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K-EmoPhone: a Mobile and 
Wearable Dataset with In-Situ 
Emotion, Stress, and attention 
Labels
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With the popularization of low-cost mobile and wearable sensors, several studies have used them 
to track and analyze mental well-being, productivity, and behavioral patterns. However, there is 
still a lack of open datasets collected in real-world contexts with affective and cognitive state labels 
such as emotion, stress, and attention; the lack of such datasets limits research advances in affective 
computing and human-computer interaction. this study presents K-EmoPhone, a real-world multimodal 
dataset collected from 77 students over seven days. This dataset contains (1) continuous probing of 
peripheral physiological signals and mobility data measured by commercial off-the-shelf devices, (2) 
context and interaction data collected from individuals’ smartphones, and (3) 5,582 self-reported 
affect states, including emotions, stress, attention, and task disturbance, acquired by the experience 
sampling method. We anticipate the dataset will contribute to advancements in affective computing, 
emotion intelligence technologies, and attention management based on mobile and wearable sensor 
data.

Background & Summary
The proliferation of mobile and wearable devices has opened new avenues for research into understanding 
human beings using the data collected from these devices1,2. For example, studies have utilized ubiquitous sen-
sors installed in various locations, such as in the human body, a vehicle, or a room, to understand diverse user 
behaviors and situations, including a user’s preference for shopping items3 and moments suitable for engaging in 
secondary tasks4,5. In addition, smartphones have been widely used as valuable data sources to detect stress6 and 
emotion7 or to analyze behavioral patterns relevant to various psychological disorders8 and states9.

A promising research area utilizing a data-driven approach to understanding humans is affective computing, 
which allows computing systems to recognize, analyze, and comprehend human emotions. An essential step for 
affective computing research is to obtain datasets associated with human affects; thus, researchers have made sig-
nificant efforts to build datasets in various settings, as shown in Table 1. One typical setting in which datasets are 
collected is a controlled laboratory, where participants act out a specific affect or receive stimuli to induce spe-
cific affects; during this time, their physiological signals, facial expressions, and speech utterances are recorded. 
For example, studies have recorded emotional speeches by and facial expressions of professional actors10,11; 
additionally, audiovisual stimuli, such as emotional video clips, are often employed to cause participants to feel 
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Study (year)
Data 
availability Setting # Participants

Collection 
period

Annotation Data modality

Size Strategy Affect Stress Attention Smartphone Wearable Other sensors Survey

Emo-DB (2005)10 O lab 10 n/s 535 acted Ekman’s basic emotion64 — — — — audio —

Haq et al. (2008)11 O lab 4 n/s 480 acted Ekman’s basic emotion64 — — — — video, audio —

MAHNOB-HCI 
(2012)12 O lab 27 27 minutes 540 induced

Ekman’s basic emotion64, 
one-item valence, one-item 
arousal, one-item dominance, 
one-item unpredictability

— — — GSR, EEG, ECG, 
HST, RSP

video, audio, 
eye tracking —

DEAP (2012)13 O lab 32 40 minutes 1,280 induced SAM65 — — —
GSR, EEG, 
EMG, EOG, 
HST, RSP, PPG

video —

MoodScope 
(2013)34 X field 32 2 months n/s signal (4/day), 

voluntary
one-item valence, one-item 
arousal — —

GPS, calls, app usage, 
messages, emails, web 
visits

— — —

StudentLife 
(2014)25 O field 48 10 weeks 35,295 signal (8/day) PAM66, one-item happiness, 

one-item sadness
one-item 
stress

one-item 
productivity

GPS, indoor location, 
Bluetooth, light, audio, 
activity, sleep, WiFi, 
acceleration, proximity, 
app usage, conversation, 
charging, screen

— —

UCLA 
loneliness 
scale67, 
Flourishing 
scale68, 
academic 
performance, 
PHQ47, 
PSS36, BFI27

Bogomolov et al. 
(2014)69 X field 111 7 months n/s interval (daily) — — — calls, messages, Bluetooth — weather BFI27

cStress (2015)21 X
lab 19 1.5 hours 247 induced —

Plarre’s 
subjective 
stress70

— — RSP, ECG, 
acceleration — —

field 20 7 days 1,060 signal (15/day)

