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ABSTRACT systems [46] are designed to meet this demand by helping users

Personal informatics (PI) systems are widely used in various do-
mains such as mental health to provide insights from self-tracking
data for behavior change. Users are highly interested in examining
relationships from the self-tracking data, but identifying causality
is still considered challenging. In this study, we design DeepStress,
a PI system that helps users analyze contextual factors causally re-
lated to stress. DeepStress leverages a quasi-experimental approach
to address potential biases related to confounding factors. To ex-
plore the user experience of DeepStress, we conducted a user study
and a follow-up diary study using participants’ own self-tracking
data collected for 6 weeks. Our results show that DeepStress helps
users consider multiple contexts when investigating causalities and
use the results to manage their stress in everyday life. We discuss
design implications for causality support in PI systems.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting design and evaluation methods; User studies.
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1 INTRODUCTION

As digital devices such as smartphones make it easier for users to
self-track diverse data in their daily lives, their interest in gaining
insights from their own data is increasing. Personal informatics (PI)
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reflect on their self-tracking data and plan actions to improve their
future selves [2, 67]. PI users want to understand the impact of their
behaviors on health goals [11]. Thus, they generate hypotheses
about influencing factors, evaluate them using self-tracking data,
and revise their strategies to improve health.

PI systems target diverse domains of health and well-being, in-
cluding physical activity, chronic condition management, sleep, diet,
and weight [22]. This work focuses on stress management in mental
health. Stress is associated with contextual factors such as activity,
place, social setting, or time. For instance, some people become
stressed around others, regardless of the activity or location. As
context could affect one’s stress, a holistic view of contextual factors
is needed to understand the causes of stress. Moreover, users should
identify causally related contextual factors for effective long-term
stress management, given their routine and repetitive occurrence.

Yet, prior PI systems are limited in effectively supporting users
in investigating contexts causally linked to stress. Existing studies
have focused on presenting a correlation between factors [3, 8, 49],
but analyses overlooking the complex relationships within the data
may lead to different conclusions. For example, when identifying the
effects of studying on stress, it is necessary to compare stress levels
during studying and non-studying. However, comparing studying
in a cafe to not studying in a dormitory may not be reasonable, as
the difference in place could also influence the causal relationship.
Instead, all other factors besides the factor of interest should be
identical (e.g., comparing stress levels while studying in the cafe to
those while not studying in the cafe) to ensure that the difference in
outcome comes only from the factor of interest. This shift from an
‘apples-to-oranges comparison’ to an ‘apples-to-apples comparison’
minimizes fundamental differences in comparison targets.

PIusers unaware of this can be susceptible to errors if causality is
identified solely based on correlation, without considering external
factors introducing bias in comparison groups. Alternatively, some
studies have employed self-experimentation to investigate causal
relationships [18, 19, 35]. This approach is rigorous and scientifi-
cally valid, but its utility is limited because the random assignment
of conditions is challenging in daily life. Asking users to always
adhere to required experimental settings when investigating causal
relationships between context and stress is difficult.

To address such practical issues, we suggest a quasi-experimental
approach with observational data in PI system design. Unlike the
experimental approach, this method uses observational data ob-
tained without random allocation of samples to the treatment and
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control groups. Before analyzing the causality of a specific context,
it balances the distribution of confounding factors (i.e., contexts
other than that under analysis) between the two groups to mini-
mize their effect on stress. If a significant difference in stress levels
exists after balancing, we may conclude that the context has a
causal relationship with stress. We opted to employ ‘matching’
among the various balancing methods, as it is intuitive and widely
used [28, 33, 45, 79, 80]. The quasi-experimental approach is less
rigorous than experimentation in controlling for confounders, but
beneficial since it allows users to mimic the experimental setting
in data analysis even when experimentation is not applicable or
practical. Human-computer interaction (HCI) studies have used
this approach to understand the relationships between smartphone
usage and contexts or emotional states [54, 82]. Notably, there is a
lack of research that leverages this method in PI systems to help
individuals analyze causality.

In this study, we designed DeepStress, a PI system aiding users
in exploring stressful contexts (i.e., activities, places, social settings,
and times) using a quasi-experimental approach. As a PI system, it
visualizes self-tracked data such as stress changes over time, and
provides summarized stress information for each context. In addi-
tion, it offers a list of stressful contexts (i.e., contexts demonstrating
causality) with relevant contextual information.

The primary goal of this study is to explore user experiences
in exploring causal relationships through DeepStress. We specifi-
cally examined (1) how DeepStress supports users in investigating
stressful contexts, (2) how users understand and interpret causality
results, (3) which challenges occur while using DeepStress, and
(4) how users utilize insights from DeepStress in their daily lives.
DeepStress facilitated data-driven self-reflection, enabling users to
pinpoint stressful contexts and understand relationships between
various contexts. We revealed a sensemaking process about how
users reflect on their stress and interpret the causal relationships.
A follow-up diary study indicated that causal insights helped par-
ticipants manage their daily routines and stressful contexts.

Overall, our contribution can be summarized as follows:

o We demonstrated a use case for a quasi-experimental ap-
proach in PI systems for exploring unbiased causal relation-
ships between contexts and stress.

o We investigated how users explored and interpreted causal
relationships by leveraging sensemaking frameworks.

e We discussed challenges and design considerations for sup-
porting causal analysis in PI systems.

2 RELATED WORK

2.1 Data-driven Relationship Analyses in
Personal Informatics Systems

As daily life tracking with smart devices has become routine, peo-
ple leverage these devices to track physical, behavioral, and con-
textual information [81]. Personal informatics (PI) systems help
users reflect on and understand themselves based on the gathered
data [46]. Previous studies examined PI system usage behavior and
intentions, proposing models to identify barriers and better assist
users [23, 46, 47]. PI systems are typically utilized for health manage-
ment, enhancing quality of life, and seeking new experiences [11],
encouraging users to shape a better future self [2, 67].

Jung et al.

PI systems are useful in the affective computing domain, interact-
ing with users to sense, analyze, and respond to their emotions [61].
They infer emotional states from data, including physiological sig-
nals, facial expressions, and body gestures [26, 27, 83]. Smartphones
and wearables also detect user states via passive sensors (e.g., ac-
celerometer, GPS, etc.) and interactions (e.g., app usage) or question-
naires [55, 63]. The systems then provide users with information
about mental states, facilitating their self-reflection. For example,
they encourage users to (1) review past events in connection with
their emotions or mood [32, 43], (2) explore triggers influencing
them [78], or (3) examine affective states or stress levels along
with contextual information [42, 53]. Such systems employ visual
elements to help users’ understanding [6, 84] and provide interven-
tions to address negative emotions at opportune moments [29, 73].

PIsystems are expected to provide diverse data-driven insights [9,
10]. Particularly, PI users are interested in linking different types of
factors in their data [69] such as exploring correlation and causal-
ity [66]. Fleck and Fitzpatrick [25] called this ‘dialogic reflection,
where individuals try to determine relationships between their
experiences, hypothesize why they happened, and generate ex-
planations. HCI studies have proposed PI systems to help users
understand relationships between diverse factors. Bentley et al. [3]
designed a system that pinpoints correlations between contexts
and well-being indicators. PI systems also assessed sleep quality
based on the contributing factors or visually displayed correlated
contexts [8, 49]. Furthermore, they predicted users’ stress using
contextual factors and delivered useful results [38].

Still, most existing PI studies rely on correlation rather than
causality when analyzing contextual factors’ impact, limiting the
rigor of the results. For causal analysis, studies have allowed users
to conduct self-experimentation, such as identifying problematic
food triggers [35], activities for improving sleep [18, 19], or causal
relationships between various activities and conditions [17]. Self-
experimentation is practical when manipulating the condition is
readily available following the system’s random assignment. How-
ever, controlling contextual factors may not be easy; for example,
users are not always able to change their place immediately to
examine the causality between places and stress levels. Thus, we
chose an alternative way, a quasi-experimental approach, to address
this limitation and enable causal analysis through PI systems.

