s performance.

As metrics, we report accuracy, f1-score, and AUROC. While accuracy is the most commonly used metric, it is a
poor indicator for imbalanced datasets and does not account for the trade-off between precision and recall; hence,
we also report f1-score, the harmonic mean of precision and recall [24]. Following previous literature, we use
macro f1-score, which ensures equal importance is given to each class by computing the average of their individual
performances when each is treated as the positive class [84]. Meanwhile, AUROC is known to be more informative
than accuracy and has been used in previous studies when comparing learning algorithms [24]. Therefore, we
report all these metrics but mainly use AUROC to compare the performance of different personalization methods.

3.6 Implementation
All models were optimized using the Adam algorithm, with a learning rate of 0.003 and a weight decay of
1e-6. For optimal training, we employed TensorFlow’s ReduceLROnPlateau callback function, which adjusts the
learning rate when the validation loss ceases to decrease, thereby inducing model improvement. Implementation
of non-personalized model code is based on code provided at https://github.com/Emognition/dl-4-tsc.git. Building
upon this foundation, we have developed and open-sourced comprehensive preprocessing and personalized
model code using the TensorFlow framework, which is available at a Github repository.2 Please refer to the
README.md file for detailed information.

4 Results
We start by presenting the performance of non-personalized models across datasets. Then, we detail the outcomes
for each of the four personalization techniques. For each technique, we report the results of the various experiments
conducted, focusing on the key findings and performance metrics. In the latter part, we compare the best results
from each personalization technique against the non-personalized counterpart. This offers a comprehensive
overview of how each personalization approach works in relation to the non-personalized one.

4.1 Non-Personalized Model
Table 5 reports the performance of non-personalized models evaluated on four distinct datasets. The WESAD
dataset, which utilized stimulus-based labeling, demonstrated a significantly higher detection performance. In
contrast, the remaining four datasets, which employed self-report based labeling, exhibited relatively lower
performance. This observation is consistent with prior studies, which found that using self-reported data for
stress or emotion detection tends to yield reduced performance [52, 79].

4.2 Analysis of Personalization Techniques
4.2.1 Fine-Tuning: Amount of Layers Tuned and Data Used. Figure 9 plots the changes in AUROC for fine-tuned
models under different settings, along with non-personalized models, namely without tuning. The result revealed
no consistent patterns regarding the number of layers tuned, as the most effective strategy for attaining the
highest performance was dependent on the specific dataset and model architecture. Furthermore, increasing the
volume of data used for tuning did not consistently lead to enhanced performance. However, in comparison to
their non-personalized counterparts, most of the dataset-architecture combinations exhibited at least one scenario
where a fine-tuned model achieved higher AUROC values, underscoring the beneficial impact of fine-tuning. The

2https://github.com/Kaist-ICLab/Personalized_Affective_Computing.git
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Table 5. Non-Personalized Model Evaluation Results (Average with Standard Deviation).

Dataset Architecture Accuracy F1-score AUROC

AMIGOS
(Arousal)

FCN 0.488 (0.105) 0.403 (0.090) 0.500 (0.100)
MLP-LSTM 0.481 (0.117) 0.332 (0.058) 0.504 (0.100)
ResNet 0.474 (0.111) 0.375 (0.100) 0.490 (0.115)

ASCERTAIN
(Arousal)

FCN 0.503 (0.062) 0.372 (0.064) 0.511 (0.071)
MLP-LSTM 0.506 (0.062) 0.342 (0.045) 0.498 (0.035)
ResNet 0.511 (0.061) 0.400 (0.080) 0.506 (0.070)

WESAD
(Stress)

FCN 0.839 (0.187) 0.786 (0.256) 0.915 (0.203)
MLP-LSTM 0.898 (0.177) 0.874 (0.223) 0.922 (0.195)
ResNet 0.805 (0.231) 0.769 (0.272) 0.906 (0.196)

CASE
(Arousal)

FCN 0.550 (0.106) 0.461 (0.124) 0.646 (0.165)
MLP-LSTM 0.519 (0.092) 0.339 (0.040) 0.508 (0.069)
ResNet 0.557 (0.116) 0.469 (0.146) 0.648 (0.155)

K-EmoCon
(Arousal)

FCN 0.526 (0.142) 0.475 (0.139) 0.505 (0.176)
MLP-LSTM 0.514 (0.135) 0.422 (0.118) 0.523 (0.173)
ResNet 0.514 (0.131) 0.450 (0.126) 0.487 (0.188)

Dataset Architecture Accuracy F1-score AUROC

AMIGOS
(Valence)

FCN 0.470 (0.111) 0.373 (0.104) 0.518 (0.131)
MLP-LSTM 0.478 (0.122) 0.327 (0.060) 0.476 (0.109)
ResNet 0.496 (0.100) 0.398 (0.102) 0.493 (0.106)

ASCERTAIN
(Valence)

FCN 0.542 (0.064) 0.379 (0.063) 0.514 (0.060)
MLP-LSTM 0.540 (0.071) 0.349 (0.031) 0.496 (0.047)
ResNet 0.532 (0.071) 0.397 (0.082) 0.520 (0.064)

-
- - - -
- - - -
- - - -

CASE
(Valence)

FCN 0.512 (0.147) 0.385 (0.153) 0.651 (0.159)
MLP-LSTM 0.561 (0.106) 0.356 (0.045) 0.548 (0.134)
ResNet 0.536 (0.138) 0.445 (0.156) 0.620 (0.169)

K-EmoCon
(Valence)

FCN 0.558 (0.106) 0.484 (0.092) 0.507 (0.147)
MLP-LSTM 0.494 (0.156) 0.391 (0.126) 0.520 (0.174)
ResNet 0.487 (0.110) 0.422 (0.096) 0.508 (0.130)

detailed numerical results corresponding to the AUROC values depicted in Figure 9 and other metrics, accuracy,
and f1-score, are comprehensively documented in Appendix C.

4.2.2 Hybrid. Table 6 reports the performance of hybrid models using 50% of the test user’s data evaluated
on four datasets. Each dataset-architecture pair showed varying performances compared to the results of the
non-personalized model in Table 7, with both higher and lower outcomes.

Table 6. Results for Hybrid Models.

Dataset Architecture Accuracy F1-score AUROC

AMIGOS
(Arousal)

FCN 0.473 (0.163) 0.383 (0.133) 0.512 (0.151)
MLP-LSTM 0.509 (0.178) 0.358 (0.102) 0.476 (0.107)
ResNet 0.537 (0.161) 0.410 (0.118) 0.518 (0.136)

ASCERTAIN
(Arousal)

FCN 0.508 (0.085) 0.393 (0.079) 0.508 (0.067)
MLP-LSTM 0.505 (0.088) 0.342 (0.055) 0.491 (0.056)
ResNet 0.498 (0.082) 0.391 (0.082) 0.505 (0.085)

WESAD
(Stress)

FCN 0.923 (0.161) 0.909 (0.168) 0.976 (0.074)
MLP-LSTM 0.885 (0.233) 0.863 (0.261) 0.913 (0.212)
ResNet 0.868 (0.215) 0.835 (0.234) 0.979 (0.066)

CASE
(Arousal)

FCN 0.594 (0.139) 0.490 (0.146) 0.655 (0.197)
MLP-LSTM 0.543 (0.152) 0.346 (0.066) 0.520 (0.106)
ResNet 0.617 (0.142) 0.511 (0.147) 0.646 (0.168)

K-EmoCon
(Arousal)

FCN 0.520 (0.355) 0.372 (0.290) 0.509 (0.358)
MLP-LSTM 0.453 (0.384) 0.362 (0.353) 0.650 (0.373)
ResNet 0.455 (0.308) 0.385 (0.308) 0.594 (0.312)

Dataset Architecture Accuracy F1-score AUROC

AMIGOS
(Valence)

FCN 0.474 (0.170) 0.368 (0.128) 0.494 (0.145)
MLP-LSTM 0.475 (0.186) 0.322 (0.087) 0.511 (0.142)
ResNet 0.511 (0.173) 0.392 (0.122) 0.515 (0.112)

ASCERTAIN
(Valence)

FCN 0.554 (0.084) 0.385 (0.076) 0.505 (0.075)
MLP-LSTM 0.547 (0.084) 0.352 (0.036) 0.499 (0.035)
ResNet 0.543 (0.083) 0.381 (0.064) 0.515 (0.066)

-

CASE
(Valence)

FCN 0.562 (0.180) 0.494 (0.182) 0.655 (0.217)
MLP-LSTM 0.563 (0.194) 0.350 (0.089) 0.506 (0.089)
ResNet 0.548 (0.170) 0.440 (0.160) 0.651 (0.200)

K-EmoCon
(Valence)

FCN 0.429 (0.329) 0.269 (0.174) 0.443 (0.202)
MLP-LSTM 0.407 (0.447) 0.341 (0.410) 0.752 (0.255)
ResNet 0.465 (0.322) 0.296 (0.164) 0.643 (0.349)

4.2.3 Cluster-Specific. We evaluate the cluster-specific models by varying the number of clusters. Figure 10
illustrates the changes in AUROC for cluster-specific models with different K settings, alongwith non-personalized
models, i.e., without clustering. In most cases, fixing the value of K exhibited better performance than dynamically
calculating it using the highest mean silhouette score. The optimal fixed value of K varied depending on the
dataset and the model used. Moreover, it is observed that except for the AMIGOS and ASCERTAIN dataset,
cluster-specific models demonstrate lower AUROC values compared to one-size-fits-all non-personalized ones.
In AMIGOS and ASCERTAIN, most of combinations of dataset and architecture showed instances where a
cluster-specific model attained superior AUROC values, highlighting its positive effect. It should be noted that, in
contrast to other datasets which were clustered according to age and gender, AMIGOS and ASCERTAIN involved
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Fig. 9. Fine-Tuning: AUROC Across Various Settings. Line styles represent different deep learning architectures: a solid line
for FCN, a dashed line for MLP-LSTM, and a dotted line for ResNet. For the vertical scale, we used a default range of 0.45 to
0.75, except for the WESAD dataset, where we employed a range of 0.45 to 1.00 and for the CASE data, a range of 0.30 to 0.75.
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Fig. 10. Cluster-Specific: AUROC Across Various Settings. For the vertical scale, we used a default range of 0.4 to 0.7, except
for the WESAD dataset, where we employed a range of 0.4 to 1.0.
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clustering based on personality. Appendix C thoroughly presents the detailed numerical outcomes, including
AUROC values, accuracy, and f1-scores, corresponding to the data shown in Figure 10.