SEED (2015)14 O lab 15 2.5 hours n/s induced one-item valence — — — EEG eye tracking

DECAF (2015)15 O lab 30 2 hours 2,280 induced one-item valence, one-item 
arousal, one-item dominance — — — —

MEG, 
EOG, ECG, 
EMG,video

—

Exler et al. (2016)71 X field 6 4 weeks 1,821
interval (hourly), 
event (changes in 
calendar entries, 
etc), voluntary

shortend MDMQ72 — —
cellular location, audio, 
app usage, messages, 
calls, light, connectivity, 
calendar entries, activity

ECG — —

DEAMER (2018)16 O lab 23 60 minutes 414 induced SAM65 — — — EEG, ECG — —

MyTraces (2017)35 X field 28 6 months 5,118 signal (20/day) one-item valence, one-item 
arousal

one-item 
stress —

notifications, app usage, 
screen, touch interaction, 
calls, messages, activity, 
GPS

— weather —

Continued
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Study (year)
Data 
availability Setting # Participants

Collection 
period

Annotation Data modality

Size Strategy Affect Stress Attention Smartphone Wearable Other sensors Survey

WESAD (2018)17 O lab 15 2 hours 75 induced PANAS73, SAM65

Plarre’s 
subjective 
stress70, 
SSSQ74, 
STAI75

— —
ECG, GSR, 
EMG, HST, 
RSP, PPG, 
acceleration

— —

Schmidt et al. 
(2019)37 X field 11 16 days 1,083 signal (7.5/day), 

voluntary SAM65
one-item 
stress, 
STAI75

— —
GSR, PPG, 
acceleration, 
HST

- PSQI76, PSS36

King (2019)22 X
lab 18 2 hours 144 induced

Plarre’s 
subjective 
stress70, 
PSS36, 
one-item 
stress

— — ECG, GSR — —

field 18 2 days 100 signal (5/day)

Tesserae (2019)26 O field 757 56 days n/s interval (daily) PANAS73

one-item 
stress, 
Davey’s 
one-item 
anxiety77

—

GPS, Bluetooth, light, 
audio, activity, sleep, 
acceleration, proximity, 
app usage, conversation, 
charging, screen, WiFi

PPG, step 
counts, stair 
counts, sleep, 
calories

social media 
usage, 
Bluetooth 
beacons

BFI27, STAI75, 
IRB78, ITP79, 
OCB-C80, 
OD81, 
AUDIT82, 
IPAQ83, 
PSQI76, 
GATS84, 
Shipley-285

SEED-IV (2019)18 O lab 15 3.6 hours n/s induced Ekman’s basic emotion64, 
PANAS73 — — — EEG eye tracking —

SEED-V (2019)19 O lab 16 55 minutes n/s induced Ekman’s basic emotion64 — — — EEG eye tracking —

K-EmoCon 
(2020)23 O lab 32 10 minutes 29,121 induced

one-item valence, one-item 
arousal, BROMP affect 
categories86

Plarre’s 
subjective 
stress70

— —
PPG, GSR, EEG, 
ECG, HST, 
acceleration 
video, audio

—

AMIGOS (2021)20 O lab 40 23 minutes 38,642 induced Ekman’s basic emotion64, 
SAM65, PANAS73 — — — EEG, GSR, ECG video, audio BFI27

K-EmoPhone 
(2022) O field 77 7 days 5,582 signal (16/day), 

voluntary

one-item valence, one-item 
arousal, one-item emotion 
changes, one-item duration 
that a current emotion lasted

one-item 
stress

one-item 
attention, 
one-item 
task 
disturbance

GPS, battery, calls, WiFi, 
battery, connectivity, 
data traffic, ringer mode, 
screen, power, charging, 
activity, Bluetooth, media 
entries, messages

GSR, PPG, 
HST, RRI, 
acceleration, 
calories, 
step counts, 
ultraviolet, light

—
BFI27, PSS36, 
PHQ47, 
GHQ49

Table 1. Comparison of the K-EmoPhone dataset with the existing studies (ECG: electrocardiogram; GSR: galvanic skin response; EEG: electroencephalogram; EMG: electromyograms; EOG: 
electrooculogram; HST: human skin temperature; PPG: photoplethysmography; MEG: magnetoencephalogram; RSP: respiration pattern; RRI: beat-to-beat R-R interval; n/s: not specified).

