
DataSentry: Building Missing Data Management System for
In-the-Wild Mobile Sensor Data Collection through Multi-Year

Iterative Design Approach
Yugyeong Jung

School of Computing
KAIST

Daejeon, Republic of Korea
yugyeong.jung@kaist.ac.kr

Hei Yiu Law
School of Computing

KAIST
Daejeon, Republic of Korea
emilyelhy@yahoo.com

Hadong Lee
Seoul National University

Seoul, Seoul, Republic of Korea
leeha@snu.ac.kr

Junmo Lee
School of Computing

KAIST
Daejeon, Republic of Korea
leejunmo84@gmail.com

Bongshin Lee
Yonsei University

Seoul, Republic of Korea
b.lee@yonsei.ac.kr

Uichin Lee∗
School of Computing

KAIST
Daejeon, Republic of Korea

uclee@kaist.ac.kr

Abstract
Mobile sensor data collection in people’s daily lives is essential for
understanding fine-grained human behaviors. However, in-the-wild
data collection often results in missing data due to participant and
system-related issues. While existing monitoring systems in the
mobile sensing field provide an opportunity to detect missing data,
they fall short in monitoring data across many participants and
sensors and diagnosing the root causes of missing data, accounting
for heterogeneous sensing characteristics of mobile sensor data.
To address these limitations, we undertook a multi-year iterative
design process to develop a system for monitoring missing data in
mobile sensor data collection. Our final prototype, DataSentry, en-
ables the detection, diagnosis, and addressing of missing data issues
across many participants and sensors, considering both within- and
between-person variability. Based on the iterative design process,
we share our experiences, lessons learned, and design implications
for developing advanced missing data management systems.

CCS Concepts
• Human-centered computing→ Empirical studies in ubiq-
uitous and mobile computing; Visualization systems and tools.
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1 Introduction
Research in human–computer interaction (HCI) and ubiquitous
computing fields is increasingly leveraging mobile sensor data
to gain fine-grained insights into human behaviors, including di-
agnosing health conditions [42, 57, 58], predicting productivity
[36, 41, 56], and analyzing social interactions [10, 24]. The collec-
tion of sensor data from mobile devices in everyday life is crucial
for conducting mobile sensing studies [13, 27].

As these sensor data are collected in real-world environments,
various participant- or system-related issues can result in missing
data (e.g., empty periods in the sensor stream) during data collection
due to issues related to participants’ behaviors or data collection
systems [15, 25, 26, 37, 64]. Failing to address these missing data
issues can trigger a data cascade, leading to poor performance in
downstream tasks such as modeling and analysis [51]. To prevent
this situation, it is crucial for domain researchers to detect missing
data, diagnose root causes, and address them promptly [64]. Previ-
ous studies have proposed diverse monitoring systems alongside
mobile sensing frameworks [16, 17, 47] to address the missing data
challenges. These systems provide an interface focusing on detect-
ing missing data in raw data streams [20, 47] or aggregated metrics
[16, 54] to allow researchers to find missing data.

Despite such efforts, challenges remain in detecting, diagnosing,
and addressing missing data. Because various sensors adopt event-
based sensing based on human behavior (e.g., logging when specific
events related to human behavior occur, such as moving or using
apps), the data inherently exhibit variability between participants.
For instance, participants who are active throughout the day log
data frequently, whereas those who are less active log data sparsely.
Even within a participant, periods of frequent data collection exist,
followed by those of low activity where data are scarcely logged.
Such variability complicates determining whether a missing period
is simply owing to the common behavior patterns or the result of
data collection issues.
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In addition, due to the complex nature of mobile sensor data,
prior systems are constrained by two key limitations. First, they
provide a limited view to capture missing data originating from
various sensors and participants. They have focused on monitoring
compliance-related data (e.g., data collected through participant
compliance, such as self-report surveys or wearable use) or ex-
amining individual sensor streams, making it difficult to obtain a
comprehensive understanding of missing data across many sensors
and participants. Second, existing systems do not account for the
inherent within- and between-person variability in human behav-
ior sensing data, making it challenging to diagnose the causes of
missing data. Furthermore, different causes (e.g., frequent battery
depletion or server issues) may need different ways of addressing
them (e.g., giving instructions to participants or checking server
status). However, examining aggregated metrics or individual sen-
sor data does not provide information on why the data is missing
or which interventions should be taken.

Considering these limitations, we designed and developed a miss-
ing data management system to help researchers detect missing
data, diagnose their root causes, and address them. We engaged in
a multi-year iterative design process and reported on our experi-
ence with how the prototypes were improved. Our design process
included three iterations, each involving prototype deployment
for in-the-wild data collection, reflecting the practical challenges
faced by domain researchers. In the initial stage, we gathered de-
sign requirements by interviewing seven researchers. Using these
insights, we developed the first prototype, which was deployed
in a one-month data collection. Based on the feedback received,
we developed a second prototype that was deployed and tested
through two data collections. We completed the final prototype,
incorporating the feedback, and conducted a user study (N = 26).

Our final prototype, DataSentry, provides an interface enabling
researchers to detect, diagnose, and address missing data during
mobile sensor data collection. It provides a comprehensive overview
to help detect missing data when collecting data from many people
and sensors. Based on this, the system offers visualization that
allows a fine-grained diagnosis of missing data. It considers both
within- and between-participant variabilities, allowing researchers
to identify the context and underlying causes for missing data.
In addition, it provides a means to communicate the identified
issues with participants to address them. To summarize, our main
contributions are as follows:

• We identify key challenges in detecting, diagnosing, and
addressingmissing data from participant- and system-related
issues, considering within-/between-participant variability
of mobile sensor data. We report experiences and lessons
learned from amulti-year iterative design aimed at managing
missing data to handle these challenges.

• We present our final system, called DataSentry, which allows
researchers to import and monitor mobile sensor data col-
lected from data collection campaigns. The code is available
on GitHub.1

• We propose design implications that can be utilized for de-
veloping advanced missing data management systems.

1https://github.com/Kaist-ICLab/DataSentry

2 Related Work
In this section, we review existing literature and tools relevant to
issues that lead to missing data in mobile data collection and the
systems developed to monitor and manage mobile sensor data.

2.1 Participant- and System-related Issues
Causing Missing Data in Mobile Sensor Data
Collection

Studies in the field of ubiquitous computing have focused on col-
lecting “human data” using mobile and wearable sensors [12, 62].
Researchers encounter diverse issues affecting data quality while
collecting data in the wild. We categorize them into participant-
and system-related issues depending on their causes.

Participant-related issues result from the behavior of data collec-
tion participants, including compliance with self-reports, powering
off smartphones or sensors, and dropping out of the data collection
campaign. The primary is self-report compliance, wherein partici-
pants forget or ignore self-report requests [29]. Furthermore, they
deliberately or unintentionally switch off smartphones or sensors
for battery saving or privacy protection [15, 46, 64]. Sometimes,
they forget to switch them on later, leaving valuable information
missing. Some are disconnected from research teams on certain
occasions, which results in complete absence from data collection
[26, 64]. This phenomenon, commonly known as dropout, refers to
a situation where participants withdraw from the study [22, 43].

System-related issues stem from the data collection system (e.g.,
networks, servers, and sensing devices). With the loss of wireless
connections for smartphones, a problem exists in which data is
not sent to the server [15, 18, 26, 52]. Data collection servers can
also cause issues: when they experience technical problems, data
reception from smartphones may face challenges [45, 64]. Due to
technical problems with smartphones or sensors, a possibility of
missing data exists [25].