4.2.4 Multi-task Learning. Figure 11 shows the changes in AUROC for multi-task learning models with two
different settings (i.e., user- and cluster-as-task), along with non-personalized models (i.e., one-size-fits-all).
No distinct trends were observed, as the optimal task definition for achieving the highest performance varied
depending on the dataset used and the specific model architecture employed. Generally, it is noted that multi-task
learned models tend to show lower AUROC values compared to non-personalized ones. Similarly, numerical
details for AUROC from Figure 11, accuracy, and f1-score are fully detailed in Appendix C.

4.3 Comparative Evaluation on Personalization Techniques
We conducted a thorough comparison of the overall results of the personalization techniques. Table 7 summarizes
the performance of each personalized model under its optimal setting alongside the performance of the non-
personalized models. Fine-tuning tended to perform better than the majority of cases. Out of 27 dataset-model
combinations, fourteen showed that the fine-tuning model delivered the best performance. Following this, cluster-
specific models were the most effective in six combinations, which were mostly from the ASCERTAIN dataset.
Lastly, the hybrid model demonstrated the best performance in five combinations. However, there were instances
where none of the personalization models significantly outperformed the non-personalized models, highlighting
the complexity of personalization in affect recognition.

We then examined the statistical significance of performance differences between the non-personalized model
and each personalized model at its optimal setting by conducting independent t-tests. We marked a marginal
level of statistical significance (p < 0.1) with †, and a more stringent significance (p < 0.05) with * in Table 7. Due
to the limited sample size and individual variations in the leave-one-participant-out cross-validation, statistical
significance was not achieved across all combinations, reflecting the inherent challenges in personalization for
affect recognition. Notably, our findings reveal that statistical significance was observed in only four combinations:
two from fine-tuning, one from hybrid, and one from cluster-specific. Fine-tuning was not always statistically
superior to non-personalized models in every combination. This indicates that while fine-tuning showed promise,
it was not universally superior to non-personalized models in every combination. We discuss the implications of
our findings in the following section, including the limitations and future work.

5 Discussion
We compare our findings with previous literature and discuss the challenges and future work in personalization
for affective state recognition using wearable sensors.

5.1 Comparison of Current Findings with Existing Studies
Non-Personalized Model: The performance of our non-personalized models using the AMIGOS, ASCERTAIN,
WESAD, CASE, and K-EmoCon datasets was found to be well aligned with the performances reported in existing
studies. The AMIGOS and ASCERTAIN dataset resulted in an average AUROC of 50% and 51% in our evaluation,
which mirrors the results of [14]. Our best architecture for stress classification with the WESAD dataset yielded
an f1-score of 87% and an average accuracy of 85%. The results are slightly lower than those reported in prior
studies [14, 67], but the difference may be due to dataset protocol selection for evaluation. The CASE dataset
showed an average accuracy of 54% and an f1-score of 42%, closely aligning with the baseline performance for
arousal detection by Zhang et al. [91]. For the K-EmoCon dataset, our models achieved an average accuracy of 52%
and an f1-score of 45%. Yang et al. [84] reported higher f1-scores of 75% and 72% with BiLSTM and Transformer
models, respectively, but they used 5-fold cross-validation, contrasting with our LOPO evaluation approach.
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Fig. 11. Multi-task Learning: AUROC across Various Settings. For the vertical scale, we used a default range of 0.4 to 0.7,
except for the WESAD dataset, where we employed a range of 0.4 to 1.0.
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Table 7. AUROC Summary of Non-personalized and Personalized Models.

Dataset Architecture Personalization Techniques
Non-Personalized Fine Tuning Hybrid Cluster Specific Multi-task Learning

AMIGOS
(Arousal)

FCN 0.500 (0.100) 0.505 (0.159) 0.512 (0.122) 0.506 (0.122) 0.499 (0.038)
MLP-LSTM 0.504 (0.100) 0.538 (0.140) 0.476 (0.107) 0.514 (0.129) 0.500 (0.000)
ResNet 0.490 (0.115) 0.546 (0.147) 0.518 (0.136) 0.521 (0.078) 0.506 (0.044)

AMIGOS
(Valence)

FCN 0.518 (0.131) 0.502 (0.159) 0.494 (0.145) 0.531 (0.125) 0.499 (0.021)
MLP-LSTM 0.476 (0.109) 0.528 (0.132)† 0.511 (0.142) 0.515 (0.134) 0.500 (0.000)
ResNet 0.493 (0.106) 0.546 (0.147) 0.515 (0.112) 0.513 (0.124) 0.489 (0.058)

ASCERTAIN
(Arousal)

FCN 0.511 (0.071) 0.521 (0.078) 0.508 (0.067) 0.517 (0.071) 0.502 (0.026)
MLP-LSTM 0.498 (0.035) 0.513 (0.073) 0.491 (0.056) 0.517 (0.071)† 0.500 (0.000)
ResNet 0.506 (0.070) 0.511 (0.075) 0.505 (0.085) 0.521 (0.078) 0.505 (0.028)

ASCERTAIN
(Valence)

FCN 0.514 (0.060) 0.515(0.075) 0.505 (0.075) 0.520 (0.073) 0.501 (0.009)
MLP-LSTM 0.496 (0.047) 0.495 (0.060) 0.499 (0.035) 0.507 (0.073) 0.500 (0.000)
ResNet 0.520 (0.064) 0.512(0.079) 0.515 (0.066) 0.518(0.082) 0.502 (0.029)

WESAD
FCN 0.915 (0.203) 0.973 (0.089) 0.976 (0.074) 0.849 (0.303) 0.911 (0.199)
MLP-LSTM 0.922 (0.195) 0.983 (0.053) 0.913 (0.212) 0.874 (0.266) 0.895 (0.222)
ResNet 0.906 (0.196) 0.969 (0.076) 0.979 (0.066) 0.857 (0.308) 0.945 (0.120)

CASE
(Arousal)

FCN 0.646 (0.165) 0.709 (0.173) 0.655 (0.197) 0.613 (0.159) 0.589 (0.150)
MLP-LSTM 0.508 (0.069) 0.532 (0.105) 0.520 (0.106) 0.510 (0.100) 0.500 (0.021)
ResNet 0.648 (0.155) 0.695 (0.162) 0.646 (0.168) 0.617 (0.150) 0.574 (0.142)

CASE
(Valence)

FCN 0.651 (0.159) 0.688 (0.203) 0.655 (0.217) 0.649 (0.132) 0.591 (0.139)
MLP-LSTM 0.548 (0.134) 0.494 (0.038) 0.506 (0.089) 0.543 (0.134) 0.527 (0.094)
ResNet 0.620 (0.169) 0.676 (0.176) 0.651 (0.200) 0.633 (0.154) 0.584 (0.159)

K-EmoCon
(Arousal)

FCN 0.505 (0.176) 0.594 (0.188) 0.509 (0.358) 0.528 (0.152) 0.501 (0.146)
MLP-LSTM 0.523 (0.173) 0.672 (0.369) 0.650 (0.373) 0.522 (0.172) 0.519 (0.139)
ResNet 0.487 (0.188) 0.659 (0.215)* 0.594 (0.312) 0.501 (0.136) 0.499 (0.142)

K-EmoCon
(Valence)

FCN 0.507 (0.147) 0.546 (0.229) 0.443 (0.202) 0.519 (0.174) 0.534 (0.158)
MLP-LSTM 0.520 (0.174) 0.619 (0.232) 0.752 (0.255)* 0.526 (0.154) 0.513 (0.120)
ResNet 0.508 (0.130) 0.602 (0.295) 0.643 (0.349) 0.528 (0.119) 0.523 (0.130)