https://doi.org/10.1038/s41597-023-02248-2


4Scientific Data |          (2023) 10:351  | https://doi.org/10.1038/s41597-023-02248-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

specific emotions and corresponding behavioral or physiological responses12–20. Furthermore, cognitively chal-
lenging tasks, such as preparing for a speech or debating sensitive topics, have often been used to induce stress 
or specific emotions in participants17,21–23. Although such a laboratory setting allows for acquiring a high-quality 
dataset, it lacks the ability to obtain real-world affects that people may experience in their daily lives.

In recent years, there has been a growing interest in a new approach, the experience sampling method (ESM), 
which collects real-world data to overcome the limitations of laboratory data collection. This approach is often 
accompanied by a personal mobile device where participants are asked to respond to short questionnaires about 
their affects during their daily lives24. Depending on when the participants’ affects are sampled, ESM studies are 
divided into three categories: (1) interval-contingent sampling, in which participants’ responses are sampled at 
regular intervals (e.g., once a day); (2) signal-contingent sampling, in which participants’ responses are collected 
at random intervals; and (3) event-contingent sampling, in which prompts appear at the occurrence of a particu-
lar event. The collection of participants’ affects via ESM is often accompanied by the passive collection of sensor 
and interaction data from individuals’ smartphones and wearable devices. For example, the StudentLife dataset25 
includes various data available on smartphones (e.g., ongoing physical activity, location, application usage, and 
ambient sound) annotated with affect labels (photographic affects and stress level) sampled eight times per day 
via ESM. In the Tesserae project26, researchers collected data from multiple modalities, including smartphones, 
wrist-worn sensors, Bluetooth beacons, and social media, and asked the participants to answer daily surveys on 
their affects, stress, and job performance.

Although significant efforts have been made to build datasets in affective computing, we believe there 
remains a need for real-world, multimodal open datasets containing various in-situ affect labels to help advance 
affective computing. In this study, we introduce K-EmoPhone, a real-world smartphone and wearable dataset 
with in-situ emotion, stress, and attention labels acquired from 77 students over seven days. This dataset aims to 
contribute to (1) understanding human affects with behavioral, contextual, and physiological data, (2) obtaining 
fine-grained affect states in terms of time, and (3) utilization in multiple domains, ranging from affective com-
puting to attention management. We collected multimodal sensor data from the participants’ Android smart-
phones and Microsoft (MS) Band 2 smartwatches. In addition, we asked the participants to report their affect 
states, including valence, arousal, stress, attention, task disturbance, and emotional change, up to 16 times per 
day, either voluntarily or in response to prompts delivered via their smartphones. We hope this extensive dataset 
will contribute to a wide range of future research concerning data-driven human understanding.

Methods
Setup. The K-EmoPhone dataset aims to collect fine-grained in-situ affective and cognitive states, multimodal 
sensor data, and individual attributes relevant to personality and mental health. To this end, we conducted week-
long real-world data collection accompanied by pre- and post-surveys (see Fig. 1).

Pre-surveys. Through pre-surveys, we obtained individual attributes that remained unchanged during the data 
collection period as follows:

•	 Basic demographic information included participants’ age and gender.
•	 Big Five Inventory (BFI) is a 44-item questionnaire that measures an individual’s disposition to five distinct 

personality traits: openness, conscientiousness, neuroticism, extroversion, and agreeableness27. These traits 
are known to persist over the long term28. We employed a shortened and Korean-translated version of the BFI, 
namely K-BFI-15. The K-BFI-15 comprises fifteen 5-point Likert-scale items with three items for each of the 
five personality traits, where summing the responses to items for each personality trait indicates a disposition 
toward that personality29. K-BFI-15 was developed based on an exploratory factor analysis of 720 partici-
pants’ responses to the Korean-translated version of the original BFI. It is known to be reliable for assessing 
five-factor personality domains, even with fewer question items than the original BFI, within the context of 
the Korean population and culture. One reason for using the K-BFI-15 instead of the original BFI was that 
the data collection was conducted in South Korea; thus, the participants were expected to be more fluent in 
Korean than in English. Another reason was to reduce the time required to respond to the questionnaire, 
thereby lowering the response burden on the participants.