Various studies in the fields of ubiquitous computing and HCI
[19, 33, 54, 60, 61] have been conducted to identify and address
these issues, with a focus on improving self-report compliance (e.g.,
whether participants respond to self-report) or wearable compli-
ance (e.g., whether participants wear the devices for the period
stipulated by researchers). For example, an interactive visualiza-
tion system [54] and regression modeling [33] have been used
to track and predict compliance. Different approaches have been
adopted to enhance compliance, including visualization, gamifica-
tion, and context-informed scheduling [19, 60, 61]. Although these
studies offer opportunities to monitor and resolve missing data,
most work focused on participant-related issues (e.g., self-report
or wearable compliance). Our work extends existing research by
developing a comprehensive visualization system that supports the
exploration of sensor data streams, enabling the identification of
diverse participant- and system-related issues.

2.2 Sensor Data Collection and Missing Data
Monitoring Systems in Mobile Sensing
Research

2.2.1 Sensor Data Monitoring Systems: Monitoring of Raw Data vs.
Aggregated Data. Diverse sensing frameworks can capture mobile
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sensor data from people’s daily lives [7, 8, 28, 48, 59]. A simple
approach to ensure the quality of the collected data is to visualize the
data (e.g., Python plotting) [39, 49]. Beyond this, many tools have
been developed for data collection monitoring. These tools help
alleviate researchers’ burden by providing the ability to monitor
data quality including missing data. Depending on the type of data
being monitored, these tools can be categorized into 1) monitoring
of raw data and 2) monitoring of aggregated data.

Several tools provide the ability to monitor raw sensor data,
allowing researchers to check for missing data and the status of
data collection. The Incense IoT sensing framework [47] offers
a monitoring interface by visualizing individual sensor streams,
allowing users to select the specific device, sensor type, and time
period. The IBMWatson IoT Platform [20] enables the collection of
sensor data while allowing real-time monitoring of the connection,
server, and live data of IoT devices, supporting the observation
of missing data. The Ohmage sensing framework [55] provides a
dashboard to monitor the progress of raw sensor data collection.

Another approach involves tools that support monitoring ag-
gregated metrics. The mk-sense sensing framework [16] provides
a dashboard for supervising the data count per time window in
the form of a heatmap, allowing users to identify periods with
missing data. The AndWellness platform [17] calculates metrics
such as battery charge levels, the number of smartphone interac-
tions, and survey-response count to analyze participation quality,
to determine if there is any missing data. Research by Talkad et
al. [54] and the MobisenseXS platform [40] focus on features to
monitor user compliance (e.g., whether users respond to surveys
or wear wearables). They calculate metrics such as the number of
survey responses or wearable usage time to identify periods with
missing compliance-related data. The RedCap platform [6] offers a
dashboard to track whether participants have completed the tasks
required for the study, providing an overview of where the task
completion was missing.

2.2.2 Remaining Key Challenges in Sensor Data Monitoring. While
existing tools enable missing data monitoring, they have limited
support in detecting missing data, and lack capabilities for diag-
nosing and addressing missing data issues in mobile sensor data
collection. Researchers, therefore, face the following key challenges:
Challenge 1. Comprehensive understanding of missing data.
Most existing systems focus narrowly on individual sensor streams
or aggregated metrics of specific sensor types, requiring users
to manually select small subsets of sensors, participants, or time
frames to inspect. This makes it challenging to achieve a holistic un-
derstanding of missing data over diverse sensors and participants.
Challenge 2. Diagnosing and addressing missing data issues.
Various causes for missing data could exist; they could stem from
participant-related issues (e.g., non-responsiveness to self-reports,
or switching off smartphones or sensors) and system-related issues
(e.g., server failures, network disruptions, or sensor malfunctions).
However, existing systems focus primarily on detecting missing
data without offering capabilities to diagnose its root causes. Fur-
thermore, they do not support addressing missing data issues, such
as contacting participants with preventive instructions.

To tackle these challenges, we introduce DataSentry, a missing
data management system for mobile sensor data collection. It sup-
ports the exploration of missing data at both the overview and
fine-grained levels, providing a visualization that helps diagnose
the causes of missing data and features to address them.

3 Formative Study
In this section, we present a formative study focusing on insights
gained from interviews with researchers experienced in mobile
sensor data collection.

3.1 Method
To identify the design requirements for a missing data management
system, we conducted semi-structured online interviews with seven
researchers (R1 - R7) from six research groups experienced inmobile
data collection and analysis (Table 1 in Appendix). We targeted
research groups in mobile sensing working on independent projects.
The interviews covered three areas: 1) monitoring setup (goals and
tools), 2) monitoring tasks, and 3) challenges. With participants’
consent, the interviews were audio-recorded, and each participant
received a $30 USD coffee coupon as compensation.

We applied thematic analysis [2] to the transcribed interview
data, following six stages: familiarizing with data, generating codes,
searching for themes, reviewing themes, defining and naming themes,
and producing report. We adopted an inductive approach, starting
from raw interview data. Two of the authors repeatedly reviewed
interview data, assigned thematic codes, and merged similar ones.
The codes were then categorized into major themes, which were
prioritized by frequency until reaching consensus. This analysis
resulted in three key design requirements.

3.2 Results
Researchers collected diverse sensor data from smartphones, such
as physical activity, call logs, and app usage logs; specifically, six
collected self-reports using mobile ESM by periodically sending
requests to participants. A few researchers collaborated with team-
mates who assisted in managing data collection (R2 and R3). How-
ever, most of themworked alone owing to the difficulty of recruiting
assistants, which fatigued them during data collection.
Design Requirement 1: Overviewing missing data across
many people and sensors. Researchers wanted to identify miss-
ing data at a glance across many sensor streams. Their goal was
to ensure that data was collected without missing data related to
participant- or system-related issues. They periodically downloaded
data from database, counted the number of rows per sensor and par-
ticipant, and plotted using Python. They thought if the count were
small, there would be missing data. Six researchers were interested
in low self-report compliance (e.g., how many times participants re-
sponded to self-reports). They counted the number of daily surveys
and found fewer participants than the predefined number. Three
researchers were interested in missing periods of smartphone log
data, such as location or app usage. They counted the number of
rows within a time window (day or hour); if the count was low,
they considered missing period inside the window. All researchers
acknowledged that reviewing data collection status from many peo-
ple and sensors requires considerable effort. Because they worked
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alone, they did not have enough time to monitor all sensor streams.
R4 noted, “There were so many sensors, activity transitions, phone
calls, and screen logs that I couldn’t thoroughly monitor the data. I
ended up just doing the bare minimum.” Consequently, unmonitored
data led to missing data. R7 proposed a comprehensive view to
check the entire data collection status at a glance: “At the very least,
it would be helpful to display whether data from each sensor and each
person was collected.”
Design Requirement 2: Identifying missing data in event-
based sensing. Researchers desired to determine which data col-
lections contained long missing periods for event-based sensing
data. After researchers had found participants in a few rows, they
wanted to determine whether this information implied missing
data. If the daily number of rows or sensing frequency were pre-
defined, it was easy to figure out participants with missing data.
They calculated the number of rows within a time window based
on predefined frequency and figured out participants who were
lower than it. However, most data items did not have a predefined
frequency; they are event-based sensing based on human behav-
iors. Therefore, researchers encountered difficulty in identifying the
number of rows to be collected over some time (e.g., hours or days).
Even if the number of rows was small, it was difficult to determine
whether the participant had missing data due to data collection
issues or a low degree of behavior. R2, who designed a GPS collector
to be triggered only when a participant started to move, mentioned,
“If there’s only a small number of rows, it might seem like there’s an
issue with the sensor collector. However, it could be because the user
didn’t move.” To cope with the challenge, R5 was comparing the
number of rows across participants and selecting participants with
a relatively low number of rows. He thought the average number of
rows could be a reference representing participants who performed
a common activity and regarded participants below the average as
possibly having missing data.
Design Requirement 3. Diagnosing missing data causes. Re-
searchers needed to diagnose detailed causes of missing data by
observing several data streams. R7 wanted to find participants who
intentionally shut down smartphones and wanted to observe mul-
tiple data streams together: “If I can check multiple data items at
a glance, then I can determine why the data was not collected. If
all data streams were not collected simultaneously, the participants
might turn off their smartphones.” R5 wanted to understand the rea-
sons for prolonged missing periods in self-reports. To gain insights
into missing self-reports, he observed various data items together:
“When the self-report was missing, I opened up the raw data files and
cross-checked other frequently sensing data during that period. If they
exist, this helped me realize that the missing data was not due to
smartphone breakdown but because the participant did not respond
to the survey.” Additionally, one of the reasons for missing data
was related to the OS version. After completing data collection,
R5 discovered that a group of people using Android 10 had a low
number of GPS data. He reflected, “Twenty people didn’t have GPS
data! I want to add a feature that groups multiple users with low data
counts and checks whether they’re using the same version.”