Personalized Model (Fine-Tuning and Hybrid): Overall, in various datasets, the personalization technique of
fine-tuning a one-size-fits-all model or building a hybrid model using a portion of the target individual’s data
tended to show in performance improvement. However, the optimal amount of data to use and the extent of
layers to tune for the best performance varied depending on the classification task, the datasets used, and the
model architectures involved. Our findings coincide with previous studies on personalization through fine-tuning
that also suggested its beneficial impact on model performance. For example, Kathan et al. [29] reported that
tuning the last two layers improved MAE in depression prediction by 6.78 percentage points. Hybrid model
building in which a certain fraction of target user data is used for model training improved model performance as
in prior studies [46, 76]. Our results showed that fine-tuning was comparable to or marginally better than hybrid
models. Hybrid modeling tends to use more personal data and capture overall patterns instead of individual
patterns. Prior studies [6, 62] warned that there could be considerable individual heterogeneity in user behaviors
in that individuals’ emotions depend on their contexts (e.g., places, social settings, and activities) or idiosyncratic
(individual and instance-dependent) digital fingerprints. Fine-tuning general models with an individual’s data
may better adapt to idiosyncratic digital fingerprints.
Personalized Model (Cluster-Specific): Our evaluation showed that cluster-specific personalization did not

consistently show performance improvement across different datasets. The effectiveness of clustering in previous
literature has also varied. Can et al. [9] showed that cluster-specific models improved stress detection accuracy
by 3.92 percentage points. Kathan et al. [29] reported that gender-based cluster-specific models slightly improved
MAE in depression prediction by 7.91 percentage points. Conversely, Tervonen et al. [77], using the WESAD
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dataset, found similar results to ours, where cluster-specific models showed comparable or slightly lower stress
detection performance than non-personalized models, with an average accuracy decrease of 1.25 percentage
points and an average F1-score increase of 0.25 percentage points. Overall, cluster-specific personalization, which
involves building models only using data from individuals similar to the target, does not necessarily guarantee
performance improvement. One possible explanation is that some clustering criteria (e.g., age and gender) failed
to group users with similar affective responses to stimuli, although the use of personality traits showed minor
improvements (less than 0.02); e.g., both arousal and valence in ASCERTAIN and only arousal in AMIGOS (FCN).
Previous work that observed improvement using cluster-specific models, such as Can et al.’s work [9], used
PSS scores from a pre-survey for clustering instead of demographics and personality. Further studies should be
conducted to understand what types of personal profiles are effective for clustering in the future.
Personalized Model (MTL: Multi-task Learning): In our analysis, across five datasets, MTL personalization did

not show significant performance improvement. This outcome contrasts with previous studies that documented
performance enhancement. Saeed et al. [65] developed a personalized stress detection model using physiological
data (a user-as-task MTL neural network model) and reported an average increase of 2.87 percent in AUROC
values [65]. Yu et al. [86] conducted personalized wellbeing detection using physiological, behavioral, and
contextual data along with user-as-task and cluster-as-task MTL CNN and LSTM models. They found that
user-as-task models outperformed cluster-as-task models, with an average increase of 9.83 percentage points in
f1-score values. Similarly, Taylor et al. [74], using the same data as previous studies, created various traditional
and DL models for mood-as-task and cluster-as-task. While mood-as-task was ineffective, the cluster-as-task
models showed an increase in AUROC values ranging from 11 to 21 percent. However, such improvements may
have originated from the fact that these studies used a user-dependent approach, dividing each participant’s data
(including unseen users) into train and test sets. In contrast, we used a user-independent approach where we did
not use the target participant’s data in the training set at all. Recently, Li et al.[39] conducted a user-independent
evaluation similar to ours, comparing MTL models with one-size-fits-all models. Unlike our findings, they showed
that this approach significantly reduced MAE values in a user-as-task setting. One possible explanation is that
their work used a large dataset with 239 users; clustering based on gender and personality traits could potentially
identify groups of users who share similar states of well-being, such as mood and health conditions.

Table 8. AUROC Summary of Non-personalized and Personalized Models for K-EmoPhone dataset.

Dataset Architecture Personalization Techniques
Non-Personalized Fine Tuning Hybrid Cluster-Specific Multi-task Learning

K-EmoPhone
(Stress)

FCN 0.534 (0.087) 0.508 (0.146) 0.526 (0.095) 0.531 (0.104) 0.500 (0.025)
MLP-LSTM 0.493 (0.055) 0.506 (0.154) 0.479 (0.086) 0.505 (0.077) 0.493 (0.041)
ResNet 0.515 (0.084) 0.511 (0.126) 0.525 (0.098) 0.530 (0.097) 0.499 (0.033)

5.2 Towards Personalized Affect Recognition in the Wild
Beyond the datasets collected in the lab setting, it is also important to consider how personalization works by using
datasets collected in the wild setting. To address this, we expanded our evaluation of the user-dependent model by
using the K-EmoPhone dataset [28], an in-the-wild open dataset for affect recognition. Among the few available
open datasets [44, 81], K-EmoPhone was selected because it provides a sufficient amount of emotion-label data
via ESM and comprises a substantial number of participants with wearable data (N=47) [28]. K-EmoPhone offers
a rich variety of physiological and behavioral sensor data, including ACC data at 8Hz, EDA at 8Hz, TEMP at
1Hz, and heart rate at 1Hz. We used the default configuration with a time window of 15 minutes for each label
and a 1-minute window size [89]. The mean number of labels per participant was 557.23 (SD = 129.36; range
= 360–830). We conducted exactly the same process as in lab-setting datasets, ranging from preprocessing to
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evaluation. Table 8 presents the performance metrics. (Details are provided in Appendix D, and the code is also
available in the repository.) The overall performance of non-personalized models was comparable with that in
the original paper [28]. Similar to the results of the ASCERTAIN dataset, we could not find statistically significant
performance improvements in fine-tuning or hybrid approaches in the current parameter configurations.

When compared to the datasets collected in the laboratory, there are several practical challenges in extending
the current work to the in-the-wild setting. We set a fixed time window for aggregating the physiological and
behavioral data, but the optimal setting may differ across participants in free-living conditions. Furthermore,
there could be missing or low-quality sensor data collected in the wild (e.g., PPG signals are very susceptible
to motion artifacts [49]). One critical aspect of the K-EmoPhone dataset is the reliance on the ESM for emotion
labeling. The timing of these self-reported labels relative to the physiological data is crucial, as discrepancies
could influence model accuracy. The challenges of capturing real-time affective states accurately in naturalistic
settings must be considered, especially since self-reported emotions might not always align with physiological
signals. This misalignment could hinder the model’s ability to learn and predict affective states effectively.
This kind of user-specific variability could further stem from individual differences in baseline physiological
responses, behavioral patterns, or even subjective interpretations of emotional states, thereby influencing optimal
parameter setting and data quality issues. Therefore, there should be follow-up studies on optimizing models
using in-the-wild datasets (e.g., varying time window sizes and missing data handling strategies) and analyzing
the impact of behavior differences (e.g., context variations) on personalized affect recognition. Furthermore,
exploring additional contextual information (e.g., location, time of day, user activity) or user interaction data (e.g.,
app usage) might improve the accuracy of personalized affect recognition in the wild [26, 37, 51].

5.3 Advancing User-dependent Personalization for Affect Recognition
The need for models capable of performing well on unseen participants is becoming increasingly evident [74, 83].
Using multiple datasets, we evaluated whether well-known personalization techniques can effectively recognize
the affect of participants with a limited amount of labeled data. We found that, except for fine-tuning, the other
personalization techniques did not always improve performance. Fine-tuning as a user-dependent model involves
using data from the target participant. However, the techniques that do not use the target’s data in the model
training process (i.e., creating user-independent personalized models), such as cluster-specific and multi-task
learning, were not successful across multiple datasets. As illustrated earlier, this may be because the profile
survey information provided by the open datasets we used was insufficient for identifying similar participants
for cluster-specific and multi-task learning. Nonetheless, many prior studies observed improvements through
personalization in a user-dependent approach, even in multitask learning [65, 74, 86]. Our findings suggest that a
certain amount of target data is necessary for effective personalization, although increasing the data size may not
always lead to performance improvement. In our study, fine-tuning required a substantial portion of the target
participant’s data (20–50%), which could place a heavy labeling burden on users [78]. Future research should
explore ways to alleviate this burden by balancing model accuracy with the amount of user feedback needed [75].

5.4 Limitations and Future Work
Our work has several limitations and requires further research. One limitation relates to hyperparameter op-
timization because we used the settings reported in the existing literature. In this study, we did not explore
optimal settings for parameters such as sliding window size and machine learning algorithm hyperparameters to
avoid introducing confounding effects. This omission could impact model performance and personalization, as
different parameter settings may interact in complex ways that influence the effectiveness of the model. Given
this limitation, potential users of our methods are encouraged to experiment with various parameter settings
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to find the optimal configuration for their specific applications. Individual users may enhance personalization
performance by tailoring the model to meet their needs better.
Expanding the range of affective states and their classes could be beneficial. While our evaluation focused

on binary classifications of arousal, valence, and stress, future work should include a broader range of affect
labels, such as basic emotions (e.g., anger and sadness) or mental health (e.g., depressive moods), to provide a
more comprehensive understanding of personalization. Beyond simple binary classifications, future research
could explore multi-dimensional labeling (i.e., considering both arousal and valence simultaneously) [14, 93].
Additionally, incorporating more datasets from free-living conditions with contextual information from mobile
and wearable devices could enhance insights into affective states in real-world scenarios. Lastly, exploring
alternative clustering methods might offer valuable insights. Examining approaches beyond the trait-based
methods used in our study, such as sensor data-driven clustering [2], could improve the performance and validity
of cluster-specific and multi-task learning models.
Our systematic evaluation of human data using leave-one-participant-out cross-validation yielded limited

statistical significance, and thus, the robustness of our findings is constrained. This is largely because the sample
size of existing open datasets is small, and there are considerable individual differences. It is important to note
that prior studies using open datasets also faced similar challenges of interpersonal variation [92, 93]. To address
these limitations, future research should focus on collecting and analyzing larger and more diverse datasets to
improve the generalizability and statistical power of the findings. Moreover, systematically evaluating recent
techniques such as meta-learning, domain adaptation, and domain generalization could help improve the model’s
ability to generalize across different populations and conditions. Exploring these approaches and integrating
multi-modal data sources, such as physiological signals and contextual information, will be critical in refining
the models and understanding their practical implications in real-world applications.
Realizing user-dependent personalization also requires user interface and feedback mechanisms. Further

research is needed to explore how affect recognition systems can collect meaningful feedback from users and
how users can interact with these systems to correct or adjust their self-reported affective states. This might
involve developing user interfaces that are intuitive and responsive to user inputs regarding their emotional
states or adaptive to a user’s changing contexts [4, 57].