Fig. 1 Data collection protocol.

https://doi.org/10.1038/s41597-023-02248-2
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Real-world data collection: In-situ emotion, stress, and attention. We employed smartphone-based ESM to cap-
ture various in-situ affective and cognitive states in real-world scenarios. To this end, we used PACO (https://
www.pacoapp.com/), an open-source smartphone app that allows researchers to design and conduct ESM studies. 
During a 12-hour period within regular waking hours (i.e., 10 AM–10 PM), ESM prompts appeared on the par-
ticipant’s smartphone as push notifications up to 16 times a day at random intervals (signal-contingent sampling). 
Each prompt was triggered every 45 minutes on average, and subsequent prompts were triggered at least 30 min-
utes apart. In addition, each prompt disappeared 10 minutes after its arrival if it was not answered to reduce recall 
bias because prior studies showed that excessive time lag between an ESM prompt and its response could compro-
mise the ESM label quality30,31. We aimed to collect at least ten responses to the ESM prompts. However, there may 
have been cases where participants missed incoming prompts and thus could not respond before the expiration 
time (e.g., engaging in a formal meeting with a boss or taking a nap). Therefore, in addition to responding to the 
delivered prompts, we allowed the participants to answer our questionnaire voluntarily at any time.

For each prompt, participants responded to questions about emotion, stress, attention, task disturbance, 
changes in emotions, and the duration of the current emotion, as shown in Table 2. Because we intended to 
capture up to 16 responses daily, the primary concern in designing our questionnaire was to reduce the num-
ber of questions and thus relieve the participants’ response burdens. For example, in the case of emotions, we 
asked participants to independently report their valence levels (e.g., the degree of negativity or positivity of 
the emotion) and arousal (e.g., how calming or exciting the emotion is) using a 7-point Likert scale for col-
lecting in-situ emotions. Alternatively, the Positive and Negative Affect Schedule (PANAS)32, which measures 
positive and negative affect levels, can be considered. However, the PANAS requires participants to respond to 
20 items, which may be burdensome in real-world settings requiring frequent responses such as emotion col-
lection via ESM. Instead, inspired by Russell’s circumplex model33, which represents different emotions using 
two-dimensional vectors of valence and arousal, emotion collection based on ESM has often asked participants 
to answer a single-item question for each emotional dimension, owing to several advantages34,35. One advantage 
is that participants are required to answer only two questions, thereby reducing their response burden; another 
is that valence-arousal interactions can describe various emotional states.

Like emotion assessment, our stress measurement methodology employed a single-item question asking par-
ticipants to rate their perceived stress levels on a 7-point Likert scale instead of a multi-item questionnaire (e.g., the 
perceived stress scale or PSS, which consists of 10 items36) to lower response burdens on participants. Such a stress 
assessment with a single-item question has been widely used in real-world studies on stress assessment22,25,26,35,37.

In addition to emotions and stress, we considered measuring other affective and cognitive states because 
we intended our dataset to be used for several purposes. For example, we included two measures widely used 
in attention management (or interruptibility): the level of attention on an ongoing task immediately before the 
arrival of an ESM prompt38–41 and the level of task disturbance caused by responding to an ESM prompt42, both 
marked on a 7-point Likert scale. Furthermore, inspired by previous findings that responding to an ESM prompt 
can influence individuals’ affective and cognitive states (e.g., increase in stress43, annoyance44, and anxiety45), we 
clarified the extent to which answering a given ESM prompt caused participants’ emotions to be positive or neg-
ative on a 7-point Likert scale. Finally, we considered the duration of the current emotion in minutes, ranging 
from 5 to 60 minutes, which may be used to propagate emotion labels throughout the course of the response.