2.2 Investigating Causal Relationships with
Quasi-experimental Approaches

When examining causal relationships between factors, the Random-
ized Controlled Trial (RCT) is considered the gold standard [60, 76].
This method randomly assigns each subject to either the control
or treated group and evaluates whether there is a statistically sig-
nificant difference in outcome between the two groups. Random
allocation ensures that groups are identical except for the treatment
condition, implying any outcome differences are solely due to the
treatment. This process minimizes bias arising from external factors
like confounding variables, distinguishing between correlation and
causality (as the well-known phrase “correlation does not imply
causation”). Moreover, the concept of RCT can be extended to an
individual level called ‘single-case designs’ (or n-of-1 trials) [15, 50],
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using a certain participant as a control for themselves to examine
the effect of the treatment on their outcome.

However, RCTs are not always applicable for practical reasons,
such as ethical concerns, costs related to sample size, and the
spillover effect where treatment in one group affects another [70,
74]. In such situations, a quasi-experimental design [13] can be
used to verify causality, similar to RCTs addressing counterfactual
(i-e., what-if) questions. However, this approach is considered less
rigorous due to the absence of random allocation of subjects. Thus,
controlling for bias before comparing groups is necessary to ensure
that the difference in outcomes originates from the treatment.

One method is to compare subjects having similar combinations
of confounding variables, known as ‘matching’ [28]. In matching,
it is essential to pair the most similar subjects to mimic the random
assignment. Several methods have been proposed to define the dis-
tance (similarity) for matching samples. For instance, researchers
can directly compare the similarity of two subjects using the Eu-
clidean or Mahalanobis distance [20] of confounding variables, or
calculate a scalar value such as propensity score (i.e., the probability
of being allocated to control or treated group given confounding
variables) [71] as a distance metric. Another approach is coarsened
exact matching (CEM) [31], which coarsens each confounding vari-
able into discrete categories (or ‘bins’) and matches subjects if they
are in the same bin. When matching subjects, additional options
can be considered, including the matching ratio and the algorithm
for minimizing the total distance [79].

Previous studies have analyzed causality in human behavior by
implementing the quasi-experimental approach in a single-case
design setting. Tsapeli and Musolesi [82] investigated the causal-
ity between contextual factors and stress levels, while Mehrotra
et al. [54] explored the relationship between emotions and mobile
phone interactions. In both studies, analysis was conducted for each
individual user, acknowledging variations in lifestyles, smartphone
usage, and emotions. Moreover, the quasi-experimental approach
was preferable, as participants could not manipulate their emo-
tions to evaluate their effect on smartphone usage. Referring to
these studies, we also applied the quasi-experimental approach in
investigating causality between contextual factors and stress levels.

2.3 Making Sense of Self-tracking Data and
Visualized Information

Sensemaking is the process of retrieving, organizing, and utilizing
information. Russell et al. [72] illustrated this concept as a process
of generating and modifying a representation to process a task,
iteratively reducing the associated costs. Pirolli and Card [62] ex-
tended the sensemaking process by introducing two main loops:
(1) a foraging loop where the process between retrieving relevant
information and creating schema happens, and (2) a sensemaking
loop where the generation of hypothetical mental models and their
assessment occur to find the optimal one. The sensemaking concept
was further detailed in Klein et al’s work [41], where they intro-
duced a data-frame theory of sensemaking. They distinguished the
concept of data and frame as instance and structure and described
the sensemaking process as creating and updating the frame using
data. In their framework, individuals may reinforce the frame or
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seek another frame that better explains the data, depending on
whether a gap exists between the data and the current frame.
Sensemaking was further elaborated in self-tracking. Mamyk-
ina et al. [52] proposed a sensemaking framework to explain the
process involved in managing chronic diseases. Their framework
comprised two modes depending on the gaps in understanding new
information: (1) a sensemaking mode where individuals actively in-
vestigate data and generate explanations to determine actions, and
(2) a habitual mode where they passively engage with their data and
use pre-existing knowledge to continue routine actions. During the
construction of a new model in the sensemaking mode, individuals
form hypotheses (or explanations) from the data and test whether
the hypotheses adequately describe the collected data [51].
Sensemaking actively occurs when exploring and understand-
ing data in a visualized form. For example, when visualizing stress
changes over time with contextual factors such as activities and
places, users inspect the relationships among them and design
personalized, just-in-time interventions [75]. In addition, PI sys-
tem users could follow the sensemaking process with their health
data, for instance, by creating the initial frame of explaining what
affects their symptoms, supporting or revising the frame based
on the newly found information from the data, and selecting the
most reasonable frame for them [64]. However, such information
visualization should be carefully designed while considering the
sensemaking process, as users may not be familiar with integrat-
ing different types of factors, rely heavily on their pre-existing
knowledge, and result in a biased interpretation if they inspect
the data only using their eyes [9, 24, 57, 66]. Our study explored
how the sensemaking process occurs when users explore the causal
relationships in their data through self-tracking data visualization.

3 USER STUDY DESIGN

As illustrated in Figure 1, this study was conducted following several
steps. We recruited participants from a university and collected
self-reported data about their contexts and stress levels over six
weeks. One week after the data collection began, we conducted
a preliminary interview to investigate user needs for our system.
Then, we developed DeepStress based on insights gathered from the
interview and the literature review. After the remaining five-week
data collection, we conducted a user study in a lab setting to allow
participants to explore their stressful contexts using DeepStress.
Following this, we asked them to use DeepStress freely in their
daily lives for one week and record a diary about their experiences.
Note that each participant followed all these steps.

In Section 3, we provide information about the participants (Sec-
tion 3.1), the collected data (Section 3.2), and the procedures of
the preliminary interview and user study (Section 3.3). Next, we
describe the design process of DeepStress based on the preliminary
interview (Section 4) and present the user study results (Section 5).

3.1 Participants Recruitment

For this study, participants were recruited through an online com-
munity at a large university. Initial applicants were screened using
the Perceived Stress Scale (PSS) survey [12], and recruitment oc-
curred only if the score exceeded 13 (i.e., moderate to high perceived
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Figure 1: An overview of the study procedure, illustrating each step along with corresponding sections.

stress). This criterion was set for two main reasons. Firstly, partici-
pants with low perceived stress might be less motivated to engage
in a stress management study, making them less suitable as our
target users. Secondly, individuals consistently experiencing low
stress levels may yield biased data with small variance, resulting
in fewer meaningful causal insights into stressful contexts. As a
result, 24 participants were recruited (9 women, 15 men; age: M =
21.3, SD = 2.1), and their average PSS scores were 23.3 (SD: 5.0).
The participants in the study had diverse academic majors, in-
cluding natural sciences, engineering, industrial design, and busi-
ness management. Nevertheless, participants had the opportunity
to grasp the concept of correlation through data analysis in their
mandatory experimental courses, such as physics experiments, dur-
ing their freshman year. Thus, they might have developed a certain
level of understanding of experimental design (e.g., setting up con-
trol and treatment groups), implying that the notion of confounding
variables may not have been entirely unfamiliar to them.

3.2 Data Collection

The participants were instructed to collect data on their stress and
contexts for six weeks, as described in Figure 1. Since we designed
and evaluated a PI system, it was more reasonable to evaluate the
system using participants’ own data rather than those from others.
We developed a mobile application that uses the Experience Sam-
pling Method (ESM) [44] to collect data. The participants reported
their stress levels and contexts when responding. Each ESM session
consisted of four questions: one regarding the participant’s stress
level and three others related to context information. The partic-
ipants rated their stress levels on a 5-point Likert scale, ranging
from 1 (not stressed at all) to 5 (very stressed). Also, they provided
three types of contextual information containing where they had
been (place), what they had been doing (activity), and who they
had been with (social setting) until they responded to the survey.
To reduce the data collection burden on participants, we pro-
vided a list of contexts (Table 1) referring to similar ESM studies
conducted with college students [37, 77]. The participants chose
eight contexts for each context type from a given list before col-
lecting data. They made their choices based on the frequency of

occurrence, and additional contexts could also be reported through
an open-ended question. Consequently, each ESM response con-
sisted of stress level, place, activity, and social setting. Note that time
was not reported, as it was logged automatically when responding
to the ESM survey. In addition, if participants encountered multiple
contexts within the same type when reporting, we requested them
to report the one most relevant or impactful to them.