6 Conclusion
This work takes a step towards systematically evaluating well-known personalization techniques (fine-tuning,
hybrid, cluster-specific, and multi-task learning) for affect recognition modeling. We utilized five open datasets
with physiological and behavioral signals collected in controlled environments. We then built non-personalized
and personalized models through end-to-end deep learning, comparing their performances. Our focus was on
testing models on new users with limited data, considering both user-dependent and independent settings.
Our evaluation revealed that, except for the fine-tuning, other personalization techniques did not consistently
enhance performance. This shows the essential need for a certain amount of an unseen user’s data to successfully
personalize models, highlighting the potential of user-in-the-loop approaches for model personalization. This
sets a vital foundation for more detailed research on this finding, which might potentially act as a stepping stone
in assessing the effectiveness of personalization in real-world settings specifically for new users with limited data
available for model training. Moreover, to ensure reproducibility, we integrated all methods and open-sourced
the implementations, enabling researchers systematically evaluate personalization algorithms.
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A Appendix: Detailed Explanations for Each Dataset
The protocols for four datasets are depicted in Figure 12. In the following, we provide an overview of each dataset.

(a) AMIGOS & ASCERTAIN (b) WESAD

(c) CASE (d) K-EmoCon

Fig. 12. Timeline of the Lab Protocol for Each Dataset.

The AMIGOS and ASCERTAIN datasets are multimodal datasets collected while participants watched
affective movie clips. In the AMIGOS dataset, participants engaged with 16 videos, while in the ASCERTAIN
dataset, participants engaged with 36 videos. Both datasets include EEG, EDA, ECG, and ACC signal data. In
AMIGOS, affective annotations were done for each video using a 9-point Likert scale, measuring arousal, valence,
dominance, liking, and familiarity. Similarly, in ASCERTAIN, a 7-point Likert scale was used to measure arousal,
valence, engagement, liking, and familiarity for each video. Additionally, both datasets include personality scores
obtained through the Big Five personality test. The AMIGOS dataset also includes demographic information
such as gender and age. But, we focused solely on the personality scores for clustering, in order to facilitate a
comparison with the ASCERTAIN dataset.
The WESAD dataset is also a multimodal dataset designed to explore affect responses under controlled

conditions with a specific study protocol. Participants engage in a series of activities, starting with a baseline
phase (20 minutes; reading neutral material), followed by amusement (6.5 minutes; watching funny video clips),
and stress (10 minutes; TSST public speaking and mental arithmetic task). Here, we only included the amusement
and stress phases. Throughout all the activities, sensor data is collected from RespiBAN (ACC, RESP, ECG, EDA,
EMG, TEMP) and E4 (BVP, EDA, TEMP, ACC). Self-report data was collected only after each condition using a
modified Positive and Negative Affect Schedule (PANAS), State-Trait Anxiety Inventory (STAI), Self-Assessment
Manikins (SAM), and Short Stress State Questionnaire (SSSQ) measures. Additionally, profile survey data includes
demographic factors such as age and gender.
The CASE dataset is a multimodal dataset to explore real-time affect responses experienced during the

viewing of diverse video content. Participants engaged with a total of 8 videos, each designed to evoke specific
emotional states, with the entire session lasting approximately 21 minutes. Continuous affect annotation occurred
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concurrently with video-watching, facilitated by a joystick-based interface that allowed participants to report
valence and arousal simultaneously on the X and Y axes, measured within the integer interval [-26225, 26225].
The dataset includes physiological recordings from ECG, BVP, EMG, EDA, RESP, and TEMP sensors. Furthermore,
profile survey data captures demographic factors such as gender and age group, enhancing the dataset’s contextual
richness.
The K-EmoCon dataset is also a multimodal dataset to explore continuous affect responses experienced

during naturalistic conversations. Participants conducted debates in pairs on a social issue, with the entire session
lasting approximately 10 minutes. After the debate session, participants retrospectively annotated their affects at
5-second intervals while viewing the footage featuring themselves and their partners. The annotation involves a
5-point Likert scale for arousal and valence, a 4-point Likert scale for five different emotions indicative of stress
state, and a choice among commonly used affective categories. Data from sensors, including NeuroSky MindWave
Headset (EEG) and Empatica E4 (EDA, ACC, TEMP, BVP), were collected during the debate. Additionally, profile
survey data includes demographics such as age and gender.

B Appendix: Details of Sampling Rates Before and After Downsampling
The initial sampling rate and the rate after downsampling for each dataset are detailed in Table 9.

Table 9. Sampling frequencies for each signal before (original sampling) and after downsampling

Dataset Type of Signal Original
Sampling Rate

Processed
Sampling Rate

AMIGOS EEG
EDA
ACC
ECG

128Hz
128Hz
128Hz
256Hz

8Hz
8Hz
8Hz
8Hz

ASCERTAIN ECG
EDA
ACC

128Hz
128Hz
128Hz

64Hz
8Hz
8Hz

WESAD Chest ECG
Chest ACC
Chest EMG
Chest EDA
Chest TEMP
Chest Resp
Wrist BVP
Wrist ACC
Wrist EDA
Wrist TEMP

700Hz
700Hz
700Hz
700Hz
700Hz
700Hz
64Hz
32Hz
4Hz
4Hz

70Hz
10Hz
10Hz
7Hz
7Hz
7Hz
64Hz
8Hz
4Hz
4Hz

CASE ECG
BVP
EDA
RESP
TEMP
EMG

1000Hz
1000Hz
1000Hz
1000Hz
1000Hz
1000Hz

50Hz
50Hz
50Hz
50Hz
50Hz
50Hz

K-EmoCon EDA
ACC
TEMP
BVP

4Hz
32Hz
4Hz
64Hz

4Hz
8Hz
4Hz
64Hz

C Appendix: Detailed Performance Metrics of Personalized Models
Table 10, Table 11 and Table 12 present the performance outcomes of fine-tuned models across each dataset,
considering variations in the number of layers tuned and the amount of data used for tuning.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 206. Publication date: December 2024.

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by K
A

IST
 on A

pril 9, 2025.



Systematic Evaluation of Personalized Deep Learning Models for Affect Recognition • 206:31

Table 13 illustrates the performance results of cluster-specific models on each dataset, varying the number of
clusters (K).
Table 14 outlines the comparative performance of multi-task learned models on various datasets, taking into

account two distinct task definitions: user-as-task and cluster-as-task.

Table 10. Result of Analysis on Fine-Tuning Models (AMIGOS and ASCERTAIN (Arousal)). The abbreviations used are FC
for FCN, ML MLP-LSTM, and Re for ResNet. For each dataset and model architecture pair, the highest AUROC value is
highlighted.

Layers Data AMIGOS (Arousal) AMIGOS (Valence) ASCERTAIN (Arousal)
Tuned Used Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC

All

20% 0.477 (0.127) 0.428 (0.115) 0.486 (0.132) 0.498 (0.144) 0.349 (0.085) 0.500 (0.146) 0.516 (0.075) 0.392 (0.091) 0.508 (0.088)
30% 0.473 (0.128) 0.428 (0.114) 0.489 (0.137) 0.496 (0.157) 0.346 (0.088) 0.492 (0.144) 0.517 (0.080) 0.392 (0.092) 0.507 (0.085)
40% 0.497 (0.172) 0.345 (0.096) 0.490 (0.144) 0.497 (0.172) 0.345 (0.096) 0.490 (0.144) 0.515 (0.088) 0.389 (0.091) 0.509 (0.086)
50% 0.499 (0.188) 0.342 (0.101) 0.502 (0.159) 0.499 (0.188) 0.342 (0.101) 0.502 (0.159) 0.518 (0.100) 0.389 (0.095) 0.508 (0.095)

Last

20% 0.508 (0.131) 0.395 (0.103) 0.505 (0.122) 0.508 (0.118) 0.413 (0.100) 0.491 (0.134) 0.506 (0.072) 0.390 (0.085) 0.516 (0.085)
30% 0.505 (0.139) 0.391 (0.102) 0.495 (0.123) 0.506 (0.122) 0.407 (0.097) 0.493 (0.133) 0.505 (0.077) 0.388 (0.084) 0.510 (0.085)
40% 0.505 (0.150) 0.388 (0.105) 0.498 (0.126) 0.505 (0.132) 0.403 (0.099) 0.497 (0.133) 0.507 (0.083) 0.389 (0.087) 0.510 (0.086)
50% 0.506 (0.163) 0.388 (0.108) 0.500 (0.133) 0.507 (0.147) 0.401 (0.107) 0.491 (0.151) 0.507 (0.092) 0.387 (0.089) 0.508 (0.098)