4 Iterative Design of Missing Data Management
System in Mobile Sensor Data Collection

This section details the iterative design of a missing data manage-
ment system for mobile data collection, incorporating feedback
from the formative study and deployments, and concludes with a
user study.

4.1 Overview of Iterative Design Process
Starting from the researchers’ experiences and challenges in forma-
tive study, we conducted a multi-year iterative design (2021 to 2023)
to develop a missing data management system. Inspired by previous
studies on multi-year system design and improvement [4, 14, 44],
we iteratively designed, developed, and evaluated the system over
a few years. We collaborated with target users to continuously
identify and address their needs. We deployed our system in in-the-
wild data collection, incorporated features informed by real-world
system usage, and iteratively resolved issues to enhance system
capabilities. Figure 1 provides a summary of the iterative design
process and data collection campaigns to evaluate each prototype.

To design the initial prototype, we invited two graduate students
with extensive knowledge of system design and mobile sensor data,
incorporating their suggestions to address the challenges. This pro-
totype was deployed in a one-month data collection, where 17 types
of sensor data and emotion-related self-report ESM were collected
from 116 participants (43 women, 73 men; age:𝑀 = 23.5, 𝑆𝐷 = 3.5).
Two graduate student researchers were invited to use the prototype.
Based on their experiences, we collected the researcher’s feedback
and improved a second prototype, which was deployed at two
in-the-wild data collection campaigns; the second campaign col-
lected 17 types of mobile sensor data with self-report ESM collected
via a smart speaker from 20 participants (7 women, 13 men; age:
𝑀 = 24.8, 𝑆𝐷 = 2.7), while the third campaign collected five types
of mobile sensor data with self-report ESM from 24 participants
(9 women, 15 men; age: 𝑀 = 21.3, 𝑆𝐷 = 2.1). Three researchers
(two for the second campaign and one for the third campaign) were
recruited for missing data monitoring using the prototype. Three
of the authors synthesized the researchers’ feedback and imple-
mented the final prototype. Finally, we conducted an in-lab user
study with 26 mobile sensing researchers to assess whether the
prototype could be useful for researchers. Details of the researchers
in the three data collection campaigns and user study are described
in Tables 2 and 3 in Appendix.

Following the Institutional Review Board (IRB) recommenda-
tions, all processes were informed by the researchers, and consent
was obtained. We describe how the design was refined, highlighting
key feedback from in-the-wild data collection campaigns.

4.2 First Design Iteration
4.2.1 Prototype design. To design and develop the first prototype,
we did a rapid prototypingwith Tableau [53], a commercial software
that supports the easy visualization of tabular data. We detail how
we reflected three design requirements from the formative study.
Overview ofmissing data across people and sensors. Reflecting
on the Design Requirement 1, the prototype provides a view letting
users identify missing data across multiple participants and sensors
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Figure 1: The overview of ourmulti-year iterative development process: (upper diagram) Timeline of our iterative design process
and (table below) Details of the three data collection campaigns conducted to evaluate and iteratively refine the prototypes.

(Figure 2A). It calculates the daily item count for each sensor and
participant and visualizes the information as stacked bars (with the
x-axis being data counts, the y-axis being participant IDs, and colors
being sensor data types). By observing the stacked bars, users can
identify participants with low data counts, which might indicate
the presence of missing data. For example, in Figure 2A, users may
suspect that Participant 10 has missing data, as their total item
count is lower than others’. To check individual sensor data, users
can click on the sensor name in the Data Type legend to filter a
single bar chart.
Data-driven guidelines using statistical quality control mech-
anism. Along with the overview of data collection (Figure 2A),
users can get guidelines to determine which item count might indi-
cate missing data in event-based sensing (Figure 2B), as the data
collection varies depending on human behaviors. Drawing inspira-
tion from the Design Requirement 2, we enabled the identification of
participants with missing data by comparing the data counts across
participants to find those with relatively lower data counts. We
adopted the concept of control charts [38] commonly used in the
manufacturing domain, defining outlier metric as values outside
[𝜇 −𝑘𝜎, 𝜇 +𝑘𝜎], where 𝑘 is a constant, and 𝜇 and 𝜎 are the average
and standard deviation. After selecting a specific data type from
a dropdown, users can adjust the value of 𝑘 using a checkbox to
decide which outlier range (outside the gray box) to apply. Partic-
ipants falling below this range are considered to have significant
missing data. Based on this, users can filter participants who fall
outside the normal range using the range slider in Figure 2A.

Visual exploration for missing data diagnosis. For participants
below the lower range, users can gain detailed contexts of missing
data through the temporal trend of item counts, reflecting Design
Requirement 3. By clicking a participant ID in the stacked bars (Fig.
2A), users navigate to a more detailed view of the data collection
status (Figure 2D). We resampled data at an hourly level and visu-
alized the temporal trends to check missing areas of a single data
item (Figure 2D) possibly due to sensor malfunctioning or turning
off the sensor, or the missing area of multiple data items (Figure
2E) due to powering off the smartphone or draining out of battery.
Additionally, users can check which data collection apps and OS
versions are being used by participants who have small data counts
(Figure 2C). When multiple participants are selected in Figure 2A,
the heatmap shows the distribution of participants by OS and data
collection software versions. Selecting participants with low item
counts helps to identify the popular versions they use, and provides
hints to users about possible version problems in data collection.

4.2.2 Field deployment. We deployed the first prototype in a real-
world mobile data collection from December 2021 to January 2022.
The primary objective of the deployment was to investigate the
experiences and user needs of using the prototype in the wild and
to leverage those insights for refinement.
Data collection and participants. The deployment study was
conducted with 116 participants during one month. They installed
open-source data collection software named ABC logger [23] and
received 96 USD for participation.
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Figure 2: Main views from the first prototype: (A) ‘Item Count per Day’ view provides the overview of missing data collection
across people and sensors, (B) ‘Distribution of Item Count per Day’ view enables the determination of guidelines for item count
metric using statistical quality control mechanism, (C) ‘Version Condition’ view helps to diagnosis whether the participants
with small item counts are using similar version of OS or data collection app, and (D, E) ‘Time Series of Item Count per Hour’
view visualizes trends of item count per hour to check missing data for a specific sensor (D) or across multiple sensors (E).