Real-world data collection: Multimodal sensor data. In addition to collecting affective and cognitive states via 
ESM, we recorded a wide range of sensor data from Android smartphones and the MS Band 2 smartwatches. 
For this, we implemented a special-purpose data collection software on an Android smartphone compatible 
with Android 6.0 or higher. This software unobtrusively collects sensor data reflecting mobility, network traffic, 
social communication, application usage, and device status 24 hours a day. In addition, our software was con-
nected to MS Band 2 smartwatches via Bluetooth to obtain sensor readings relevant to physiological responses, 
environmental contexts, and mobility. Because the wireless transmission of a large amount of data would sig-
nificantly consume the battery of MS Band 2, we collected data from MS Band 2 during the same period as our 

My emotion right before doing this survey was

Q1. very negative (−3) ~ very positive (+3) []

Q2. very calm (−3) ~ very excited (+3) []

My attention level to my ongoing task right before doing this survey could be rated as

Q3. very bored (−3) ~ very engaged (+3) []

My stress level right before doing this survey was

Q4. not stressed at all (−3) ~ very stressed (+3) []

My emotion that I answered above has not changed for recent __ minutes.

Q5. [5, 10, 15, 20, 30, 60 min/I am not sure]

Answering this survey disturbed my ongoing task

Q6. not disturbed at all (−3) ~ very disturbed (+3) []

How did your emotions change while you are answering the survey now?

Q7. I felt more negative (−3) ~ I felt more positive 
(+3) []

Table 2. Questions of the in-situ questionnaire (Q1: valence, Q2: arousal, Q3: attention, Q4: stress, Q5: emotion 
duration, Q6: task disturbance, Q7: emotion change).

https://doi.org/10.1038/s41597-023-02248-2
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ESM schedule (i.e., 10 AM–10 PM; 12 hours) instead of 24 hours. The other time slots were intended to charge 
MS Band 2. Our software temporarily stores sensor data obtained from smartphones and smartwatches in the 
smartphone’s internal storage and uploads these data to our database server every hour.

Depending on the type of data, our data collection software collects sensor data using three sampling meth-
ods: (1) periodic, (2) adaptive, and (3) event-based sampling. During periodic sampling, sensor readings are 
collected at a predefined sampling rate (i.e., a sampling rate specified in the device catalog or manually set in 
the implementation of our data collection software). We note that the actual sampling rate can differ slightly 
from the predefined rate owing to I/O latency. Adaptive sampling dynamically adjusts the sampling rate, which 
typically depends on the OS policy of the device; for example, an Android smartphone varies its GPS sensor 
sampling rate according to its level of mobility. The operation of the GPS sensor is paused when no signifi-
cant mobility is detected. When significant changes in the mobility of the device are detected, the GPS sensor 
is activated and records its location at a given sampling frequency. In event-based sampling, sensor readings 
are recorded only when subsequent readings differ. For example, a sensing modality indicating a smartphone’s 
ringer mode can only be present when users change it (e.g., from the vibrating to the silent mode). In such a 
case, some participants might keep their ringer mode the same and thus provide no readings in the ringer mode. 
More detailed information on each sensing modality, field, and sampling rate is presented later in Data Records.

Post-surveys. After a weeklong real-world data collection period, we conducted post-surveys to capture the 
individuals’ mental health. The detailed inventories are as follows:

•	 Perceived Stress Scale (PSS), which consists of ten 5-point Likert-scale questions, is intended to measure the 
level of stress that an individual has recently experienced36. This study used the Korean version of the PSS, 
which has been proven valid and reliable for estimating perceived stress among Korean female workers46. 
The summing of all responses represents the total level of perceived stress, where a higher number indicates 
higher stress.

•	 Patient Health Questionnaire (PHQ) is used to assess the degree of depression over the last few weeks, which 
contains nine 4-point Likert-scale questions47. We used the Korean version of the PHQ, which has been 
proven reliable for assessing depressive symptoms in the Korean population48. Individual responses were 
transformed into a single severity score by summing.

•	 General Health Questionnaire (GHQ) was designed to measure the recent degree of severity of common 
psychiatric disorders49. Although the original GHQ has 60 questions, various shortened versions have been 
developed, such as 12-, 28-, and 30-item questionnaires, to assess psychiatric morbidity quickly. The most 
popular shortened version is the GHQ-12, which contains 12 questions. As we planned to recruit participants 
from the Korean population, this study employed the Korean-translated version of the GHQ-12, which has 
been proven reliable for measuring psychiatric disorders among Korean adults50. Responses to the 12 items 
are converted into a single severity score by calculating the sum.