ML

All

20% 0.514 (0.131) 0.353 (0.076) 0.513 (0.067) 0.498 (0.146) 0.347 (0.099) 0.526 (0.135) 0.497 (0.075) 0.330 (0.034) 0.495 (0.052)
30% 0.475 (0.098) 0.432 (0.083) 0.497 (0.104) 0.496 (0.157) 0.345 (0.100) 0.521 (0.135) 0.496 (0.082) 0.330 (0.037) 0.494 (0.054)
40% 0.496 (0.172) 0.342 (0.105) 0.521 (0.137) 0.496 (0.172) 0.342 (0.105) 0.521 (0.137) 0.496 (0.092) 0.329 (0.041) 0.500 (0.056)
50% 0.497 (0.190) 0.339 (0.114) 0.525 (0.161) 0.497 (0.190) 0.339 (0.114) 0.525 (0.161) 0.495 (0.013) 0.328 (0.047) 0.495 (0.061)

Last

20% 0.469 (0.142) 0.328 (0.075) 0.520 (0.110) 0.503 (0.136) 0.357 (0.092) 0.514 (0.114) 0.504 (0.074) 0.334 (0.033) 0.511 (0.059)
30% 0.462 (0.154) 0.320 (0.077) 0.518 (0.115) 0.502 (0.147) 0.355 (0.095) 0.522 (0.113) 0.504 (0.082) 0.334 (0.037) 0.506 (0.055)
40% 0.459 (0.168) 0.316 (0.083) 0.526 (0.120) 0.503 (0.160) 0.354 (0.104) 0.525 (0.110) 0.504 (0.091) 0.334 (0.041) 0.506 (0.061)
50% 0.456 (0.184) 0.313 (0.090) 0.538 (0.140) 0.502 (0.178) 0.353 (0.115) 0.528 (0.132) 0.505 (0.103) 0.334 (0.046) 0.513 (0.073)

Re

All

20% 0.476 (0.098) 0.436 (0.084) 0.494 (0.104) 0.451 (0.116) 0.359 (0.110) 0.534 (0.114) 0.508 (0.076) 0.397 (0.087) 0.506 (0.073)
30% 0.514 (0.140) 0.352 (0.079) 0.514 (0.067) 0.445 (0.123) 0.353 (0.110) 0.538 (0.121) 0.508 (0.081) 0.396 (0.088) 0.506 (0.072)
40% 0.439 (0.130) 0.345 (0.108) 0.537 (0.134) 0.439 (0.130) 0.345 (0.108) 0.537 (0.134) 0.508 (0.089) 0.394 (0.091) 0.511 (0.075)
50% 0.434 (0.146) 0.341 (0.118) 0.546 (0.147) 0.434 (0.146) 0.341 (0.118) 0.546 (0.147) 0.506 (0.098) 0.390 (0.093) 0.508 (0.081)

Last

20% 0.521 (0.125) 0.405 (0.101) 0.480 (0.121) 0.464 (0.137) 0.389 (0.134) 0.488 (0.136) 0.507 (0.076) 0.403 (0.092) 0.504 (0.096)
30% 0.522 (0.138) 0.404 (0.105) 0.481 (0.132) 0.458 (0.144) 0.384 (0.135) 0.481 (0.140) 0.505 (0.082) 0.400 (0.093) 0.497 (0.091)
40% 0.524 (0.150) 0.404 (0.111) 0.479 (0.142) 0.455 (0.154) 0.381 (0.139) 0.481 (0.149) 0.505 (0.089) 0.398 (0.094) 0.493 (0.091)
50% 0.529 (0.163) 0.408 (0.117) 0.487 (0.148) 0.449 (0.170) 0.376 (0.150) 0.482 (0.164) 0.500 (0.101) 0.391 (0.095) 0.488 (0.105)

D Appendix: Detailed Performance Metrics of Models for K-EmoPhone dataset
Table 15 presents the detailed performance outcomes of non-personalized and hybrid models for K-EmoPhone.
Also, it shows fine-tuned models, considering variations in the number of layers tuned and the amount of data
used for tuning.
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Table 11. Result of Analysis on Fine-Tuning Models (ASCERTAIN (Valence), WESAD and CASE (Arousal)). The abbreviations
used are FC for FCN, ML MLP-LSTM, and Re for ResNet. For each dataset and model architecture pair, the highest AUROC
value is highlighted.

Layers Data AMIGOS (Arousal) AMIGOS (Valence) ASCERTAIN (Arousal)
Tuned Used Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC

All

20% 0.540 (0.073) 0.420 (0.082) 0.511 (0.071) 0.919 (0.119) 0.873 (0.202) 0.973 (0.089) 0.574 (0.130) 0.484 (0.148) 0.664 (0.182)
30% 0.540 (0.075) 0.418 (0.084) 0.515 (0.075) 0.928 (0.110) 0.879 (0.196) 0.971 (0.098) 0.574 (0.136) 0.485 (0.147) 0.666 (0.190)
40% 0.539 (0.080) 0.412 (0.081) 0.513 (0.077) 0.877 (0.104) 0.834 (0.209) 0.922 (0.113) 0.574 (0.148) 0.482 (0.150) 0.656 (0.197)
50% 0.542 (0.083) 0.413 (0.082) 0.510 (0.080) 0.948 (0.084) 0.890 (0.187) 0.965 (0.121) 0.578 (0.161) 0.478 (0.149) 0.659 (0.202)

Last

20% 0.541 (0.073) 0.374 (0.064) 0.508 (0.054) 0.800 (0.214) 0.759 (0.261) 0.899 (0.237) 0.588 (0.121) 0.561 (0.130) 0.700 (0.174)
30% 0.542 (0.075) 0.374 (0.065) 0.507 (0.058) 0.804 (0.217) 0.765 (0.262) 0.896 (0.252) 0.589 (0.133) 0.563 (0.141) 0.707 (0.171)
40% 0.544 (0.078) 0.375 (0.065) 0.506 (0.061) 0.806 (0.272) 0.766 (0.306) 0.892 (0.265) 0.578 (0.143) 0.549 (0.151) 0.703 (0.172)
50% 0.545 (0.081) 0.375 (0.065) 0.506 (0.061) 0.807 (0.231) 0.767 (0.272) 0.890 (0.273) 0.574 (0.148) 0.537 (0.151) 0.709 (0.173)

ML

All

20% 0.536 (0.079) 0.347 (0.034) 0.491 (0.064) 0.890 (0.203) 0.863 (0.248) 0.907 (0.210) 0.535 (0.106) 0.345 (0.045) 0.519 (0.081)
30% 0.537 (0.082) 0.348 (0.035) 0.491 (0.067) 0.894 (0.207) 0.868 (0.249) 0.913 (0.202) 0.538 (0.118) 0.346 (0.050) 0.522 (0.103)
40% 0.539 (0.085) 0.348 (0.036) 0.492 (0.072) 0.934 (0.215) 0.873 (0.253) 0.967 (0.196) 0.542 (0.132) 0.347 (0.056) 0.532 (0.105)
50% 0.540 (0.088) 0.349 (0.037) 0.494 (0.074) 0.893 (0.229) 0.867 (0.262) 0.927 (0.188) 0.548 (0.150) 0.348 (0.063) 0.521 (0.097)

Last

20% 0.538 (0.076) 0.352 (0.034) 0.495 (0.060) 0.902 (0.194) 0.874 (0.242) 0.974 (0.056) 0.547 (0.102) 0.351 (0.042) 0.521 (0.006)
30% 0.537 (0.082) 0.348 (0.035) 0.491 (0.067) 0.903 (0.198) 0.875 (0.242) 0.977 (0.050) 0.551 (0.112) 0.352 (0.047) 0.520 (0.142)
40% 0.539 (0.085) 0.348 (0.036) 0.492 (0.072) 0.904 (0.204) 0.876 (0.245) 0.979 (0.051) 0.557 (0.126) 0.354 (0.052) 0.516 (0.158)
50% 0.540 (0.088) 0.349 (0.037) 0.494 (0.074) 0.904 (0.216) 0.877 (0.252) 0.983 (0.053) 0.565 (0.143) 0.356 (0.059) 0.526 (0.169)

Re

All

20% 0.532 (0.061) 0.437 (0.078) 0.508 (0.077) 0.827 (0.180) 0.756 (0.252) 0.924 (0.207) 0.547 (0.123) 0.477 (0.148) 0.668 (0.147)
30% 0.533 (0.068) 0.431 (0.074) 0.501 (0.081) 0.900 (0.106) 0.844 (0.199) 0.969 (0.076) 0.549 (0.133) 0.477 (0.156) 0.679 (0.148)
40% 0.537 (0.067) 0.438 (0.075) 0.512 (0.079) 0.894 (0.107) 0.867 (0.193) 0.917 (0.111) 0.541 (0.142) 0.467 (0.157) 0.670 (0.154)
50% 0.540 (0.072) 0.444 (0.080) 0.510 (0.080) 0.909 (0.107) 0.856 (0.196) 0.957 (0.140) 0.534 (0.163) 0.460 (0.169) 0.663 (0.169)

Last

20% 0.535 (0.065) 0.439 (0.079) 0.511 (0.071) 0.799 (0.257) 0.751 (0.298) 0.906 (0.267) 0.609 (0.131) 0.570 (0.140) 0.691 (0.168)
30% 0.533 (0.068) 0.431 (0.074) 0.501 (0.081) 0.801 (0.264) 0.751 (0.302) 0.906 (0.266) 0.610 (0.127) 0.566 (0.134) 0.694 (0.163)
40% 0.537 (0.067) 0.438 (0.075) 0.512 (0.079) 0.801 (0.272) 0.750 (0.306) 0.907 (0.265) 0.597 (0.138) 0.555 (0.140) 0.692 (0.162)
50% 0.540 (0.072) 0.444 (0.080) 0.510 (0.080) 0.802 (0.278) 0.745 (0.308) 0.906 (0.263) 0.593 (0.143) 0.544 (0.134) 0.695 (0.162)

Table 12. Result of Analysis on Fine-Tuning Models (CASE (Arousal) and K-EmoCon).