Managers and tasks.We recruited two graduate student researchers
(R8 and R9). R8 has been working on mobile data collection and
analysis and has extensive knowledge in this domain. R9 is not in
the mobile sensing domain but has knowledge (such as the types of
sensor data collected) of mobile data collection. They were asked to
find missing data during data collection and diagnose the causes of
missing data. After finding the participants, researchers used a com-
mercial messenger tool to contact them and address the issue (such

as asking for ESM surveys or checking whether their smartphones
were powered on).
Interview. At the end of data collection, we conducted a 1-hour
semi-structured interview with each researcher. The interviews
were audio-recorded, transcribed, and analyzed using affinity dia-
gramming to group them into major themes, such as 1) how they
used the prototype and their experiences, 2) major design insights,
and 3) minor usability issues.
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4.2.3 User experience, design insights, and usability issues. The
feedback from researchers helped us understand how the initial
prototype supported managing missing data during data collection.
Overall, researchers appreciated the use of item count to gain an
overview of the data collection and diagnose the contexts of missing
data. R8 noted, “The great thing about these bars is that it’s super easy
to spot people whose data wasn’t collected. If the bar’s short, I could tell
right away.” After finding participants with a small bar chart, they
moved to the hourly-level time-series view, to observe its temporal
trends. R9 shared her experiences of finding one participant with
missing data, “I couldn’t believe it - no data was collected over the
entire night! It was such a mess that I immediately reached out to him
to see if he’d been turning off his phone while sleeping.”
Design insight 1: Needs for reviewing raw sensor stream data.
While the system supported finding participants with missing data,
the researchers had insightful suggestions for improving the proto-
type. Their primary requirement was that they wanted to not only
observe aggregated metrics but also dive deeper into raw data from
various perspectives to understand where the missing data exist,
and what is the context and root cause of the missing. They found
that checking the temporal trend of hourly item count could help
diagnose the context of missing data to some extent. However, ob-
serving the aggregated metrics made it difficult to pinpoint exactly
when the data was missing or whether the missing data occurred
simultaneously on different sensors. Thus, they wanted to observe
raw data to verify exactly when the data was logged.
Design insight 2: Needs for diagnosing the causes of unex-
pected missing data by observing multiple sensor streams.
When a specific participant’s data was missing for an extended pe-
riod, researchers sought to determine whether it was due to typical
sensing patterns reflecting the participant’s daily behavior, or an
unexpected issue in the data collection process (e.g., unexpected par-
ticipants’ behavior or system-related issues). R9 mentioned, “There
was a participant whose app usage data count kept showing up as
zero on the line chart. I wanted to know if her data usually showed
low counts or if data collection had suddenly stopped, maybe because
she turned off the sensor collector.” R8 added, “It was interesting to
observe multiple sensor data to identify periods where data was miss-
ing simultaneously. But even more than that, being able to observe
specific sensor data across multiple participants would be useful to
catch instances where data wasn’t being collected from several people
at the same time. Identifying those patterns could help point to issues
like server failures where data isn’t coming through properly.” They
also emphasized that analyzing multiple sensor streams from dif-
ferent perspectives yields a more comprehensive understanding of
the context and underlying causes of missing data.
Usability issues. Researchers provided feedback on the use of
stacked bars to display daily item count metrics. In mobile data
collection, the wide variation in the scale of count metric across
different sensors (e.g., some sensors log more than 10,000 rows
while others log just 10–20) made it hard to observe sensor data
with smaller scales. They suggested using individual bar charts for
each sensor instead, which would make it easier to discriminate
between them. Additionally, for data types with specified sampling
rates or predefined item counts, they recommended calculating

thresholds for these counts within a time window and marking the
thresholds on the interface.

Lastly, researchers discussed features that were not particularly
useful in the system, such as statistical quality control or version
condition exploration. They thought the statistical quality control
was still ambiguous to determine participants with missing data
since the distribution of daily item counts was usually within a
range of [𝜇 − 1𝜎, 𝜇 + 1𝜎]. Thus, identifying outlier participants was
challenging. Rather than clarifying thresholds of item count using
the distribution, they usually sort and skim through whole bars and
click participants with relatively small or zero counts. Moreover,
since data collection issues due to the app or Android version were
rare, the researchers seldom used the version condition heatmap.
Consequently, they believed these features could either be removed
or assigned a lower priority in the system.

4.3 Second Design Iteration
Reflecting on the feedback from the first design iteration, we im-
proved our design and built the second prototype. The major sug-
gestion from the first iteration was that researchers wanted to
observe not only aggregated metrics but also many raw sensor
streams (Design Insight 1 in the first iteration) to better diagnose
the contexts and root causes of missing data (Design Insight 2 in the
first iteration). In addressing the feedback, we considered making
a web-based visualization system based on React.js [50] and D3.js
[35] instead of Tableau, due to the limitations of the tool that only
allows limited types of visualization and features.

4.3.1 Prototype design. The second prototype offers a comprehen-
sive overview of missing data across many sensors and participants
(Figure 3A), which are connected with the fine-grained exploration
of raw sensor streams (Figure 3B-D) to diagnose the root causes
and contexts of missing data.
Overview of missing data across many people and sensors.
As shown in Figure 3A, the prototype visualizes item count metrics
(in the ‘Count’ column) to help users identify participants with low
item counts, possibly due to missing data. To address the usabil-
ity issues found in the first iteration, we replaced the stacked bar
chart with individual bar charts and enabled sorting to support the
identification of participants with lower item counts. To further
support this, the heatmap displays three-hourly item counts in the
‘Timeline’ column (x-axis as time, color as item count), allowing
users to visually detect periods where data collection was sparse.
These combined visualizations give users insight into which partic-
ipants and sensors exhibited lower item counts at specific periods.
For data types with predefined item counts (such as a survey) or
sensing frequency, the prototype adopts bullet charts [9], which
allows for a comparison between target lines and actual measures.

For participants identified in the overview, the prototype pro-
vides three kinds of interconnected views (Figure 3B-D) allowing
users to observe missing data and diagnose its root causes (Design
Insights 1 and 2 in the first iteration).
Missing data diagnosis via one participant’s multiple sensor
streams. The prototype visualizes multiple data streams from a
single participant, enabling users to check for simultaneous missing
data across multiple sensors or missing data from specific sensors
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Figure 3: Major views of the second prototype: (A) Overview of item count metric across many people and sensors and (B) Detail
of One Participant view.