We note that these inventories were originally intended to investigate recent mental health; thus, all question 
items in the inventories explicitly refer to a particular recent period (e.g., “In the last month, how often have you 
felt nervous and stressed?” in the PSS). Our post-survey aimed to measure mental health during the weeklong 
real-world data collection period. Therefore, we slightly modified the question items about mental health during 
that period (e.g., “In the last week, how often have you felt nervous and stressed?” in the PSS).

Procedure. Ethics approval. Our study for building the K-EmoPhone dataset was approved by the 
Institutional Review Board (IRB) of the Korea Advanced Institute of Science and Technology (KH2018-42). We 
obtained written consent from participants who agreed to participate in this data collection after we explained the 
purpose of the K-EmoPhone dataset, detailed data collection procedures, data types we aimed to collect, possible 
risks caused by study participation (e.g., privacy leaks), and our countermeasures against such risks.

Data collection. Data collection was conducted from April 30 to May 8, 2019. We recruited 80 participants (24 
females) with a mean age of 21.8 (SD = 3.8; range = 17–38) from our campus’s online bulletin board. They were 
all required to have smartphones whose Android OS version equaled or exceeded 6.0, on which our collection 
software could operate. Owing to the limited number of MS Band 2 smartwatches that we could provide, par-
ticipants were assigned to three different collection periods, with each period lasting for a week (i.e., April 30 to 
May 7 for P29–P53, May 8 to May 15 for P01–P28, and May 16 to May 23 for P54–P80).

Each data collection period started with an hour-long offline introductory session to explain the study’s 
purposes, detailed procedures, possible risks caused by study participation (e.g., privacy leaks), and our coun-
termeasures against such risks. Following the introductory session, participants who agreed to participate in 
this study were asked to sign a written consent form for study participation approved by our institution’s IRB. 
Participants then completed our pre-surveys, asking for basic demographic information (including age and 
gender) and their Big Five personality traits. Next, the participants were asked to install PACO and our data 
collection applications on their smartphones and were provided MS Band 2 smartwatches.

The real-world data collection began a day after the offline session and lasted for a week. During this period, 
we asked the participants to keep our applications active, secure the MS Band 2 on their non-dominant wrists 
from 10 AM to 10 PM daily, and report at least ten responses to ESM prompts in a day. Although we did not 
monitor the data collection progress of each participant in real-time, we instructed the participants to freely 
contact us if any problems occurred. After the real-world data collection period, our participants returned 
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the MS Band 2 and uninstalled the applications installed for this study. The participants then completed the 
post-surveys to investigate their mental health over the previous week, using inventories such as the PSS, PHQ, 
and GHQ. We compensated each participant approximately 70 USD for participating in the data collection.

Data cleansing and privacy protection. After the real-world data collection, we initially collected 5,753 responses 
to in-situ questionnaires and 12.7 g of multimodal sensor data. However, through careful investigation, we found 
that data from three participants (P27, P59, and P65) had significant problems that could not be corrected. Such 
issues may have resulted from participants not adhering to our instructions or malfunctioning their smart-
phones’ data collection applications (i.e., PACO and our multimodal data collection application). In any case, we 
excluded the data collected from these participants. Detailed descriptions of these problems are provided below.

•	 P27 generated a significantly larger amount of MS Band 2 data than other participants, with different sensor 
readings being recorded at the same timestamp. Because we could not confirm the correct reading among the 
different sensor readings at the same timestamp, we decided to exclude P27’s data.

•	 P59 did not record any data that could be obtained from the smartphone. Because we wanted to build a data-
set that included data from people’s smartphones and wearable sensors, we could not include P59’s data as 
they could not provide smartphone data.

•	 P65 did not report any responses to the in-situ questionnaires. As a result, we could not investigate the affec-
tive and cognitive states using sensor data and thus excluded P59’s data.

As a result, our final dataset obtained from the remaining 77 participants (24 females) with a mean age of 21.9 
(SD = 3.9; range = 17–38) included 5,582 responses to in-situ questionnaires and 11.7 g of multimodal sensor 
data. In addition, for data fields that may be used to identify participants, such as locations or phone numbers, 
we conducted preprocessing to conceal the obtained values (e.g., encryption, adding noise, value replacement)–a 
more detailed explanation on handling privacy-sensitive information is presented in Data Records.