Layers Data AMIGOS (Arousal) AMIGOS (Valence) ASCERTAIN (Arousal)
Tuned Used Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC

All

20% 0.623 (0.156) 0.562 (0.159) 0.665 (0.196) 0.486 (0.180) 0.400 (0.162) 0.498 (0.230) 0.466 (0.250) 0.339 (0.155) 0.468 (0.210)
30% 0.612 (0.151) 0.544 (0.155) 0.675 (0.182) 0.493 (0.219) 0.388 (0.185) 0.490 (0.250) 0.453 (0.299) 0.295 (0.152) 0.449 (0.292)
40% 0.621 (0.167) 0.545 (0.168) 0.684 (0.178) 0.519 (0.331) 0.397 (0.271) 0.568 (0.352) 0.466 (0.343) 0.308 (0.229) 0.426 (0.516)
50% 0.629 (0.183) 0.539 (0.180) 0.688 (0.203) 0.461 (0.392) 0.351 (0.325) 0.518 (0.381) 0.475 (0.210) 0.374 (0.147) 0.482 (0.194)

Last

20% 0.563 (0.144) 0.445 (0.148) 0.652 (0.193) 0.564 (0.170) 0.470 (0.151) 0.558 (0.191) 0.526 (0.224) 0.388 (0.124) 0.480 (0.214)
30% 0.560 (0.154) 0.439 (0.149) 0.656 (0.197) 0.560 (0.193) 0.439 (0.156) 0.594 (0.188) 0.521 (0.258) 0.388 (0.197) 0.424 (0.219)
40% 0.563 (0.144) 0.445 (0.148) 0.652 (0.193) 0.581 (0.258) 0.436 (0.207) 0.552 (0.240) 0.509 (0.281) 0.366 (0.218) 0.463 (0.242)
50% 0.554 (0.188) 0.422 (0.154) 0.640 (0.218) 0.574 (0.315) 0.448 (0.300) 0.453 (0.372) 0.492 (0.307) 0.329 (0.219) 0.546 (0.229)

ML

All

20% 0.546 (0.138) 0.348 (0.062) 0.481 (0.048) 0.478 (0.234) 0.372 (0.194) 0.600 (0.223) 0.431 (0.347) 0.324 (0.288) 0.619 (0.232)
30% 0.550 (0.152) 0.349 (0.069) 0.494 (0.038) 0.467 (0.270) 0.377 (0.251) 0.643 (0.249) 0.438 (0.399) 0.332 (0.336) 0.524 (0.345)
40% 0.556 (0.170) 0.349 (0.077) 0.490 (0.040) 0.448 (0.314) 0.345 (0.265) 0.651 (0.268) 0.436 (0.446) 0.381 (0.428) 0.428 (0.496)
50% 0.563 (0.194) 0.350 (0.089) 0.492 (0.036) 0.422 (0.354) 0.344 (0.334) 0.672 (0.369) 0.437 (0.295) 0.292 (0.161) 0.589 (0.229)

Last

20% 0.516 (0.140) 0.330 (0.060) 0.471 (0.042) 0.591 (0.191) 0.419 (0.119) 0.575 (0.227) 0.446 (0.317) 0.320 (0.230) 0.592 (0.175)
30% 0.520 (0.145) 0.320 (0.059) 0.461 (0.040) 0.611 (0.226) 0.463 (0.218) 0.593 (0.290) 0.445 (0.347) 0.333 (0.283) 0.582 (0.174)
40% 0.513 (0.140) 0.311 (0.055) 0.451 (0.046) 0.643 (0.270) 0.452 (0.233) 0.617 (0.305) 0.442 (0.385) 0.317 (0.296) 0.603 (0.268)
50% 0.510 (0.190) 0.320 (0.080) 0.470 (0.034) 0.663 (0.345) 0.522 (0.340) 0.400 (0.380) 0.450 (0.419) 0.374 (0.393) 0.487 (0.142)

Re

All

20% 0.564 (0.151) 0.501 (0.174) 0.661 (0.172) 0.478 (0.227) 0.371 (0.144) 0.556 (0.231) 0.419 (0.245) 0.311 (0.141) 0.455 (0.197)
30% 0.564 (0.175) 0.505 (0.188) 0.672 (0.167) 0.480 (0.228) 0.355 (0.136) 0.570 (0.266) 0.355 (0.300) 0.240 (0.153) 0.338 (0.223)
40% 0.588 (0.189) 0.528 (0.191) 0.676 (0.176) 0.471 (0.249) 0.378 (0.240) 0.521 (0.252) 0.336 (0.313) 0.219 (0.166) 0.601 (0.435)
50% 0.597 (0.212) 0.542 (0.212) 0.672 (0.201) 0.447 (0.316) 0.337 (0.262) 0.604 (0.193) 0.448 (0.210) 0.345 (0.116) 0.467 (0.212)

Last

20% 0.531 (0.159) 0.480 (0.171) 0.650 (0.170) 0.565 (0.157) 0.455 (0.142) 0.508 (0.198) 0.445 (0.177) 0.365 (0.134) 0.579 (0.231)
30% 0.541 (0.161) 0.495 (0.178) 0.640 (0.170) 0.580 (0.169) 0.458 (0.156) 0.531 (0.204) 0.426 (0.196) 0.331 (0.133) 0.478 (0.202)
40% 0.540 (0.146) 0.480 (0.160) 0.620 (0.166) 0.598 (0.201) 0.449 (0.161) 0.659 (0.215) 0.435 (0.221) 0.320 (0.138) 0.602 (0.295)
50% 0.570 (0.210) 0.501 (0.201) 0.631 (0.190) 0.567 (0.243) 0.383 (0.153) 0.628 (0.193) 0.448 (0.282) 0.303 (0.162) 0.569 (0.329)
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Table 13. Result of Analysis on Cluster Specific Models.

Value of K AMIGOS (Arousal) AMIGOS (Valence) ASCERTAIN (Arousal)
Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC

Silhouette score 0.504 (0.134) 0.391 (0.113) 0.505 (0.130) 0.514 (0.104) 0.415 (0.099) 0.531 (0.125) 0.518 (0.064) 0.403 (0.087) 0.517 (0.071)
Fixed (K=2) 0.503 (0.115) 0.372 0.087) 0.481 (0.124) 0.481 (0.122) 0.383 (0.106) 0.484 (0.133) 0.503 (0.062) 0.388 (0.084) 0.508 (0.071)
Fixed (K=3) 0.503 (0.115) 0.372 (0.087) 0.481 (0.124) 0.521 (0.124) 0.386 (0.094) 0.511 (0.123) 0.487 (0.058) 0.363 (0.061) 0.506 (0.069)
Fixed (K=4) 0.502 (0.111) 0.379 (0.094) 0.506 (0.122) 0.492 (0.116) 0.355 (0.078) 0.510 (0.112) 0.503 (0.064) 0.392 (0.081) 0.503 (0.072)
Fixed (K=5) 0.491 (0.118) 0.381 (0.098) 0.504 (0.132) 0.480 (0.122) 0.365 (0.094) 0.484 (0.141) 0.518 (0.056) 0.401 (0.075) 0.509 (0.070)

ML

Silhouette score 0.505 (0.119) 0.36 2(0.079) 0.495 (0.130) 0.514 (0.123) 0.384 (0.109) 0.508 (0.119) 0.520 (0.063) 0.360 (0.064) 0.517 (0.071)
Fixed (K=2) 0.493 (0.114) 0.359 (0.089) 0.483 (0.113) 0.500 (0.138) 0.364 (0.100) 0.515 (0.134) 0.500 (0.059) 0.348 (0.045) 0.502 (0.065)
Fixed (K=3) 0.493 (0.114) 0.359 (0.089) 0.483 (0.113) 0.523 (0.109) 0.384 (0.093) 0.485 (0.108) 0.501 (0.064) 0.341 (0.041) 0.504 (0.073)
Fixed (K=4) 0.507 (0.124) 0.375 (0.101) 0.461 (0.107) 0.505 (0.127) 0.360 (0.090) 0.493 (0.106) 0.504 (0.065) 0.347 (0.050) 0.504 (0.075)
Fixed (K=5) 0.471 (0.142) 0.349 (0.111) 0.514 (0.129) 0.498 (0.133) 0.357 (0.095) 0.508 (0.136) 0.500 (0.068) 0.359 (0.072) 0.500 (0.067)