We also configured the ESM survey frequency in the data collec-
tion application. A minimum of 30-minute gap between samples
was set to avoid excessive repetition of ESM surveys. Consequently,
after reporting one ESM survey, the app remained disabled for 30
minutes. Moreover, to prevent insufficient data, a reminder was
sent if no response was received within one hour after the system
was enabled again. The notification was sent every hour until a
response was received, and the system was disabled for 30 minutes
again as soon as it received any response.

Participants could customize the start/end time of receiving no-
tifications to avoid receiving them late at night, and they set the
duration for receiving ESM notifications to an average of 15.7 hours
(SD: 2.9). By setting the notification permission period to a total of N
hours, participants could potentially receive up to N-1 ESM notifica-
tions daily (in the case where they do not respond to any ESM at all).
However, the actual ESM notifications received per day averaged

Context Type Contexts Provided By the ESM Survey

Home, Classroom, Dormitory, Library,
Restaurant, Cafe, Pub, Club room, Laboratory,

Place Place for exercise, Place for leisure, Outdoor,
Place for part-time job, Public transportation
Class, Studying, Research, Resting, Meeting,

Activity Eating, Drinking, Part-time work, Club activity,

Socializing, Leisure activity, Exercise, Moving
Alone, Family, Boyfriend/Girlfriend, Roommate,
Friend, Colleague, Professor

Table 1: The list of contexts provided by the ESM survey
application, referring to Kim et al. [37]. These contexts are
known to be common in the daily lives of university students.

Social Setting
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4.9 times (SD: 1.6), suggesting that participants reported their states
frequently, even without notifications. Existing studies suggested
that the notification frequency we set was reasonable [34].

As a result, the participants reported 566.9 ESM surveys on aver-
age (SD: 156.8, max:867, min: 258). Following the data collection,
we asked participants to provide three to four bins of contexts for
each context type, organized based on their similar characteristics.
For example, the ‘activity’ type could be divided into three bins:
(1) academic and work (class, study, research, meeting), (2) hobbies
(social activities, leisure activities), and (3) health (rests, meals).
These bins were employed to match similar samples using CEM,
aiming to balance confounding factors for causal analysis. Further
details are provided in Section 4.3.

3.3 Study Procedure and Data Analysis

Before designing a PI system that analyzes stressful contexts using
a quasi-experimental approach, we established key design consid-
erations through a literature review and preliminary interviews.
We focused on previous studies that examine how PI systems sup-
port users in reflecting on and analyzing self-tracking data. Given
that we aim to offer causal results, we investigated how previous
systems helped users identify meaningful relationships between
factors. Moreover, we examined challenges in understanding and
interpreting relationships in data through existing PI systems.

A brief preliminary interview was conducted to investigate the
participants’ needs for the PI system supporting causal analysis.
This interview, held one week after data collection began, uncov-
ered analysis needs arising from participants’ actual experiences of
self-tracking. We asked two main questions: (1) What information
should our PI system provide? and (2) How would you analyze
the data to identify the ‘cause’ contexts of stress? These questions
delved into the information to establish connections between con-
texts and to assess participants’ understanding of deriving causality
from data. DeepStress was then designed based on the key consid-
erations obtained from interviews and the literature review.

In the lab-based user study, we examined the user experience of
exploring stressful contexts using DeepStress in a lab setting. We
first introduced our study and provided a brief overview of the main
functions of DeepStress. Then, DeepStress was installed on each
participant’s smartphone, and they were given up to 30 minutes
to freely use the system to explore their stressful contexts. Partici-
pants could view their stress and context information, along with
DeepStress’ identified stressful contexts and relevant information.

After using DeepStress, we measured its usability with the Sys-
tem Usability Scale (SUS) [5]. This allowed quantitative evaluation
of our design’s appropriateness for supporting PI users’ understand-
ing of causality from their data. We also conducted semi-structured
interviews to investigate how people make sense of DeepStress.
All interview sessions were recorded and transcribed to capture
participants’ responses in detail. We analyzed the interviews by
repeatedly reading the transcripts, generated initial codes, and orga-
nized the codes and data into relevant themes [4]. The themes and
codes were reviewed and revised iteratively by conducting affinity
diagraming until all the researchers agreed on the final themes.

In the follow-up diary study, we examined participants’ expe-
riences of using DeepStress in the real world, focusing on how
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they applied the findings from DeepStress in their daily lives. Par-
ticipants revisited the collected data and analysis results without
additional data collection. We requested them to run DeepStress at
least once a day for a week and write a diary describing their expe-
rience of using it. To guide them in providing detailed experiences,
we gave sample questions, such as what they explored, whether
they utilized the information, and whether any information influ-
enced their thoughts or actions. The participants submitted their
diaries after the one-week study period, and we analyzed the diary
contents following a process similar to the lab-based user study.
The participants were paid 10 USD as compensation for each
preliminary interview, user study, and follow-up diary study. For
the ESM survey, they were given 120 USD (20 USD per week) as a
baseline, considering the repetitive tasks over a long period. This
study was approved by the Institutional Review Board (IRB) of a
university and obtained written consent from all participants.

4 SYSTEM DESIGN
4.1 Design Rationale

Based on the literature review and the preliminary interview, we
summarized our findings into three key design considerations.

4.1.1 The System Allows Users to Navigate Past Stress History with
Contextual Information. One basic requirement of PI systems is
allowing users to explore the data to recall the past. As illustrated
in previous studies [9, 10], PI users typically navigate through col-
lected data to interpret specific situations or answer their own
questions. Cho et al. [7] noted that commercial PI systems com-
monly present data by visualizing it or adding further explanations
for users to review. In presenting data, we may refer to Sharmin
et als approaches [75], offering stress levels over time or for each
context to establish connections between stress and contexts.

Our interview also revealed similar needs to explore stressful
contexts through PI systems. Most participants wanted to monitor
stress changes over time. In addition, they were interested in how
stress levels varied across different contexts, requesting summaries
of stress levels for each context. “If I recorded ‘library’ as a place,
I hope to see the number of records and the overall stress level in
that place” (P16). They suggested that the average stress level for
each context may be useful in comparing the contexts. Moreover,
the participants wanted to see their records while considering the
relationship between various factors. “I think my stress levels may
vary if I do the same activity in different places. I'd like to see those
relationships” (P08). P17 also mentioned, “Showing what I've done
frequently in that place could be useful. Maybe, I can think about how
they relate to my stress.” Thus, we chose to provide summaries and
details of data and to help users diversely revisit their data.

4.1.2 The System Analyzes and Delivers the Causal Relationship.
Prior research reported that PI users face challenges when ana-
lyzing data, investigating relationships, and interpreting findings
correctly [57, 66]. Similarly, PI users may experience difficulties
when examining causal relationships between factors. The effect of
confounding factors should be minimized, but this was not well sup-
ported in existing PI systems. For instance, PI systems leveraging
correlations were limited in addressing confounding factors [49],
leading to misunderstandings of correlation as causality without
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users to explore stress trends over time at a summarized level with a calendar (b) and in detail by reviewing the timeline (c).

considering dependencies between contextual factors. In this re-
gard, previous studies highlighted the importance of designing PI
systems to prevent users from obtaining biased results [9].

In the interview, participants had difficulties in identifying causal
relationships from self-tracking data. In the simplest way, many
participants suggested using the average stress level of each con-
text, as P12 stated, “I would calculate the average stress level of all
places and then compare it with that in a particular place.” They
also thought that comparing stress levels between contexts would
inform them of relative stress and help them evaluate causal re-
lationships. However, some participants noticed that it may not
be clear which of the contexts resulted in the high or low stress.
“Since I can perform various activities in a specific place, it may be
difficult to pinpoint whether my stress is due to the place or activity”
(P01). We found it challenging for participants to independently
identify causal relationships, prompting the PI system to analyze
the causalities and deliver the results to them.