Data records
The K-EmoPhone dataset51 is available at Zenodo (https://doi.org/10.5281/zenodo.7606611). In the following 
sections, we present detailed descriptions of the K-EmoPhone dataset, including our participants’ characteristics 
and mental health obtained via pre- and post-surveys, self-reported in-situ affective and cognitive states sampled 
via the ESM, and multimodal sensor data from Android smartphones and MS Band 2 smartwatches. All data 
were formatted as CSV tables. Figure 2 presents an overview of the K-EmoPhone dataset.

individual characteristics and mental health. The demographic information, personality traits, and 
mental health of the participants are included in the following format:

•	 UserInfo.csv
•	 pcode: a unisque identifier of each participant.
•	 participationStartDate: the date when a participant started participating in the data collection
•	 age: international age as of 2019.
•	 gender: M and F if the participant is male and female, respectively.

Fig. 2 Overview of K-EmoPhone dataset.
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•	 openness: the personality trait indicating how accepting an individual is to intellectual curiosity, changes, 
and diversity, ranging from 3 to 15.

•	 conscientiousness: the personality trait indicating how inclined an individual is to comply with social 
rules, expectations, and norms, ranging from 3 to 15.

•	 neuroticism: the personality trait indicating how an individual exerts control over the external environ-
ment seeking mental stability, ranging from 3 to 15.

•	 extraversion: the personality trait indicating how much an individual seeks a relationship, interaction, and 
attention from others, ranging from 3 to 15.

•	 agreeableness: the personality trait indicating the extent to which an individual maintains comfortable 
and harmonious relationships with others, ranging from 3 to 15.

•	 PSS: the degree of stress during the real-world data collection period as assessed by the PSS questionnaire, 
ranging from 0 to 40 (0–13: low; 14–26: moderate; 27–40: high).

•	 PHQ: the depression severity as measured by the PHQ questionnaire, which ranges from 0 to 27 (0–4: 
minimal; 5–9: mild; 10–14: moderate; 15–19: moderately severe; 20–27: severe).

•	 GHQ: the severity of common psychiatric disorders as measured by the GHQ questionnaire, ranging 
from 0 to 36 (11–12: typical; >15: evidence of distress; >20: severe problems and psychological distress).

Self-reported in-situ affective and cognitive states. Participants’ responses to the in-situ question-
naires obtained via the ESM during the real-world data collection are included in the following format:

•	 EsmResponse.csv
•	 pcode: a unique identifier of each participant.
•	 responseTime: the Unix timestamp (i.e., milliseconds since Jan. 1, 1970, at UTC + 0) at which the partic-

ipant completed a given questionnaire.
•	 scheduledTime: the Unix timestamp at which an ESM prompt corresponding to a response appeared on 

the participant’s smartphone. This field was empty if the participant voluntarily submitted the response 
without any prompts or if the corresponding prompt expired.

•	 valence: the degree of positive or negative feeling ranges from −3 (very negative) to 3 (very positive).
•	 arousal: the degree of excitement ranges from −3 (very calm) to 3 (very excited).
•	 attention: the level of attention to an ongoing task, which ranges from −3 (very bored) to 3 (very 

engaged).
•	 stress: the level of stress ranging from −3 (not stressed at all) to +3 (very stressed).
•	 duration: a measurement of how long the current emotion has lasted over the last few minutes, ranging 

from 5 to 60 minutes. This field can be empty if the participant answers, “I am not sure.”
•	 disturbance: a level of how much an ongoing task was disturbed due to answering a given questionnaire, 

which ranges from −3 (not disturbed at all) to +3 (very disturbed)
•	 change: the extent of emotional changes from answering the six questions above ranges from −3 (more 

negative) to 3 (more positive).

Multimodal sensor data. Our multimodal sensor data collected from Android smartphones and MS Band 
2 smartwatches during the real-world data collection are organized into subdirectories named according to each 
participant’s identifier (e.g., P##) under a parent directory named Sensor. For example, P01’s sensor data is placed 
in the Sensor/P01 directory. Each subdirectory contains 27 CSV files, each representing a sensing modality. Every 
CSV file contains the field timestamp that indicates the Unix timestamp at which a given sensor reading was 
recorded. The following section elaborates on each sensing modality and its fields, excluding the field timestamp.