(‘Detail of One Participant’ view; Figure 3B). For instance, in Figure
3A, users notice that Participant 10 has fewer battery data com-
pared to other participants, a potential indication of the participant
experiencing missing data issues. Since battery data is event-based
sensing (logging only when specific events such as charging or
discharging), a low item count does not necessarily mean missing
data. Therefore, users click Participant 10 and move to the ‘Detail of
One Participant’ view to check detailed log data. As marked in the

red box in Figure 3B, users diagnose that all sensor streams were
missed simultaneously when the battery was discharged. Based on
the insights, users can contact the participant to request regular
charging to prevent a sudden smartphone shutdown.
Missing data diagnosis using within-participant comparison.
The prototype visualizes daily-basis sensor stream data within a
participant, enabling users to diagnose the contexts of missing data
(‘Within-Participant Time-Series Comparison’ view; Figure 3C). In
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the ‘Detail of One Participant’ view (Figure 3B), noticing the region
marked as a blue box, users may wonder why the physical activity
data is not collected during the afternoon. Since the data is event-
based sensing (logging only when physical activities occur, such

as walking or running), it is again challenging to discern whether
the missing data is due to the participant’s lack of activity or data
collection issue (e.g., turning off the sensor or sensor malfunction).
To diagnose the detailed contexts, users click on the data type and
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then select the ‘Within-Person Time-Series Comparison’ menu item
to navigate to Figure 3C. The view shows how the participant’s
physical activity data has been collected on a daily basis, with the
selected period from Figure 3B highlighted in blue text. Users notice
that, while the participant’s physical activity data was previously
collected in the afternoons, the data collection suddenly stopped
(marked as a blue box). Given this deviation from the participant’s
usual sensing patterns, users can contact the participant to check if
the sensor was intentionally turned off or if there is a malfunction
with the device affecting physical activity sensing.
Missing data diagnosis using between-participant compar-
ison. The prototype visualizes simultaneous sensor stream data
between participants, enabling users to diagnose the missing data
due to server issues (‘Between-Participant Time-Series Comparison’
view; Figure 3D). In Figure 3B, users may question the period where
the participant’s Bluetooth data is not collected (marked as a green
box). To investigate the detailed contexts, users can click on the data
type and select the ‘Between-Participants Time-Series Comparison’
menu to navigate to Figure 3D. The view shows how Bluetooth sen-
sor data from multiple participants was collected simultaneously,
with the selected participant from Figure 3D highlighted in blue
text. Users notice that data from many participants is missing at
the same time (marked as a green box). This suggests a potential
issue with the server receiving data, prompting users to discuss the
situation with developers and check the server. Additionally, users
notice that the sensing pattern of Participant 17 differs significantly
from that of other participants. Then, they can communicate with
this participant to check if there are issues with their device’s ability
to sense Bluetooth data.

4.3.2 Field deployment. We deployed our second prototype to two
data collection campaigns. The purpose of the deployment was to
assess whether the prototype could be effectively utilized while
also identifying insights for further improvement.
Data collection and participants. The second campaign involved
smart speaker and mobile data collection from 20 participants for
one month, and the third involved stress-related mobile data col-
lection from 24 participants for one month. After receiving an ori-
entation, participants installed data collection apps. In the second
campaign, smart speakers (Google Nest Hub) were distributed to
participants to collect self-reports of their emotional states in verbal
form. This team developed a data collection and context-sensing
application running on a smartphone attached to the smart speaker,
to trigger it when specific contexts are met (e.g., detection of the
presence of a user, or passage of a certain time since the last survey).
As compensation for data collection, participants were paid 307
USD. In the third campaign, compensation was based on the num-
ber of ESM surveys and their participation in the post-interview,
and they received 160 USD on average.
Managers and tasks. Three graduate student researchers (R10
and R11 for the second campaign and R12 for the third campaign),
different from those in the first campaign, managed data collection.
All had rich experience in mobile data collection and knowledge of
mobile sensor data. Before data collection, they were introduced
to the system’s features and asked to perform detection, diagnosis,
and addressing missing data.

Interview. After data collection, a 90-minute semi-structured in-
terview was conducted with each researcher by audio-recording
interview contents. We asked what types of data and data collection
problems they observed, how the system helped them determine
the missing data issues, and what their expectations of the system
were. Similar to the first design iteration, the interview contents
were transcribed and analyzed via affinity diagramming to analyze
major themes, such as their major user experiences of using the
system and design insights to improve the prototype.

4.3.3 User experience and design insights. All researchers, who
participated in two in-the-wild data collection campaigns, acknowl-
edged that the visualizations in the prototype were helpful, enabling
them to detect and diagnose missing data. Notably, the views al-
lowing for fine-grained analysis of multiple sensor streams stood
out as particularly useful, as they provided deeper insights into
the context and causes of missing data. They shared experiences
where these views were practically helpful. R11 recounted how
the ‘Detail of One Participant’ (Figure 3-B) view helped uncover a
missing data issue: “I had no idea there was a missing data before,
but this system made it easy to spot. Some participants hadn’t had
any sensor data for a while, and I found out it was because their
Wi-Fi was disconnected, which caused a syncing problem.” R12 em-
phasized the value of the within-/between-participant time-series
comparison view (Figure 3-C,D) in diagnosing missing data: “By
checking their within-/between-person app usage behaviors, I noticed
a sudden missing period that lasted for a long time, on Saturday night!
I started thinking maybe the participant turned off the data collector
on purpose, so I reached out to them to find out.”
Design insight 1: Needs for streamlined detection of long-
missing periods. In addition to the tool’s capability for detecting
and diagnosing missing data, researchers suggested improvements
for the second prototype. When observing missing data on the
‘Detail of One Participant’ view, they expressed a desire to know
how long these missing periods were, both in comparison to a par-
ticipant’s data and to other participants’ data. Before diagnosing
the root causes of the missing data, they were initially interested in
detecting conspicuously long periods of missing data. To assess the
length of these periods, they skimmed through the within/between-
participant time-series comparison view (Fig. 3C and Fig. 3D), com-
paring the length of missing periods against within- or between-
participants. If the period was significantly long, they would then
observe the raw sensor streams in detail to diagnose the causes of
the missing data. However, this process was considered cumber-
some; R10 commented, “To figure out how serious a missing period
was, I had to constantly switch between several pages. It wouldn’t
have been a big deal if I had more time, but doing this for multiple
people and sensors made it hard to catch all the missing periods.”
As a result, researchers requested a more streamlined process for
detecting long missing periods, with quicker access to information
showing whether a specific missing period was unusually long
compared to a participant’s data or to other participants’ data.
Design insight 2: Needs for lowering the burden of communi-
cation. Researchers expected features that would facilitate commu-
nication with participants to address missing data issues. While our
prototype lowered the burden of detecting and diagnosing miss-
ing data, researchers still had to communicate with participants
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Figure 4: Within- and between-participant variation lens: The within-participant variation shows the time interval distribution
of physical activity data within a participant, and the between-participant variation shows the time interval distribution of
physical activity data across all participants. The ‘dragged interval’ is the length of time interval dragged by users. The right
side provides information on selected time intervals (length, percentage of within- and between-participant variation).
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to address these issues. They often needed to contact participants
to correct their improper behaviors (e.g., intentional smartphone
shutdowns or missing responses to emotional surveys) or figure
out the causes of missing data. However, this process remained a
cumbersome task. After identifying participants with missing data,
researchers had to find their contact information (phone numbers or
email addresses) and input these details into a separate messaging
tool to send messages. In this process, they repeatedly sent similar
messages to multiple participants, creating a significant burden.