4.1.3  The System Provides Contextual Explorations Based on Causal-
ity to Manage Stress. One of the major purposes of using PI sys-
tems is to change behaviors and achieve goals such as improving
health [46, 47]. Choe et al. [11] illustrated that PI users are inter-
ested in monitoring their current conditions, identifying factors
that affect their health, and making data-driven health decisions.
Our participants also showed interest in utilizing the analysis
results to manage their stress in their daily lives. “If I can check

where I get stressed a lot, maybe I can plan my day in a way to
avoid such contexts as possible” (P08). Some participants mentioned
that they could leverage the analysis when they experience mental
health issues. P02 noted, “If I undergo burnout or depression, I can
get some information from the system to investigate the cause.” In
addition, they wanted to identify ways to reduce stress within
various contextual relationships. Based on these responses, we
determined to present how much each context affects stress as a
whole and within a certain context.

4.2 DeepStress

Based on the key design considerations derived, we designed Deep-
Stress, a PI system that helps users understand their stressful con-
texts in everyday life. Unlike previous systems, it directly showed
(1) stressful contexts determined by causal analysis and (2) infor-
mation about other relevant contexts. This was intended to avoid
false conclusions from simple investigations (e.g., exploring similar
trends between two factors only with eyeballing) and allow users to
consider the relationships between multiple contexts when exam-
ining stressful (i.e., causally related) contexts. The system consists
of four main views for describing stressful contexts: (1) Summary,
(2) Calendar, (3) Context, and (4) Analysis.

4.2.1  Summary View. The summary view provides a brief overview
of the user’s stress level and stressful contexts as a landing page,
letting users quickly grasp the overall stress status (Figure 2 (a)).
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Figure 3: The context view. This feature enables users to explore each context, about stress levels and co-occurring contexts (a).
When selecting contexts, it overviews the causal relationships of each context, represented by fire and ice icons (b).

This view shows the average stress level for the entire record and
the most recent data. It also highlights the three most stressful
contexts (i.e., increasing stress) and least stressful (i.e., decreasing
stress). Users can then navigate to the calendar view for stress by
date or the context view for details about each context.

4.2.2 Calendar View. The calendar view displays summary and
detailed records together, allowing users to reflect on previous stress
and contexts they experienced. The default stress information is
provided monthly (Figure 2 (b)); this monthly view displays the
average stress level for each day using colored circles in the calendar.
The view marks days with high stress levels (near level 5) in red
and those with low stress levels (near level 1) in green. It also
summarizes the highest and lowest stress levels by date and day,
respectively. The distribution of stress levels recorded over a month
is also presented to assist users in understanding their overall stress.

When selecting a specific date from the calendar, the system
provides detailed information about that date (Figure 2 (c)). It shows
the average stress level of that date, along with the weekly and
monthly averages. Below that, two components are placed; a graph
describing changes in stress levels over time and a timeline of
detailed user-reported records. For each record in the timeline,
stress levels are displayed using facial expressions (e.g., smile, anger,
etc.), and contextual factors composed of time, place, social setting,
and activity are provided. Moreover, a context filter is implemented
to extract and show only the records with that context.

4.2.3 Context View. We described the stressful context using two
separate views that emphasize different aspects. The context view
(Figure 3) primarily describes what happened in a given context,
including the overall stress level within the context and its relation-
ship with other contexts. Conversely, the analysis view (Figure 4)
addresses the causal relationship between context and stress, taking
the effects of other contexts into account.

To help users quickly review and explore the contexts, we orga-
nized a list of contexts at the top of both the context and analysis
view (the upper section of Figure 3 and Figure 4). For each con-
text, the relationship with stress is represented using a circle with
a color inside and a set of fire or ice icons above the circle. The
circle’s color denotes the average stress level for a given context,
using the same color spectrum as in the calendar view. The icons
represent the causal relationship: fire and ice icons indicate the
direction of the causality (i.e., increasing or decreasing the stress)
and their quantity denotes statistical significance. These icons are
not displayed if there is no causality between the given context
and stress. The circle’s color and the fire/ice icon have different
meanings since the latter considers other relevant contexts (i.e.,
confounding factors) in calculation whereas the former does not.
We intended this design to inform users that high-stress contexts
are not necessarily causal.

The context view (Figure 3 (a)) first shows the average stress level
of the context and its ranking against other contexts of the same
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Figure 4: The analysis view. This feature offers the results of causal analysis at two levels: determining whether the context
is causally linked to stress levels and identifying other factors affecting stress within the given context (a). It illustrates the
process of causal analysis (b) and provides a brief interpretation of the results (c).

type. For instance, if we choose a ‘class’ context, the average stress
level in this context and its ranking compared to other ‘activity’
contexts are displayed. The system shows the context’s frequency
ranking among the same type, denoting its relative frequency. The
users can check the distribution of stress levels for the given context.
We also displayed three of the most co-occurring contexts from each
context type to illustrate their relationship. For example, the activity
‘class’ may occur frequently in certain places (e.g., classroom, library,
dormitory), social settings (e.g., friends, colleagues, alone), and
during the day (e.g., afternoon, evening, morning). Furthermore,
the system shows the frequency of co-occurring (in ratio), informing
how closely they are related to the context being explored. Figure 3
(b) shows that users can move to other contexts while reviewing
information of the whole context by type.

4.24  Analysis View. The analysis view (Figure 4 (a)) illustrates the
causal relationship between the chosen context and stress. It first
describes the existence of the causal relationship (e.g., taking a class
is stressful) and its effect on stress levels (e.g., 0.6 points increase).
For users’ understanding of the result, we added an explanation in
a short sentence about (1) the samples compared in the analysis and
(2) the other context types balanced to minimize their effects on the
stress level. For more details about the quasi-experimental approach,
we added separate pages explaining the analysis procedure (Figure 4
(b)) and the interpretation of the result (Figure 4 (c)).

Moreover, for a given context, we listed the contexts of the
remaining types that may increase or decrease the stress level. We
extracted samples containing the chosen context and conducted
the quasi-experimental approach to identify the causal relationship
between the context of other types and stress. For example, if the
chosen context was ‘class’ (activity type), the system will only use
samples with ‘class’ to conduct causal analysis for places, social
settings, and time. As a consequence, users were allowed to explore
which of the contexts of the remaining types would affect their
stress within a given context.

4.3 Quasi-experimental Approach

The essence of the quasi-experimental design lies in mimicking a
controlled experiment by minimizing the differences in confound-
ing factors between the control and treated groups. To achieve
this goal, we utilized CEM, a matching method widely employed
to identify similar pairs of samples using predefined bins. Ideally,
achieving control over confounding variables involves matching
identical samples except for the treated state; however, this is chal-
lenging to achieve in practice. CEM considers samples sufficiently
similar (i.e., comparable) if each of their confounding variables falls
in the same coarsened bin [31]. Previous studies have demonstrated
the advantages of this method in controlling confounders [40]. Un-
like other methods employing scalar values as distance metrics
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Figure 5: The process of conducting CEM as a quasi-experimental approach in four steps. The table at the top right illustrates
the coarsened bins assumed in this example case, including three bins for each context (i.e., place, social setting, and time) that
should be balanced during matching. The blue squares and red triangles denote samples from the treated and control groups,
respectively, and their changed size represents the weights assigned to them after matching,.

(e.g., propensity score matching), the balance of one factor does not
impact the balance of another.

While binning is typically applied to categorize continuous vari-
ables, we extended this concept to match samples based on the
similarity of their contexts. As shown in Section 3.2, samples with
‘rests’ or ‘meals’ can be considered similar in activity type context
as they belong to the same ‘health’ bin. Matching these samples is
feasible when other context types (place, social setting, and time)
are also similar, meaning they were included in the same bin for
each context type. In the following explanation, we name the com-
bination of bins for each context type a “subset” to avoid confusion.