Re

Silhouette score 0.506 (0.126) 0.392 (0.106) 0.491 (0.111) 0.518 (0.124) 0.406 (0.095) 0.504 (0.130) 0.510 (0.062) 0.411 (0.088) 0.519 (0.086)
Fixed (K=2) 0.512 (0.108) 0.382 (0.103) 0.464 (0.125) 0.494 (0.114) 0.398 (0.101) 0.502 (0.122) 0.512 (0.064) 0.404 (0.082) 0.499 (0.079)
Fixed (K=3) 0.512 (0.108) 0.382 (0.103) 0.464 (0.125) 0.512 (0.114) 0.401 (0.104) 0.513 (0.124) 0.506 (0.064) 0.408 (0.083) 0.510 (0.072)
Fixed (K=4) 0.488 (0.118) 0.389 (0.113) 0.482 (0.113) 0.491 (0.110) 0.384 (0.098) 0.497 (0.119) 0.511 (0.066) 0.409 (0.090) 0.491 (0.069)
Fixed (K=5) 0.526 (0.111) 0.406 (0.087) 0.475 (0.122) 0.523 (0.104) 0.391 (0.072) 0.481 (0.103) 0.500 (0.058) 0.395 (0.085) 0.521 (0.078)

Value of K ASCERTAIN (Valence) WESAD CASE (Arousal)
Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC

Silhouette score 0.525 (0.072) 0.390 (0.076) 0.512 (0.081) 0.767 (0.221) 0.676 (0.299) 0.801 (0.348) 0.522 (0.115) 0.430 (0.133) 0.606 (0.172)
Fixed (K=2) 0.535 (0.070) 0.387 (0.068) 0.520 (0.073) 0.796 (0.254) 0.760 (0.289) 0.849 (0.303) 0.527 (0.114) 0.452 (0.141) 0.607 (0.166)
Fixed (K=3) 0.531 (0.075) 0.392 (0.082) 0.519 (0.069) 0.711 (0.242) 0.626 (0.303) 0.772 (0.347) 0.531 (0.103) 0.442 (0.120) 0.613 (0.159)
Fixed (K=4) 0.529 (0.076) 0.391 (0.075) 0.502 (0.061) 0.795 (0.213) 0.718 (0.292) 0.805 (0.319) 0.530 (0.110) 0.425 (0.127) 0.609 (0.149)
Fixed (K=5) 0.537 (0.068) 0.401 (0.079) 0.517 (0.068) 0.740 (0.258) 0.654 (0.313) 0.766 (0.376) 0.531 (0.109) 0.413 (0.120) 0.604 (0.161)

ML

Silhouette score 0.533 (0.074) 0.349 (0.031) 0.496 (0.057) 0.712 (0.260) 0.630 (0.313) 0.792 (0.341) 0.506 (0.094) 0.333 (0.043) 0.510 (0.100)
Fixed (K=2) 0.539 (0.068) 0.357 (0.037) 0.498 (0.057) 0.781 (0.263) 0.744 (0.298) 0.874 (0.266) 0.514 (0.093) 0.337 (0.042) 0.504 (0.113)
Fixed (K=3) 0.541 (0.068) 0.355 (0.041) 0.491 (0.067) 0.777 (0.221) 0.713 (0.286) 0.801 (0.312) 0.509 (0.094) 0.335 (0.043) 0.502 (0.092)
Fixed (K=4) 0.535 (0.070) 0.357 (0.050) 0.498 (0.065) 0.717 (0.196) 0.609 (0.266) 0.835 (0.288) 0.518 (0.091) 0.339 (0.041) 0.510 (0.124)
Fixed (K=5) 0.533 (0.074) 0.360 (0.056) 0.507 (0.073) 0.770 (0.268) 0.710 (0.320) 0.780 (0.375) 0.529 (0.089) 0.344 (0.039) 0.510 (0.138)

Re

Silhouette score 0.516 (0.070) 0.411 (0.088) 0.517 (0.065) 0.710 (0.270) 0.637 (0.314) 0.804 (0.345) 0.516 (0.110) 0.424 (0.127) 0.587 (0.167)
Fixed (K=2) 0.529 (0.073) 0.415 (0.083) 0.518 (0.082) 0.805 (0.227) 0.761 (0.270) 0.857 (0.308) 0.525 (0.106) 0.444 (0.125) 0.611 (0.162)
Fixed (K=3) 0.522 (0.075) 0.408 (0.081) 0.509 (0.062) 0.723 (0.229) 0.660 (0.277) 0.809 (0.295) 0.519 (0.105) 0.425 (0.124) 0.615 (0.143)
Fixed (K=4) 0.530 (0.070) 0.407 (0.080) 0.517 (0.074) 0.708 (0.231) 0.614 (0.290) 0.725 (0.356) 0.536 (0.118) 0.440 (0.138) 0.608 (0.155)
Fixed (K=5) 0.505 (0.074) 0.393 (0.074) 0.501 (0.076) 0.681 (0.258) 0.587 (0.305) 0.708 (0.365) 0.549 (0.120) 0.445 (0.144) 0.617 (0.150)

Value of K CASE (Valence) K-EmoCon (Arousal) K-EmoCon (Valence)
Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC

Silhouette score 0.525(0.125) 0.442(0.142) 0.616(0.155) 0.480 (0.121) 0.413 (0.111) 0.494 (0.149) 0.454 (0.183) 0.350 (0.117) 0.432 (0.139)
Fixed (K=2) 0.576(0.113) 0.464(0.129) 0.631(0.155) 0.486 (0.127) 0.424 (0.120) 0.511 (0.143) 0.491 (0.191) 0.416 (0.176) 0.482 (0.111)
Fixed (K=3) 0.564(0.118) 0.465(0.128) 0.649(0.132) 0.474 (0.117) 0.408 (0.115) 0.528 (0.152) 0.482 (0.144) 0.411 (0.125) 0.507 (0.147)
Fixed (K=4) 0.532(0.132) 0.404(0.125) 0.613(0.145) 0.462 (0.144) 0.376 (0.124) 0.489 (0.159) 0.448 (0.201) 0.349 (0.135) 0.501 (0.130)
Fixed (K=5) 0.542(0.120) 0.429(0.131) 0.616(0.152) 0.476 (0.142) 0.392 (0.115) 0.517 (0.143) 0.489 (0.153) 0.383 (0.097) 0.519 (0.174)

ML

Silhouette score 0.540 (0.116) 0.354 (0.071) 0.524 (0.147) 0.480 (0.153) 0.389 (0.118) 0.495 (0.167) 0.505 (0.223) 0.370 (0.103) 0.426 (0.143)
Fixed (K=2) 0.528 (0.119) 0.342 (0.053) 0.511 (0.092) 0.467 (0.149) 0.392 (0.126) 0.513 (0.173) 0.479 (0.208) 0.360 (0.130) 0.462 (0.153)
Fixed (K=3) 0.531 (0.119) 0.343 (0.053) 0.543 (0.134) 0.475 (0.149) 0.391 (0.119) 0.522 (0.172) 0.466 (0.144) 0.387 (0.120) 0.526 (0.154)
Fixed (K=4) 0.540 (0.116) 0.347 (0.051) 0.463 (0.137) 0.452 (0.140) 0.365 (0.109) 0.498 (0.151) 0.545 (0.234) 0.386 (0.133) 0.463 (0.172)
Fixed (K=5) 0.520 (0.121) 0.338 (0.053) 0.540 (0.135) 0.468 (0.156) 0.363 (0.113) 0.496 (0.140) 0.462 (0.166) 0.360 (0.133) 0.472 (0.122)

Re

Silhouette score 0.575 (0.107) 0.471 (0.129) 0.608 (0.160) 0.497 (0.135) 0.425 (0.111) 0.497 (0.151) 0.468 (0.207) 0.369 (0.127) 0.477 (0.129)
Fixed (K=2) 0.584 (0.127) 0.480 (0.141) 0.607 (0.148) 0.500 (0.134) 0.433 (0.115) 0.494 (0.151) 0.489 (0.199) 0.385 (0.124) 0.474 (0.154)
Fixed (K=3) 0.534 (0.129) 0.460 (0.150) 0.633 (0.154) 0.498 (0.131) 0.423 (0.113) 0.492 (0.149) 0.489 (0.094) 0.422 (0.093) 0.528 (0.119)
Fixed (K=4) 0.511(0.126) 0.403 (0.122) 0.618 (0.160) 0.440 (0.112) 0.378 (0.100) 0.485 (0.145) 0.463 (0.150) 0.386 (0.127) 0.490 (0.155)
Fixed (K=5) 0.537(0.098) 0.421 (0.115) 0.575 (0.172) 0.470 (0.145) 0.386 (0.107) 0.501 (0.136) 0.464 (0.142) 0.368 (0.100) 0.452 (0.127)
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Table 14. Result of Analysis on Multi-task Learning Models.