4.4 Final Design
4.4.1 Prototype design. In the second design iteration, researchers
wanted to easily detect conspicuously long periods of missing data,
compared to a participant’s data or multiple participants’ data (De-
sign Insight 1 in the second design iteration). Furthermore, while
addressing the missing data issues, they wanted to lower the burden
of manual communication with many participants (Design Insight
2 in the second design iteration). To address the feedback, we intro-
duced two new features on the second prototype and completed

our final prototype, DataSentry. The following section details the
added features to complete the final prototype.
Detection of long-missing periods. To aid researchers find con-
spicuously long periods of missing data (Design Insight 1 in the
second design iteration), we added a view named “Within/Between-
Participant Variation Lens” (Figure 4). This view aids in determining
whether a missing data is anomalous compared to a participant’s
past data or data from other participants. When the user drags the
time interval of interest in the raw time series data in the ‘Detail
of One Participant’ view, the system provides a variation lens, vi-
sualizing how the selected time interval compares in terms of the
distribution of time intervals 1) within the participant’s physical
activity data (within-participant variation) and 2) of all participants’
physical activity data (between-participant variation). Because the
selected interval indicates a relatively large in both distributions,
the user can infer that the missing period could be an uncom-
monly long duration compared to the previous sensing patterns
and suspects potential data collection issues beyond behavioral
characteristics. Through this comparison, users can determine if a
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specific missing interval deviates from participants’ usual sensing
patterns, allowing them to investigate raw data in more detail to
understand the context and root causes of missing data.
Communication with participants. To facilitate easy contact
with participants and prevent recurring missing data issues (Design
Insight 2 in the second design iteration), we introduced a com-
munication support feature (Fig. 5). On the Overview page, the
prototype was updated to allow selecting and sending emails to
multiple participants simultaneously (left figure in Fig. 5). When
users identify participants who require follow-up due to missing
data, they can select them and use the ‘manual contact’ menu to
send an email to multiple participants. To further reduce the burden
of repetitive communication, we implemented rule-based contact
conditions. A popup appears when the user selects the ‘predefined
contact’ menu, where they can set the rule (Fig. 5). For instance, if
the rule is set to ‘send an email for participants whose daily survey
count is less than ten times a day,’ 11 participants matching that
rule will be filtered. Users can contact them by simply clicking the
‘send messages to 11 participants’ button. Additionally, the pro-
totype includes a contact history feature, allowing users to track
previous communications with each participant. This helps identify
participants who frequently require follow-up due to missing data
issues. The number of emails sent to each participant is displayed,
and users can click on the count to review the content of previous
messages via a popup window.

4.4.2 User study. Through deployment studies, we obtained the
opinions of researchers in in-the-wild data collection. However,
one limitation was the small number of researchers available to
provide feedback, as performing multiple data collections is time-
consuming and costly. Therefore, to enable researchers from various
research groups to evaluate our final system, we opted for a con-
trolled user study to explore the perceived usability of the system
and experiences in detecting, diagnosing, and addressing missing
data. This study was approved by the IRB and written consent was
obtained from researchers.
Participants. We contacted 11 different groups in the mobile sens-
ing domain and recruited 26 researchers (R13–R38, 5 women, 21
men, age: M = 28.48, SD = 4.56), consisting of 5 master’s, 10 Ph.D
students, and 11 industry professionals in three IT companies. Our
goal was to investigate not only how academic research groups but
also industry professionals could effectively utilize our system.
Study design.We conducted a within-subject user study to com-
pare the usability and user experience of DataSentry in detecting,
diagnosing, and addressing missing data, rather than not using
each feature. Participants experienced three conditions: 1) Python
plotting, 2) DataSentry Basic version (DataSentry without within-
/between-participant time-series comparison and variation lens),
and 3) DataSentry Full version (DataSentry with aforementioned
features). We chose Python plotting because it was the common
practice employed by researchers according to our formative study
results. We aimed to assess if and howDataSentry improved the pro-
cess of detecting, diagnosing, and addressingmissing data compared
to their prior experiences. We were also interested in examining
whether DataSentry’s key feature—thewithin-/between-participant
comparison—impacts the usability and experience of the process.

To explore this, we included two conditions in our study: a Full
version of DataSentry and a Basic version without this feature.
Procedure. We started the study session by introducing our re-
search goal and asked researchers to act as data collection managers.
They participated in training sessions to ensure they were famil-
iar with the system. We assigned three conditions in a random
order to counterbalance the order effect. Under each condition,
they performed three tasks: 1) detecting sensors and participants
with missing data, 2) diagnosing causes, and 3) sending messages
to participants to prevent further issues. We provided a one-week
CSV-formatted dataset collected from the initial data collection
campaign, during which diverse issues such as server, turning off
smartphones, and non-responsiveness to self-reports were observed.
Each researcher had 20 minutes for each condition to perform three
tasks using randomly selected one-day dataset. For the Python plot-
ting condition, we used a Google Colab [11] and asked them to
write a contact message via a smartphone messenger.

After completing the tasks, we inquired about their utilization of
design components of the final prototype and assessed its usability.
They responded to the PSSUQ (Post-study system usability ques-
tionnaire) [32] and a semi-structured interview to assess usability,
system use, and expectations. Two of the authors conducted a the-
matic analysis to categorize the interview data into major themes,
and user experiences of the system’s key features. The analysis
followed an inductive approach, akin to the qualitative data anal-
ysis used in formative studies (see Section 3.1). Participants were
compensated with $22 USD.

4.4.3 Study results: Usability and user experiences. For the PSSUQ
score, researchers rated the best usability in DataSentry Full version
(M = 4.92, SD = 0.76), followed by Basic version (M = 4.38, SD =
0.89) and Python plotting (M = 2.08, SD = 1.03). In the following,
we share user experiences with the system’s key features.
Overviewing missing data and diligence of participants. Re-
searchers acknowledged that the features provided by the final sys-
tem are crucial for detecting, diagnosing, and addressing missing
data. They believed that such a system would “reduce the burden
of manually plotting and detecting missing data” (R17), allowing
them to “promptly grasp the overall pattern of missing data” (R32).
One of the interesting aspects was that 13 researchers thought the
overview of missing data collection could serve as an indicator of
compliance or ‘diligence’ of participants. R30, who was responsible
for mobile data collection and participant management in the IT
industry, commented, “What I liked about the overview page was
how easy it was to spot participants who kept their bars filled using
the visualization. Keeping track of participant diligence has always
been a key part of our data collection efforts, and I think this visu-
alization would be helpful for monitoring diligence and motivating
participants to stay on track.”
Detection and diagnosis of missing data by within-/between-
participant variability. Fifteen researchers found the within-
/between-participant comparison feature in the DataSentry Full
version useful for detecting and diagnosing missing data. R14, who
found the within-/between-participant variation lens particularly
insightful, commented, “I think this lens gives a helpful summary of
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missing data that would be hard to spot just by looking at raw time-
series. By quickly brushing over the empty periods, I could tell if the
missing data was an issue, both within and between participants.” R37
combined the within-/between-participant time-series comparisons
to understand the missing segments: “There was a long, continuous
missing period in a participant’s location data. When I compared it
to other participants’ time-series, and even to the participant’s data,
the missing segment stood out as unusually long. This made me think
that the missing data wasn’t due to the participant not moving, but
rather because the sensor might have malfunctioned.” Beyond rec-
ognizing the usefulness of these features, researchers also drew
inspiration from them and proposed ways to streamline missing
data detection and diagnosis. Based on these variabilities, seven
researchers suggested a missing data recommendation feature. R25
suggested, “What I found most interesting in this system was how it
identified missing data by detecting and diagnosing deviations from
participants’ typical sensing patterns. Building on this, it would be
efficient if the system could flag such deviations and recommend them
to researchers for further investigation.”
Streamlining communication via rule-based supports. Thir-
teen researchers appreciated not only the ability to detect and
diagnose missing data but also the option to send communica-
tions based on the diagnosis. These features were highly valued by
student researchers, who often work alone to communicate with
participants. Industry professionals, who frequently encounter di-
verse data collection scenarios, found rule-based communication
support particularly useful, and expressed a desire to diversify these
rules to easily contact participants. R34 mentioned, “I appreciated
the ability to set rules and contact relevant participants. If I could
define conditions for sending communications based on various rules
- such as the number of rows, the length of missing periods, or the
specific context of missing data - I would want to integrate it into the
data collection campaigns our team will conduct.”