Our quasi-experimental approach using CEM is shown in Fig-
ure 5, illustrating a sample case investigating whether “studying”
causes an increase in stress. (1) When a user chooses a context for
investigation, like “studying,” samples from the original dataset
are allocated to either the treated group (with studying activity) or
the control group (with an activity other than studying). (2) Next,
samples from both groups are assigned to the same subset if the
combinations of coarsened bins for their confounding factors are

identical (e.g., Subset #1 = P1, S1, T1). By comparing coarsened
bins instead of the raw context, this approach allows matching
sufficiently similar samples, even when not exactly the same (e.g.,
considering home and dormitory similar, both included in bin P1).
(3) After assigning samples to subsets, the samples in each subset
are weighted based on the ratio of treated and control samples.
Samples within subsets exclusively consisting of treated or control
are discarded as they are considered unmatched (Subset #2 and
#27 in Figure 5). Throughout this process, the treated and control
groups achieve balance, minimizing bias introduced by confound-
ing factors. (4) Finally, the average treatment effect on treated units
(ATT) [80] is calculated using linear regression to estimate the effect
of the treatment context on stress levels. In our example, we may
conclude that “studying causes more stress” if there is a statistically
significant difference in the stress levels of the two balanced groups.

Note that the balanced dataset after matching can differ from
the original dataset because unmatched samples are discarded and
matched ones are weighted by their relative ratio. This may lead to
different conclusions between simple correlation and causality. For
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instance, there could be a significant correlation between a specific
context and stress levels, but no causal relationship. In addition,
this approach is conducted on one user’s data, employing the same
individual’s data for both treated and control conditions. As the
comparison is within one user’s data, interpersonal differences like
varying lifestyles, sensitivity to stress, or self-evaluation of stress
do not affect the inferred results. Moreover, causal relationships
can vary among users, and even for the same context, stress can be
increased, decreased, or not changed.

Further details regarding the quasi-experimental approach and
each participant’s causal analysis results are provided in the Sup-
plementary Material.

5 EVALUATION

5.1 RQ1: How Does DeepStress Support Users in
Exploring Their Stressful Contexts?

We analyzed how DeepStress supported the user’s exploration of
stressful contexts. The SUS survey yielded a mean score of 74.1
(SD: 15.8) from 24 participants, indicating good usability [1] for
supporting PI users in exploring causality. Our interview further
revealed the various ways that DeepStress supported users.

5.1.1 Enabling Participants to Recall Past Context and Stress States
Readily. As in the existing PI systems, DeepStress supported par-
ticipants to easily recall what happened in the past by presenting
their previous records. Most participants started reflecting on their
stress by reviewing their historical data through the calendar view
and context view. They tried to make connections between their
life patterns and stress levels, as P20 mentioned. “I could find my
stress level increasing as the midterm comes and decreasing after the
exams.” Also, DeepStress helped them recall the details of previous
contexts and stress.

The colored circles in the calendar view facilitated participants
in recognizing deviations in their stress levels and recalling what
was behind them. The participants were particularly interested in
days with higher stress levels. “I took a closer look at the days with
distinct red colors. With the timeline, I could remember why my stress
was high” (P19). In addition, participants could explore trends in
stress changes and think about recurring events that could affect
stress. “I found relatively high stress on Monday, Wednesday, and
Friday. This pattern may be related to my part-time job” (P23).

In the context view, the participants could check how they evalu-
ated a particular context in terms of stress level, which was a novel
experience for them. “It was impressive because I had no chance
to analyze my stress by place and time” (P17). In particular, they
focused on the distribution of stress levels, as P03 stated. “After
checking my stress level was mostly 4 or 5, I noticed that I was truly
stressed out when taking a class.” Some participants realized the
importance of the recorded data when their recalls were incorrect.
“I thought I was stressed out when I was with my girlfriend, but it was
not. I was mistaken as bad memories often remain longer” (P15).

5.1.2  Allowing Participants to Identify Stressful Contexts while Con-
sidering Confounders. DeepStress presented information on stress-
ful contexts determined through a quasi-experimental approach,
assisting participants in rigorously identifying contexts with causal-
ity. Most of those stressful contexts were already recognized by
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the participants, and in that case, DeepStress served to reaffirm the
results. However, participants also discovered new stressful con-
texts while using the system. P07 mentioned, “It was meaningful to
identify stressful contexts that I didn’t even think of.” Consequently,
this process may enhance their self-knowledge.

The participants could understand the difference in the quasi-
experimental approach when identifying stressful contexts, par-
ticularly in terms of confounding factors. From the summary of
contexts using colors and icons, they noticed that a context with
a high stress score does not necessarily have causality. P23 noted,
“The average does not consider other contexts’ effects on stress, so I
think it cannot indicate causality” Through the explanations about
procedure and analysis result, they learned how to control con-
founding factors when identifying the stressful one. “After all, we
have to match the other three contexts before the analysis to minimize
their effect on stress” (P19). For some participants, this concept was
familiar, as P17 mentioned. “This was similar to when planning an
experiment. We should change only one condition to see the impact of
it.” After understanding the matching process, some participants
reported that the results became more reliable.

Participants also found it helpful for DeepStress to provide causal
results directly to them. “DeepStress automatically analyzed and de-
livered in which context I was stressed, so I could check the stressful
contexts easily and accurately” (P09). Other participants mentioned
the advantages of DeepStress, comparing it to other apps; e.g.,
allowing them to think deeply about stressful contexts (P10), pro-
viding accurate results based on the statistical testing (P01), and
consequently making the self-tracking data more meaningful (P03).

5.1.3 Letting Participants Consider the Relationship Between Con-
texts. DeepStress not only informed the stressful contexts but also
enabled participants to explore the relationship between contexts.
They could explore how stress levels in one context can be affected
by others, by investigating stress level distribution and co-occurring
contexts in the context view. P23 mentioned, “When I checked ‘dor-
mitory’ in the context view, there was much more ‘studying’ than
other activities. So I thought if I got stressed due to studying, the
dormitory would show relatively high stress as well.” Through this
process, the participants reviewed one context and naturally moved
to another that was highly related (i.e., frequently co-occurring).

The information explaining which other contexts would increase
or decrease the stress level in a given context also assisted partici-
pants in understanding the relationships between contexts. “I found
I was more stressed when I studied at home, with colleagues, and in
the evening. It was interesting to see that the combinations varied
the stress level, and I learned that the relationships among contexts
also mattered” (P08). Based on this information, participants could
also set up their plans to manage their stress, as P02 stated. “From
the analysis, I realized places also affect my stress when studying. I
should study at the cafe instead of at home.”

5.2 RQ2: How Do Users Interpret and
Conceptualize the Causality Results
Provided by DeepStress?

5.2.1 Reconfirming Stressful Contexts That Are Consistent with Prior
Self-knowledge. Since DeepStress directly provided causal analysis
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results, the participants first questioned whether those results made
sense. In most cases, they could confirm the stressful contexts from
DeepStress were consistent with their prior self-knowledge and
simply reconfirmed the facts through data analysis. “Most of the
results were as expected. I thought the club activity would be the most
stressful, and the result told me the same” (P01). They interpreted
these results based on the characteristics of the contexts. “The
fact that ‘studying’ is a stressful activity for me is natural because
I usually have no choice but to study” (P04). They also found the
results understandable considering their lifestyle. “I hate taking
the bus or train since they are too crowded, so I expected that the
transportation is a stressful place” (P19).

These interpretations mostly supported that the analyzed results
were correct, and the participants did not express doubt about
the results as they found them acceptable. While some results
showed gaps between DeepStress’s analysis and participants’ self-
knowledge, not everyone questioned the reasons behind these dis-
crepancies. They accepted these results by assuming the algorithm
worked correctly (P07, P11, P19), considering potential issues with
data collection (P17), or simply skipping the details (P24).

5.2.2  Hypothesizing about the Reason for Unexpected Causal Anal-
ysis Results. However, when the participants faced unexpected re-
sults, they questioned the outcomes and formed new hypotheses to
explain them. They proposed alternative explanations, such as sug-
gesting that another context might be truly stressful or recognizing
limitations in the data contributing to the unexpected conclusion.

For instance, they assumed that there could be other unrecorded
reasons in that context. P04, who enjoyed drinking, explained why
the pub was determined to be a stressful place as follows: “The at-
mosphere of the pub might increase stress though it was not recorded.
The pub was somewhat noisy and crowded, and accidents may hap-
pen more frequently.” Some participants supposed that the results
might be influenced by other co-occurring contexts. P19 mentioned,
“DeepStress told me that my colleagues got me stressed more, but I
suppose this would be because of class-taking activities that happened
often with them.” Similarly, P17 said, “The dormitory was evaluated
as a stressful place, but it seems this result was affected by the fact
that I often study in the dormitory.”