Task Definition AMIGOS (Arousal) AMIGOS (Valence) ASCERTAIN (Arousal)
Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC User-as-task 0.456 (0.113) 0.319 (0.068) 0.499 (0.038) 0.491 (0.125) 0.336 (0.062) 0.495 (0.040) 0.510 (0.062) 0.337 (0.028) 0.502 (0.026)
Cluster-as-task 0.478 (0.118) 0.326 (0.061) 0.488 (0.051) 0.448 (0.113) 0.309 (0.055) 0.499 (0.021) 0.505 (0.063) 0.338 (0.034) 0.500 (0.028)

ML User-as-task 0.444 (0.112) 0.304 (0.051) 0.500 (0.000) 0.469 (0.122) 0.315 (0.055) 0.500 (0.000) 0.509 (0.062) 0.336 (0.027) 0.500 (0.000)
Cluster-as-task 0.482 (0.124) 0.321 (0.056) 0.497 (0.017) 0.453 (0.116) 0.308 (0.053) 0.500 (0.000) 0.510 (0.062) 0.336 (0.027) 0.500 (0.000)

Re User-as-task 0.439 (0.110) 0.324 (0.083) 0.506 (0.074) 0.512 (0.126) 0.349 (0.067) 0.487 (0.050) 0.508 (0.064) 0.344 (0.034) 0.496 (0.025)
Cluster-as-task 0.456 (0.110) 0.320 (0.059) 0.506 (0.044) 0.459 (0.121) 0.322 (0.077) 0.489 (0.058) 0.512 (0.063) 0.342 (0.034) 0.505 (0.028)

Task Definition ASCERTAIN (Valence) WESAD CASE (Arousal)
Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC User-as-task 0.545 (0.067) 0.354 (0.032) 0.501 (0.010) 0.808 (0.211) 0.769 (0.255) 0.899 (0.213) 0.541 (0.103) 0.441 (0.121) 0.582 (0.122)
Cluster-as-task 0.544 (0.068) 0.351 (0.029) 0.501 (0.009) 0.790 (0.214) 0.733 (0.273) 0.911 (0.199) 0.521 (0.115) 0.447 (0.136) 0.589 (0.150)

ML User-as-task 0.544 (0.068) 0.351 (0.029) 0.500 (0.001) 0.856 (0.185) 0.814 (0.245) 0.895 (0.222) 0.505 (0.094) 0.333 (0.042) 0.500 (0.021)
Cluster-as-task 0.544 (0.068) 0.351 (0.029) 0.500 (0.000) 0.860 (0.178) 0.823 (0.230) 0.885 (0.273) 0.496 (0.093) 0.329 (0.042) 0.499 (0.014)

Re User-as-task 0.542 (0.071) 0.352 (0.029) 0.502 (0.029) 0.857 (0.169) 0.830 (0.208) 0.945 (0.120) 0.506 (0.109) 0.395 (0.116) 0.563 (0.140)
Cluster-as-task 0.543 (0.065) 0.356 (0.033) 0.497 (0.021) 0.853 (0.195) 0.815 (0.253) 0.928 (0.164) 0.520 (0.107) 0.415 (0.121) 0.574 (0.142)

Task Definition CASE (Valence) K-EmoCon (Arousal) K-EmoCon (Valence)
Accuracy F1-score AUROC Accuracy F1-score AUROC Accuracy F1-score AUROC

FC User-as-task 0.573 (0.114) 0.483 (0.142) 0.591 (0.139) 0.504 (0.125) 0.405 (0.106) 0.501 (0.146) 0.483 (0.107) 0.399 (0.101) 0.463 (0.128)
Cluster-as-task 0.568 (0.120) 0.445 (0.141) 0.570 (0.121) 0.471 (0.140) 0.379 (0.113) 0.462 (0.145) 0.492 (0.124) 0.395 (0.095) 0.534 (0.158)

ML User-as-task 0.561 (0.106) 0.356 (0.045) 0.527 (0.094) 0.540 (0.179) 0.375 (0.107) 0.519 (0.139) 0.551 (0.169) 0.381 (0.099) 0.513 (0.120)
Cluster-as-task 0.561 (0.106) 0.356 (0.045) 0.514 (0.063) 0.517 (0.178) 0.340 (0.084) 0.492 (0.107) 0.534 (0.170) 0.360 (0.082) 0.489 (0.119)

Re User-as-task 0.550 (0.106) 0.435 (0.102) 0.584 (0.159) 0.483 (0.128) 0.394 (0.124) 0.499 (0.142) 0.475 (0.117) 0.385 (0.117) 0.488 (0.141)
Cluster-as-task 0.542 (0.133) 0.413 (0.096) 0.574 (0.150) 0.506 (0.128) 0.388 (0.103) 0.493 (0.134) 0.455 (0.126) 0.374 (0.125) 0.523 (0.130)

Table 15. Results of Analysis on K-EmoPhone (Stress) dataset.

Model Architecture Accuracy F1-score AUROC

Non-
Personalized

FCN 0.646 (0.166) 0.403 (0.073) 0.534 (0.087)
MLP-LSTM 0.655 (0.171) 0.389 (0.067) 0.493 (0.055)
ResNet 0.631 (0.162) 0.406 (0.071) 0.515 (0.084)

Hybrid
FCN 0.680 (0.196) 0.425 (0.121) 0.526 (0.095)
MLP-LSTM 0.690 (0.206) 0.431 (0.168) 0.479 (0.086)
ResNet 0.662 (0.181) 0.440 (0.099) 0.525 (0.098)

Multi-task Learning
User-as-task

FCN 0.655 (0.172) 0.389 (0.067) 0.498 (0.024)
MLP-LSTM 0.655 (0.172) 0.389 (0.067) 0.488 (0.070)
ResNet 0.655 (0.172) 0.389 (0.067) 0.492 (0.029)

Multi-task Learning
Cluster-as-task

FCN 0.655 (0.172) 0.389 (0.067) 0.500 (0.025)
MLP-LSTM 0.655 (0.172) 0.389 (0.067) 0.493 (0.041)
ResNet 0.655 (0.171) 0.389 (0.067) 0.499 (0.033)

Value of K KEmoPhone (Stress)
Accuracy F1-score AUROC

FC

Silhouette score 0.615 (0.086) 0.161 (0.086) 0.490 (0.096)
Fixed (K=2) 0.640 (0.072) 0.158 (0.072) 0.518 (0.071)
Fixed (K=3) 0.638 (0.075) 0.163 (0.075) 0.513 (0.094)
Fixed (K=4) 0.607 (0.081) 0.161 (0.081) 0.517 (0.090)
Fixed (K=5) 0.626 (0.089) 0.169 (0.089) 0.531 (0.104)

ML

Silhouette score 0.638 (0.076) 0.174 (0.076) 0.493 (0.079)
Fixed (K=2) 0.625 (0.081) 0.193 (0.081) 0.505 (0.077)
Fixed (K=3) 0.633 (0.074) 0.185 (0.074) 0.459 (0.095)
Fixed (K=4) 0.632 (0.075) 0.179 (0.075) 0.497 (0.078)
Fixed (K=5) 0.654 (0.070) 0.165 (0.070) 0.476 (0.091)

Re

Silhouette score 0.606 (0.076) 0.131 (0.076) 0.506 (0.112)
Fixed (K=2) 0.632 (0.073) 0.145 (0.073) 0.513 (0.080)
Fixed (K=3) 0.621 (0.064) 0.142 (0.064) 0.510 (0.090)
Fixed (K=4) 0.583 (0.075) 0.152 (0.075) 0.511 (0.084)
Fixed (K=5) 0.591 (0.092) 0.145 (0.092) 0.530 (0.097)
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Layers Data K-EmoPhone (Stress)
Tuned Used Accuracy F1-score AUROC

FC

All

20% 0.648 (0.176) 0.415 (0.120) 0.496 (0.120)
30% 0.652 (0.177) 0.413 (0.117) 0.493 (0.129)
40% 0.648 (0.177) 0.407 (0.116) 0.478 (0.133)
50% 0.651 (0.174) 0.408 (0.116) 0.474 (0.154)

Last

20% 0.606 (0.157) 0.421 (0.084) 0.503 (0.132)
30% 0.606 (0.157) 0.420 (0.084) 0.503 (0.132)
40% 0.613 (0.170) 0.426 (0.121) 0.503 (0.142)
50% 0.624 (0.164) 0.432 (0.131) 0.508 (0.146)

ML

All

20% 0.656 (0.172) 0.391 (0.069) 0.505 (0.142)
30% 0.658 (0.173) 0.391 (0.069) 0.506 (0.154)
40% 0.656 (0.173) 0.391 (0.070) 0.494 (0.164)
50% 0.658 (0.170) 0.392 (0.069) 0.502 (0.178)

Last

20% 0.511 (0.153) 0.432 (0.119) 0.502 (0.154)
30% 0.511 (0.153) 0.432 (0.119) 0.502 (0.154)
40% 0.511 (0.162) 0.427 (0.126) 0.491 (0.154)
50% 0.528 (0.147) 0.443 (0.122) 0.480 (0.145)

Re

All

20% 0.606 (0.151) 0.420 (0.090) 0.511 (0.126)
30% 0.603 (0.156) 0.415 (0.096) 0.511 (0.133)
40% 0.603 (0.156) 0.413 (0.101) 0.502 (0.141)
50% 0.600 (0.158) 0.413 (0.105) 0.495 (0.148)

Last

20% 0.606 (0.157) 0.421 (0.084) 0.503 (0.132)
30% 0.511 (0.153) 0.432 (0.119) 0.502 (0.154)
40% 0.511 (0.162) 0.427 (0.126) 0.491 (0.154)
50% 0.528 (0.147) 0.443 (0.122) 0.480 (0.145)
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