Our final prototype proved valuable for detecting and diagnosing
missing data by considering both within- and between-participant
variability. Furthermore, it streamlined communication with par-
ticipants, addressing the challenges and burdens associated with
existing missing data management procedures.

5 Discussion
In this section, we discuss the design implications for missing data
management in the mobile sensor data collection (5.1 and 5.2) and
lessons learned from the iterative design of DataSentry.

5.1 Detection and Diagnosis of Missing Data
Considering Within- and
Between-participant Variability

We introduced the prototype developed through an iterative de-
sign process and its evolution into the final system, DataSentry—a
data management system supporting the detection, diagnosis, and
addressing of missing data in mobile sensor data collection. By
incorporating feedback from system deployments, we aligned the
system closely with researchers’ practical needs, demonstrating that
DataSentry can reduce the burden of missing data management.

A key insight from our work is the critical role of understanding
within- and between-participant variability to detect and diag-
nose participant- or system-related issues reported in prior studies
[15, 29, 30]. The overview of missing data and the within-/between-
participant variation lens aided in detecting participants with sig-
nificantly long missing data. Furthermore, the ability to inspect raw
sensor streams from various perspectives (e.g., within- or between-
participant time-series comparisons) facilitated an understanding
of the context and a diagnosis of the root causes behind the issues.
This approach distinguishes DataSentry from previous mobile sens-
ing monitoring systems, instead of solely relying on simple metrics
[47, 54] or individual sensor streams [16], DataSentry incorporates
the inherent within- and between-participant variability in event-
based sensing data, enabling the detection and diagnosis of missing
data at both overview and fine-grained levels.

To advance this process, integrating the detection and diagnosis
feature based on within- and between-participant variability offers
a promising design opportunity. Drawing on previous studies on
modeling human routine behaviors [1, 63], the system can detect
and diagnose missing data by identifying deviations from common
behavioral routines. For example, the system can consolidate multi-
ple sensor streams to understandwithin-person sensing routines (e.g.,
frequent logging of GPS and physical activity data along a partici-
pant’s commuting path) and between-person sensing routines (e.g.,
sparse GPS and physical activity logging on weekend mornings
across a group of participants). Leveraging these spatial-temporal
contextual patterns, the system can flag instances of missing data
that deviate from common routines (e.g., no GPS logs during a par-
ticipant’s usual weekday commute) and provide potential causes
(e.g., sudden sensor malfunctions). This approach could be applied
practically to existing mobile data collection practices [34, 66], to
offer a deeper understanding of missing data.

5.2 Enhancing the Expressiveness of Missing
Data Management Rules

One of the findings regardingDataSentry is that researchers wanted
to define diverse rules related to missing data and communicate
with participants based on these rules. The rule-based communica-
tion feature in DataSentry aligns with the concept of trigger-action
programming [31, 67], where ‘trigger rules’ (e.g., survey count less
than ten times a day) are associated with corresponding ‘action’
(e.g., send emails to participants). While the current system handles
simple rules based on data counts, one viable improvement is to
enhance the expressiveness of rules.

Trigger rules can be set based on raw item counts or simple
descriptive statistics (e.g., mean, median). To enable flexible rule
setting, it would be useful to incorporate semantically meaningful
predicates. For example, GPS data can be analyzed to automatically
identify significant places, such as home and work [65]. Users can
define a range of values, such as dividing the time of day into work
hours (9 AM–5 PM), off-work hours (5–10 PM), and sleep hours
(10 PM–6 AM). Considering within-subject variations, researchers
can further define a specific period for data aggregation or allow
for setting user-specific thresholds (e.g., GPS count is 2 SDs smaller
than the mean of the last week).
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In addition, similar to the approach discussed by Jiang et al. [21],
researchers could establish rules about missing data by combining
multiple sensors with AND/OR conditions, enabling actions to be
triggered when specific conditions are met. For instance, consider
a scenario where a participant’s GPS data frequently goes missing
despite indications of regular movement from other sensors. An
expressive rule could be structured as:

IF ((A participant’s GPS data is missing for more than
3 hours between 9 AM to 10 PM) AND (A partici-
pant’s physical activity and accelerometer data are
periodically collected))
THEN (Send a message to the participant: “Your GPS
sensor data is missing. Please check if the sensor collector
is turned on in your smartphone. If not, please report
this issue to our research team.”)

The triggering frequency could be customized based on the sever-
ity of the missing data issues (e.g., once a day for severe issues vs.
once a week for trivial ones). By defining a set of expressive rules,
researchers can delegate repetitive and routine tasks to the system,
allowing them to focus on more complex missing data issues that
require their expertise and decision-making.

5.3 Multi-year, Iterative Design Process through
In-the-wild Deployment

Rather than integrating all capabilities at once, the iterative process
enabled the progressive expansion of the prototype’s capabilities.
Through a series of testing and refinements, this approach enabled
the gradual fulfillment of challenging requirements [3, 5].

One of the significant advantages of this multi-year, in-the-wild
deployment was the ability to uncover unexpected feedback from
real-world use. For instance, in the first design iteration, we ex-
pected that a statistical quality control mechanism would be ef-
fective. However, field deployment revealed its limited practical-
ity, prompting us to shift focus towards a detailed examination of
raw sensor data. The iterative deployments also allowed us to test
the system across diverse data collection contexts. While the first
and third campaigns used a single data collection app, the second
campaign involved two data collection apps and a smart speaker
to collect self-report ESM. In the campaign, DataSentry played a
crucial role in verifying data sync between different devices and
apps by letting researchers examine the raw sensor data within the
“Detail of One Participant” view.

The in-the-wild deployment and iterative design process was
instrumental in uncovering and addressing real-world issues that
might have been overlooked in the lab. These observations ensured
the system’s practical feasibility and usability, aligned with findings
from previous HCI studies adopting multi-year iterative design
approach [14, 44].We envision that, although this approach requires
substantial efforts, it provides a viable strategy for researchers and
designers developing similar data management systems.

5.4 Interoperability and Generalizability
DataSentry supports monitoring of various sensor data and is inter-
operable for time-series mobile data from many people and sensors
collected via various data collection frameworks. In addition to
the framework used in our field trials, it supports data collected

from other frameworks such as AWARE [8]. The minimum required
data schema consists of the user ID, timestamp, and sensor data
type. Once the data schema is properly configured, DataSentry
automatically identifies the scale of each column, such as qualita-
tive or quantitative, for visualization. Beyond the data types used
in the current study, DataSentry can be generalizable to visualize
time-series data collected from different devices, such as wearable
devices. Researchers can comprehensively monitor multimodal data
frommany people and many sensors by simply importing data from
different devices with a proper data schema definition.