They also hypothesized that those inconsistent results might
be due to the recorded contexts not being specific enough. “The
stress really depends on the class. The classes I took in the afternoon
or evening were easy, and this might lead to the unexpected causal
result that taking a class lowers my stress” (P04). The number of
samples and temporal precedence of the context were suggested
as potential reasons for the unexpected results. P06 said, “I don’t
think I had a meeting that much, so the low frequency of the activity
may make the result biased.” Additionally, P07 mentioned, “I usually
take a walk outside when I get stressed. Maybe my stress lasted while
I was walking and that is why the place ‘outside’ was determined as
a stressful context.”

5.2.3 Evaluating Alternative Explanations Using Self-knowledge and
Self-tracking Data. The participants then evaluated whether the
hypotheses made sense by leveraging their prior self-knowledge
and the DeepStress data. The former usually happened when they
could not find any supportive evidence from DeepStress, such as
hypotheses related to unrecorded contexts, details of the context,
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or temporal precedence. In this situation, the participants simply
recalled past events and reflected on whether the hypothesized
situation happened in their lives.

Meanwhile, the latter occurred if the participants could explore
the data supporting their hypotheses. They re-examined the de-
tailed records about the context and the frequency of other co-
occurring contexts. P19 stated, “Upon revisiting the context view, one
of the frequent co-occurring activities with colleagues was taking a
class. So, I thought my assumption seemed to be correct.” Moreover,
they utilized the results in the analysis view; another context that
further increases stress in a given context. P15, whose ‘lab’ was
a stressful context said, “I went over which contexts increased my
stress when I was in the lab. ‘Studying’ and ‘Afternoon’ were there, so
I realized that doing homework in the lab got me stressed.” The partic-
ipants also checked how many times such contexts were recorded
from the context view and evaluated whether their hypotheses
were correct. “There aren’t many records in this view that include
meeting activities, so the result may be biased. Perhaps, I happened to
experience less stress at those times” (P06).

If the hypotheses seemed reasonable, participants accepted them
as a new explanation for interpreting the causal results from Deep-
Stress. Otherwise, they revisited the hypotheses formulation stage
and considered other alternative explanations. This process contin-
ued until the participants could generate their own interpretation
of the results; in other words, it continued until the gap between the
participants’ self-knowledge and the quasi-experimental analysis
became minimized. After that, they moved to another context of
interest to see if the causal result was understandable.

5.3 RQ3: What Are the Key Challenges in
Identifying Stressful Contexts in Practice?

5.3.1 Evaluating Stress Levels Using Scores. The participants found
it challenging to report their stress on a 5-point scale during data
collection, expressing difficulty in making clear distinctions be-
tween scores. As P12 mentioned, “I reported stress level 1 when I felt
nothing, but the criteria were not clear to me since it was subjective.”
P09 tried to refer to previous records, saying “I made a relative
evaluation when reporting my stress. It was difficult at the beginning
as there was no reference, but got better as the data accumulated.”
They thought their results might become unexpected because of
their ways of scoring the stress level. “Maybe the results would have
become clearer if I reported the stress scores with big differences” (P01).

5.3.2  Recording the Context in a Fine-grained Way. In addition, the
participants noted that how fine-grained the context was may also
affect the analysis results. For example, P09, a part-time tutor of
several students, said, “My stress varies depending on the tutee, but
it seemed the analysis results didn’t cover it properly.” Also, P15 said,
“If I could report contexts more in detail, DeepStress would identify
the stressful context better.”

However, they noticed that there would be a trade-off when re-
porting the context in detail. “Recording contexts by given categories
would make the data collection process simple. However, I was con-
cerned whether the category would represent my context in detail and
have an accurate analysis” (P22). They suggested having more con-
text options for users (P08) or allowing them to customize the set of
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context categories based on their own lifestyles (P16). Another op-
tion could be leaving an annotation on the record. “Since I couldn’t
fully record my situation, I wished to provide more information about
myself to DeepStress using a short diary” (P05).

5.3.3 Handling the Results Derived from Small Data. As shown in
RQ2, insufficient samples (i.e., not enough data) posed a challenge
for both researchers and participants in identifying stressful con-
texts. Some contexts were recorded less frequently than others, yet
they occasionally proved to be stressful, which could be difficult
for participants to understand. P16 stated, “Social activities were
recorded only a few times for me, so I thought the results would be
affected by outliers like cases with extremely high stress.”

Participants understood this situation, acknowledging that not
all contexts occur at the same frequency. However, they mentioned
the need for careful handling of the analysis results for infrequent
contexts to avoid potentially undermining the trust in other results.
They proposed several solutions, for instance, showing analysis
results only for contexts recorded above a certain threshold (P07)
or prioritizing the presentation of stressful contexts with more
samples to establish trust in the results (P24).

5.3.4  Differences in Understanding by Context Type. While explor-
ing the stressful contexts, the participants showed differences in
understanding the result depending on the context type. They un-
derstood the result clearly only when the context type was activity.
“For me, what I did could directly affect my stress rather than when
or where it was” (P17). P18 also mentioned, “If we remember being
stressed because of the assignment, we often recall the activity as a
source of stress, not who we did it with.” Additionally, they thought
the place was closely related to the activity, which made it unfamil-
iar to view a place itself as a stressful context. “Since the classroom
was mainly designed for study and lecture, it would be easier to think
that I was stressed because of those activities” (P04).

5.4 RQ4: How Do Users Utilize the Information
about Stressful Contexts in Everyday Life?

5.4.1 Understanding Their Own Stress by Revisiting the Deepstress
Data. In the main study, most participants were interested in the
analysis results and wanted to go over the details even after the
interview. During the diary study, they revisited their previous
records to explore their overall stress levels and check if they were
experiencing high stress. They tried to figure out patterns in stress
changes, for instance, focusing on stress on specific days to see if
there was a difference between the days of the week (P08). The
participants also tried to compare their current stress levels with
records in DeepStress. “I looked at the past records, imagining what
it would be like if I recorded stress today. April was a tough month
for me” (P19). After reviewing their previous records, P06 stated,
“T'd like to collect more data to make meaningful comparisons.”

5.4.2  Planning Their Every Day Towards Lowering Their Stress Lev-
els. In the diary, participants reported that they utilized insights
from DeepStress when planning a day. They revisited the stress
information for each context to simulate potential stress levels. P01
stated, “I have a dinner meeting today, and I try to see how leisure time
affects my stress before I join there.” They utilized the information
when planning their schedule. “I checked the ‘studying’ context and
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decided to go to a cafe where my stress gets lower” (P24). P04 reflected
on his day to plan his tomorrow, “I compared what happened today
and the stressful contexts from DeepStress and decided to live with
less stress tomorrow by changing contexts.”

5.4.3 Performing Causality-driven Coping Actions When Stress Man-
agement Is Required. The information in DeepStress was frequently
used when the participants were in stressful situations. They iden-
tified whether their context was determined to be stressful in Deep-
Stress if they got stressed. P24 reported, “I checked the information
about the ‘classroom’ because I was getting stressed in that place.” P03
also mentioned, “I went over the stressful contexts to identify what
made me get stressed right now.” In those situations, they utilized
contexts that lowered their stress. “I tried to move around more, have
time with my friends, and do exercises regularly to lower my stress”
(P05). They also leveraged diverse contexts to lower their stress
in a given context, as P23 mentioned, “I went to the cafe instead of
other places since DeepStress said my stress gets lower if I study in the
cafe.” However, in some cases, they could not do anything even if
they noticed the stressful context. P22 said, “I was still questioning
whether I could control the stressful context. Knowing what is stressful
and handling it is different for me.” Nevertheless, they could better
understand themselves, as P21 noted, “Although I couldn’t change
where to take a class, at least I could see my stress more objectively.”

5.4.4 Conducting Re-evaluation and Detailed Analysis of Stressful
Contexts. The participants also wondered whether the analyses
from DeepStress were correct in practice. In the main study, they
generated their own explanations for the results based on their prior
self-knowledge or DeepStress data. Conversely, they attempted to
validate the results in situ during the diary study, especially when
experiencing contexts determined as stressful. In doing so, some
participants could specify the true stressful contexts. P15’s result
showed that ‘morning’ is a stressful time for him, which he was
uncertain about during the main study. However, he reported in
the diary, “I found my bad sleep quality affected my morning time. I
will secure my sleep time more and see how my stress changes.” P02
found that the stress of studying can vary depending on the course
taken and began thinking about how to plan his schedule. “As I
deeply looked into my stress while I was studying, I realized that my
stress levels varied by my preference for the course. I have to re-plan
my study schedule to handle the non-preferred courses.” As such, the
re-evaluation process with DeepStress in the wild helped them gain
a more specific understanding of themselves and plan their lives to
better manage stress.

6 DISCUSSION

6.1 Leveraging the Quasi-experimental
Approach in PI Systems

DeepStress employed a quasi-experimental methodology to help
users investigate which contexts were causally related to stress
using their self-tracking data. While previous PI systems have also
explored relationships between various factors (e.g., correlation
analysis and self-experimentation), there are methodological differ-
ences from this study’s approach. Additionally, this method would
be beneficial for exploring causal relationships that (1) are unknown
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or less intuitive, (2) can be influenced by multiple, complex external
factors, or (3) are challenging to test individually.

Compared to studies conducting correlation analyses, the quasi-
experimental approach enables users to assess the effects of specific
contexts on stress levels with unbiased data, by balancing the distri-
bution of confounding factors. While our approach shares a funda-
mental similarity with correlation analysis in eventually comparing
stress levels between cases with and without the target context,
the key difference lies in whether the data were balanced before
the comparison, which potentially leads to different conclusions.
In this study, we observed cases where the results of correlation
(i.e., without balancing) and causality (i.e., with balancing) were
inconsistent. Some showed significant causality but no correlation
or presented opposite directions of correlation and causality (details
in Supplementary Material). Therefore, we may consider deliver-
ing results from the quasi-experimental approach together in PI
systems so that users do not miss important relationships from
a rigorous analysis. Given that users may utilize PI systems for
critical purposes such as health management, these inconsisten-
cies should be carefully considered to avoid potential type 2 errors,
particularly when numerous confounding factors complicate the
estimation of the unbiased effect of a target context.

The quasi-experimental approach is less rigorous than experi-
mentation but has the advantage of investigating causalities from
collected data without conducting controlled experiments for each
context. Testing all contexts with n-of-1 trials can be challeng-
ing in terms of time and cost, particularly as the number of con-
texts and confounding factors increases. When experimentation is
limited, our approach could serve as an alternative for inferring
causal relationships, enabling unbiased evaluations. Furthermore,
self-experimentation and quasi-experimental approaches can be
employed together to complement each other’s limitations. For
example, PI system users can first explore causal relationships us-
ing quasi-experimental approaches and proceed with follow-up
self-experimentation if needed. This combined approach helps nar-
row down the scope of experimentation, allowing users to analyze
causality rigorously and address practical concerns such as costs.

The quasi-experimental approach aims to minimize bias in col-
lected data, similar to randomized trials, before comparing groups.
Compared to correlation analysis without balancing data, this ap-
proach may require more data to find proper counterfactual samples
(i.e., pairs of treated and control samples). The necessary sample
size for causal inference varies depending on factors such as data
dimension. As the dimension increases, finding sufficiently simi-
lar samples for all confounding factors may become challenging,
potentially requiring further data collection. The required sample
size also depends on the specific quasi-experimental method or the
users’ determination of statistical power and significance level [21].
Collecting as much data as possible is advantageous for analysis;
however, the burden on users associated with data collection must
be considered carefully (further discussed in Section 6.3).

In matching similar samples, we employed the intuitive CEM
method. Unlike other methods like propensity score matching, CEM
did not require additional abstraction for balancing confounding
factors. It allowed users to create bins for each confounding fac-
tor based on similarity, making it easily understandable that this
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method enables an apples-to-apples comparison. CEM offers flex-
ibility in adjusting bin size (or the number of bins), letting users
set the maximum imbalance bound for each confounding factor
based on their knowledge of the data [30]. However, this approach
involves a trade-off: smaller bins (i.e., more fine-grained) increase
sample similarity but decrease the likelihood of having both treated
and control samples within the same bin, reducing matched sample
size. For user-defined coarsened bins, there are no specific guide-
lines such as deciding the appropriate number of bins or their sizes.
King et al. [39] proposed the “matching frontier” that reaches the
jointly optimal case for the trade-off, but they primarily focused on
pruning samples for given coarsened bins. Moreover, as explained
in Tacus et al. [31], different numbers of bins can be generated based
on the target domain and the importance of each variable.

One suggestion is to test numerous binning cases and choose the
one that best balances the confounding factors between groups [28].
This can be supported by an automated procedure [31], where the
algorithm progressively reduces the number of bins until reaching
the minimum allowable number. As shown in their example using
the Lalonde dataset, this procedure improves the matched cases
and reveals which confounding factors have the largest impact on
the imbalance level. However, it is crucial to avoid bins that drop
treated samples, if possible, because the analysis aims to measure
the effect of the treated cases on the outcome. In our study, deter-
mining the similarity between contexts posed a challenge, even
when participants provided reasons for clustering them in the same
bins. This challenge may arise partly because contexts are categori-
cal variables, and measuring their closeness can be ambiguous. To
improve PI systems, we propose allowing users to input for bin-
ning criteria (e.g., “This activity requires concentration a lot”) and
score each context accordingly (e.g., “Strongly agree”). By leverag-
ing these responses, the system can generate bins by considering
the closeness of contexts (e.g., k-nearest neighbors), with bin sizes
iteratively revised to find the optimal coarsened bins.

Determining appropriate rigor in PI systems is an open question.
One suggestion is that systems should support different rigor lev-
els by users’ questions and analysis scope [35]. We may improve
DeepStress to deliver analyzed results with varying rigor levels
incrementally, starting with correlations [3] and progressing to
unbiased causal analysis using the quasi-experimental approach. If
users require more rigorous evidence (e.g., testing serious health is-
sues), systems may guide them on self-experimentations or provide
randomized study designs. However, PI systems should inform users
if the inconsistency in analyzed results between biased and unbi-
ased data occurs, enabling more careful examinations. Throughout
this process, users may learn rigorous data analysis and experiment
design from PI systems and answer their questions.

6.2 Delivering Causal Analysis Results to PI
Users

In this study, DeepStress directly delivered the results of causal
relationships to users. Previous studies [9] reported that allowing
users to identify causality from visualized data may lead to wrong
conclusions. Therefore, we chose to provide users with the analyzed
stressful contexts along with explanations and relevant information,
rather than letting them investigate causality on their own.
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In the user study, participants understood the concept of causal-
ity and explored various relationships between contexts while iden-
tifying stressful situations. When encountering a context with high
stress that was not identified as a cause, participants closely ex-
amined its relationship with other contexts and recognized the
potential influences on stress levels. Prior studies [24, 57, 66] high-
lighted users’ reliance on prior knowledge due to the complexity of
investigating confounding factors. However, DeepStress played a
crucial role in raising awareness of these potential confounders, en-
couraging a more balanced perspective when evaluating causality.

The overall process of exploring and understanding stressful
contexts using DeepStress can be interpreted through the Mamyk-
ina et al’s sensemaking framework [52]. When there was no gap
between the inferred causal relationship and users’ existing self-
knowledge, they entered the ‘habitual mode, accepting the causal
results without further analysis. In contrast, in the presence of in-
consistency, the ‘sensemaking mode’ was initiated, where users
actively explored the data and generated interpretations for the
given results. Users’ analytic thinking was activated with unex-
pected causal relationships (perception of the gap), leading them to
explain how such results emerged by reflecting on past records (con-
struction of new inferences). Also, they could maintain or update
their mental models of causal relationships and apply the newly
acquired knowledge in the real world (explicit actions).

In particular, activities occurring in the inference stage aligned
with the personal discovery framework [51]. For instance, users
might hypothesize that unexpected causal relationships were influ-
enced by other co-occurring contexts. They evaluated the hypothe-
sis by examining the co-occurring ratio and checked the details in
the calendar view to assess their hypothesis.