5.5 Limitations and Future Work
One limitation of our study is that the system encountered scalabil-
ity issues as the number of participants increased on a single screen
leading to performance slowdowns, making the system less respon-
sive. To address the issue, we could explore improvements to the
current visualization method. For instance, prioritizing the display
of participants with severe missing data issues or data types, while
presenting less critical data only when the user requests it. Further-
more, the system could be enhanced to allow real-time monitoring
to help promptly detect and address missing data issues. Currently,
we traded this feature for interoperability by letting researchers
periodically run a script that exports data from the database and
imports it into DataSentry. Additional development could be eas-
ily made to enable real-time monitoring by directly tapping into
each researcher’s database. Lastly, the controlled user study was
considered as the final evaluation due to the logistical challenges of
coordinating with sufficient numbers of in-the-wild data collection
campaigns, which demand significant time and effort. Our design
has been iteratively validated and improved through three rounds
of in-the-wild evaluation. Nevertheless, a large-scale, in-the-wild
user study will still be beneficial for validating our final system.

6 Conclusion
We conducted a multi-year, iterative design process to build a data
management system for missing data issues during mobile sensor
data collection. Our approach integrated researchers’ practical
needs, enabling DataSentry to detect, diagnose, and mitigate miss-
ing datawhile consideringwithin- and between-participant variabil-
ity. Findings from the final user study suggest that the DataSentry
has the potential to lower the burden of missing data management.
Lessons learned from our design process provided several implica-
tions for advancing missing data management systems in mobile
sensor data collection. We envision that DataSentry can be adapted
for a wide range of in-the-wild mobile sensor data collection sce-
narios, ultimately reducing the workload for domain researchers.
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ID Position Experience of Mobile Sensor Data Collection Experienced Missing Data Systems to Check Missing Data

1 PhD
(4th-
year)

Collecting mobile sensor data (physical activity, call log,
location, screen log, etc.) with self-reports (stress, depres-
sion) to capture depressive episodes (2 campaigns, 30
participants each)

Missing periods in screen log and
physical activity data, simultaneous
missing periods of all sensor data, low
number of self-reports

Downloading raw data files from Fire-
base and plotting them using Python
script

2 PhD
(3rd-
year)

Collecting mobile sensor data (WiFi, call log, app usage,
screen logs, etc.) with self-reports (stress) from 65 partici-
pants to detect stress in daily lives

Simultaneous missing periods of all
sensor data, low number of self-
reports

Downloading raw data from database
and plotting using Python, developing
tool to check counts

3 MS
(1st-
year)

Collecting mobile sensor data (app usage duration and
location) with self-reports (stress) from 40 participants to
model stress prediction

Missing periods in location, app usage
data, entirely missing self-report sur-
veys of specific participants

Downloading raw data from database
and plotting them using Python script,
reviewing tabular data using Excel

4 PhD
(3rd-
year)

Collectingmobile sensor data (app usage, physical activity,
location, etc.) with self-reports (current activities) autistic
individuals (two data collection campaigns, 50 and 20
participants for each)

Simultaneous missing periods of all
sensor data, missing periods in physi-
cal activity data, low number of self-
reports

Downloading raw CSV data from Fire-
base and plotting them using Python
script

5 PhD
(4th-
year)

Collecting and publishing in-the-wild, longitudinal mo-
bile sensor data (physical activity, call log,WiFi, bluetooth,
location, etc.) with self-report (current emotion) from 100
participants

Missing periods in location, WiFi, and
physical activity data, simultaneous
missing of all sensor data, low number
of self-reports

Downloading rawCSV data from data-
base and plotting them using Python
script, reviewing tabular data using
Excel

6 PhD
(2nd-
year)

Collectingmobile sensor data (app usage, physical activity,
camera) and self-report (emotion, depression) to figure
out behavioral and contextual factors affecting mental
well-being from 20 participants

Missing periods in app usage data Downloading raw data from database
and plotting them using Python script

7 PhD
(3rd-
year)

Collecting mobile (location, app usage, call log), wearable
(HR, EDA), self-reports (stress, depression) data to model
relationships between behavior and mental health status

Missing periods in location data, en-
tirely missing self-report surveys of
specific participants

Downloading raw json files from data-
base and plotting them using Python
script, reviewing tabular data

Table 1: Demographics of formative study researchers.

ID Position Experience of Mobile Sensor Data Collection

8 PhD (4th-year) (first campaign) Collecting mobile and wearable sensor data to understand emotional changes

9 PhD (1st-year) (first campaign) Participating in mobile sensor data collection campaign

10 PhD (2nd-year) (second campaign) Collecting smartphone sensor data and smart speaker self-report ESM to analyze people’s mental
health in a smart home environment

11 MS (1st-year) (second campaign) Collecting smartphone sensor data and smart speaker self-report ESM to analyze people’s mental
health in a smart home environment

12 PhD (4th-year) (third campaign) Collecting mobile data and self-report to understand the causality between stress and contexts

Table 2: Demographics of deployment study researchers.
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ID Position Experience of Mobile Sensor Data Collection

13 PhD (4th-year) Collecting mobile sensor data in a classroom environments

14 PhD (2nd-year) Collecting mobile sensor data related to physical activity-related data to recognize exercise states

15 MS (1st-year) Collecting photo and audio data using a smartphone

16 MS (2nd-year) Collecting emotional and daily life data from patients with ADHD and collecting geolocation data to track users’
movement patterns

17 PhD (4th-year) Collecting location and movement data for personality detection

18 MS (2nd-year) Collecting smartphone sensor data related to app usage and background information of smartphone states (e.g.,
which app is running on the background)

19 MS (1st-year) Collecting app usage data and voice recordings over a period of three weeks

20 PhD (3rd-year) Collecting mobile sensor data for the daily lives of individuals

21 PhD (3rd-year) Collecting sensor data from mobile devices to monitor the daily activities of people with autism

22 PhD (2nd-year) Collecting mobile sensor data for human activity recognition

23 PhD (2nd-year) Collecting everyday life data through mobile sensing for stress detection

24 PhD (4th-year) Collecting mobile sensor data for human activity recognition

25 MS (2nd-year) Collecting mobile sensor data from smartphones and audio recording data from smart speakers

26 PhD (4th-year) Collecting mobile sensor data for depression detection

27 PhD (2nd-year) Collecting mobile sensor data related to exercise or physical activity

28 Industry (5th-year) Collecting health-related data and analyzing usage patterns of smartphone applications

29 Industry (3rd-year) Collecting and analyzing mobile and wearable sensor data
30 Industry (4th-year) Collecting diverse mobile sensing data from smartphones and IoT sensor data from smart home environment,

monitoring and managing participants’ compliance such as self-reports
31 Industry (25th-year) Collecting health-related sensor data from smartphone and smartwatch, IoT sensor data from smart home

environments
32 Industry (6th-year) Collecting and analyzing smartphone sensor data and physiological signals from Fitbit sensors
33 Industry (5th-year) Collecting health data and analyzing physical activity patterns from people’s daily lives
34 Industry (3rd-year) Collecting health data from smartphone application, specifically designed to monitor and analyze sleep behavioral

patterns
35 Industry (4th-year) Collecting daily activity data from individuals, alongside location information to monitor and analyze physical

activity patterns
36 Industry (6th-year) Collecting sleep data from smartphone to analyze relationships between mental health and sleep patterns
37 Industry (2nd-year) Collecting health-related data from Apple Watch and smartphone, utilizing VR accessories to collect and analyze

motion sensor data
38 Industry (4th-year) Collecting gyroscope and accelerometer sensor data from smartphone in exhibition

Table 3: Demographics of user study researchers.
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