We found some behaviors fell between the two modes. Users
occasionally integrated analyzed results with their existing knowl-
edge or past experiences, instead of revisiting the data or collecting
additional information. This heuristic integration process could be
interpreted as fluid contextual reasoning [36], where individuals
quickly connect existing models without elaborate sensemaking.
As this mode does not require effortful thinking for sensemaking,
users apply their existing knowledge along with the analysis from
DeepStress when managing stress entangled with diverse contexts.

The use of DeepStress can also be interpreted through another
sensemaking perspective, namely the data-frame theory of sense-
making [41]. In this framework, samples collected from self-tracking
typically served as ‘data, employed to construct new ‘frames’ illus-
trating relationships between various factors. However, as Deep-
Stress directly informed the stressful context analyzed by the sys-
tem, there were some variations in the sensemaking process com-
pared to existing studies on PI systems.

Our work showed that the data-frame relationship could extend
to two different levels. Initially, users’ self-knowledge of how each
context affects stress can be seen as a frame, while the causal result
for a certain context inferred from DeepStress can be regarded as
data. Depending on the gap between the existing frame and the
data in determining stressful contexts, users may either elaborate
on the frame or question and adjust it using the data. When the gap
is observed, another round of sensemaking begins with a new data-
frame relationship, wherein the DeepStress’s causal result acts as a
frame and the raw self-tracking samples serve as data. During this
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process, users may re-analyze the data, potentially generating an
alternative frame or understanding and accepting the given frame.
If the alternative makes sense to them, the frame is integrated into
the prior self-knowledge, thereby extending the users’ own frame.
Therefore, the system-driven analysis results in the PI system may
serve as both data and frame, effectively connecting self-tracking
data and self-knowledge in the sensemaking process. Moreover,
acting as an anchor in the analysis, they could assist users in quickly
understanding the overall causalities while exploring unfamiliar
cases where new knowledge could be discovered.

6.3 Actions after Reflection on Causality

As with prior healthcare studies highlighting the significance of
contextual factors [48, 64, 65], this study empowered participants
to understand how context influences stress and implement data-
driven strategies. Participants utilized information on the presence
of causality and its intensity in each context for effective stress
management. This information could be integrated into existing
just-in-time interventions, guiding users on stress management in
stressful contexts. By leveraging the causal relationships, existing PI
systems can be extended to predict stress levels in specific contexts
and proactively inform users to help plan their day.

The information from DeepStress could be used to (1) check
whether a certain context was stressful and (2) identify other con-
texts that influenced stress within a given situation. This novel
feature, employing a quasi-experimental approach in two stages, of-
fered users flexibility in developing coping strategies for managing
their stress. Previous PI systems typically focused on the relation-
ship between two factors (e.g., stress levels and a specific context),
leaving users with the only option of ‘avoiding the stressful con-
text. However, DeepStress additionally analyzed the causalities
within a given context and identified which other contexts have
causal relationships with stress. This can be practical for develop-
ing an alternative plan for stress management in situations where
controlling the problematic context directly is challenging, such
as attending a class in the dormitory instead of simply skipping
it. Mamykina et al. [51] also demonstrated that providing flexi-
ble options for addressing (health) issues would make users more
actively engaged in self-management. Therefore, the two-stage
causal analysis in DeepStress would empower PI system users with
more alternatives, potentially motivating users to explore causal
relationships from various angles.

In our follow-up diary study, DeepStress motivated participants
to revisit the reflection and data collection steps in the stage-based
model. They iterated reflecting on whether each context’s causal
relationship was accurate while experiencing that context in their
daily lives, which can be considered as ‘reflection-in-action’ [58].
This differed from the main study’s ‘reflection-on-action,” where
they relied on analysis results or memory. From the data-sensemaking
perspective, users utilized this active reflection to find cases sup-
porting hypotheses generated during the ‘reflection-on-action’ pro-
cess. This process may help users construct a rationale for analysis
results and expand their self-knowledge. In addition, the partici-
pants recognized the need for further data collection, questioning
whether the results could be reproduced with the new data. There-
fore, supporting continuous data collection is necessary to enable
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users to examine stressful contexts over any period of interest and
to investigate how the relationships change over time.

Given the recurring process after reflecting on causal relation-
ships, our system could be more beneficial when the value of the
quasi-experimental approach exceeds the users’ burden. Previous
studies [66, 68] also emphasized balancing the benefits and burdens
of self-tracking to encourage users to continue data collection while
gaining new insights.

First, DeepStress could be used with passively collected data,
reducing the data collection burden. For instance, the system could
assist users with diabetes in identifying behavioral causes of blood
glucose spikes by utilizing sensor data, including accelerometers
(physical activity), GPS (place), ambient light (sleep), and heart rate
(stress), along with photos of food intake [14, 56]. By combining
them with continuously monitored glucose levels, PI systems could
estimate causal relationships and alert users to potential risk fac-
tors without requesting users’ manual data collection. Moreover,
it would be valuable for laborious cases that purely rely on self-
experimentations, such as identifying triggers of gastrointestinal
discomfort. Our approach reduces the complicated process of set-
ting experiments and testing each case individually, as users can
derive causality from data they naturally collect in their daily lives.

Alternatively, we may reduce user burden by narrowing down
the scope of data collection. Given that users formulate hypotheses
and assess them using self-tracking data [59], PI systems could
offer specific guidelines for data collection based on the hypothe-
ses rather than simply requesting extensive data collection. The
causal analysis process can be improved by referring to suggestions
in [16], letting users explore testable variables, conduct a prelimi-
nary analysis, and perform a main evaluation focusing on specific
hypotheses. Furthermore, PI systems may empower users to start
with a narrow, specific question, such as determining whether con-
text X increases their stress, as opposed to a more general inquiry
about which contexts elevate stress levels. This approach would
enable users to collect sufficient samples for causal inference within
a shorter period because the treatment condition is predefined. This
facilitates the acquisition of more treated samples, which are often
sparser than controlled ones. Considering the iterative nature of
the reflection-and-action cycle in PI systems [23], users can identify
relevant factors (to the initial context) during their exploration and
subsequently conduct the same analysis on those factors. These
approaches would encourage continued self-tracking for users to
explore and test various aspects of daily life.

6.4 Limitations and Future Work

One crucial challenge is determining the level of detail for user-
recorded context. While we offered preset contexts to ease data
collection, it had limitations in capturing detailed context infor-
mation. In addition, there was a trade-off between facilitating the
analysis (i.e., requiring more samples) and providing results for
very specific contexts (i.e., having fewer samples). To address these
issues, PI systems could allow users to record more specific situa-
tions like a diary. These records could serve as additional contextual
information for causal inference. Furthermore, the system could
provide information on the feasibility of causal inference based
on the amount of collected data. This would encourage users to
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collect more samples for the context or create another coarsened
bin including that context to enable the causal analysis.

To explore the feasibility of a PI system supporting causal infer-
ence, we provided analysis results only after completing a certain
data collection period. In future work, systems could gradually de-
liver analyzable insights based on the collected data, motivating
users for data collection and supporting reflection-in-action.

For the generalizability of the study, considering alternative
quasi-experimental approaches like propensity score matching is
crucial for analytical robustness. Further investigation should in-
volve individuals beyond university students, especially those with
limited data analysis knowledge, to assess how they utilize the
system. Also, experiments comparing DeepStress with other PI
systems help reveal the relative benefits of investigating causality.

7 CONCLUSION

We introduced ‘DeepStress,’ a PI system that supports users in in-
vestigating stressful contexts determined by a quasi-experimental
approach. Our goal was to identify user experiences in exploring
causal relationships through DeepStress. We showed that Deep-
Stress helped users conduct data-driven self-reflection where they
could pinpoint both stressful contexts and relationships between
contexts. We also found that the sensemaking process occurred
while interpreting the causal analysis results, which may be contin-
ued to the application of findings in daily life to manage stress.

Our study showed the feasibility of a PI system in exploring
causal relationships using observational, self-tracking data. We
expect our system to be extended to address diverse health chal-
lenges by leveraging causalities and to be utilized complementary
with other methods such as self-experimentations in delivering
meaningful causal insights.
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