Android smartphone. 

•	 Connectivity.csv: the history of the connected network technology, which was recorded with event-based 
sampling only when the connectivity changes.
•	 isConnected: TRUE if the network is connected, FALSE otherwise.
•	 type: the type of the network technology whose values can be MOBILE (a typical mobile network), 

WIFI (WiFi), VPN (a virtual private network), MOBILE_DUN (a dial-up network), or UNDEFINED 
(disconnection).

•	 DataTraffic.csv: the history of the network data usage, which was recorded every 15 seconds.
•	 rxKiloBytes: the size of the received data in kilobytes (kB).
•	 txKiloBytes: the size of the transmitted data in kilobytes (kB).

•	 CallEvent.csv: the history of incoming/outgoing calls, which was recorded only when the participant made or 
received a phone call.
•	 number: the contact’s phone number, which was encrypted with a one-way MD5 hashing except for the 

first four digits to prevent privacy leakage.
•	 contact: the type of the contact, whose values are either: MOBILE, HOME, OTHER, CUSTOM, WORK, 

MAIN, UNDEFINED
•	 timesContacted: the number of times that the contact previously communicated.
•	 isPinned: TRUE if a shortcut is pinned, FALSE otherwise.
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•	 isStarred: TRUE if the contact is registered in the favorite list, FALSE otherwise.
•	 duration: the time spent on this call in milliseconds (ms).

•	 MessageEvent.csv: the metadata of text messages (e.g., SMS and MMS), which was recorded only when the 
participant sent or received a text message.
•	 number, contact, timesContacted, isPinned, isStarred: same as CallEvent.csv.
•	 messageClass: the type of messaging service, either SMS or MMS.
•	 messageBox: the message type, either INBOX (the message is received) or SENT (the message is sent).

•	 AppUsageEvent.csv: the history of participants’ interactions with smartphone applications. These data were 
collected with event-based sampling only when particular interaction events occurred.
•	 name: the name of the application.
•	 packageName: the unique identifier of the application
•	 isSystemApp: TRUE if the application is a system app (i.e., the app is initially bundled as part of OS), 

FALSE otherwise.
•	 isUpdatedSystemApp: TRUE if the application is an updated version of a system app, FALSE otherwise.
•	 type: the type of interaction events whose values are either: MOVE_TO_FOREGROUND (the app moves 

to the foreground); MOVE_TO_BACKGROUND (the app moves to the background); USER_INTERAC-
TION (the app interacts with the user in some way); SCREEN_INTERACTIVE (the app become available 
for interaction) SCREEN_NON_INTERACTIVE (the app become unavailable for interaction); KEY-
GUARD_HIDDEN (the keyguard has been hidden); CONFIGURATION_CHANGE (the device’s config-
uration has changed); SHORTCUT_INVOCATION (the app’s shortcut is selected by the user).

•	 category: the category of the application. The values of this field were first retrieved from Google Play 
on May 28, 2022. For applications that disappeared from Google Play (e.g., deprecated applications), 
we found possible categories from application archive websites (i.e., https://apkcombo.com). The 
remainder of the applications that we could not find in any category were manually labeled as one of 
the existing categories. Possible values are one of 31 categories: PERSONALIZATION, COMMUNI-
CATION, PHOTOGRAPHY, SYSTEM, FINANCE, TOOLS, PRODUCTIVITY, HEALTH_AND_FIT-
NESS, MISC, VIDEO_PLAYERS, TRAVEL_AND_LOCAL, MAPS_AND_NAVIGATION, LIFESTYLE, 
MUSIC_AND_AUDIO, HOUSE_AND_HOME, SOCIAL, ART_AND_DESIGN, GAME, SHOPPING, 
WEATHER, FOOD_AND_DRINK, EDUCATION, NEWS_AND_MAGAZINES, ENTERTAINMENT, 
SPORTS, BOOKS_AND_REFERENCE, BUSINESS, COMICS, LIBRARIES_AND_DEMO, BEAUTY, 
AUTO_AND_VEHICLES

•	 InstalledApp.csv: the list of installed applications on the smartphone, which was recorded every three hours.
•	 name, packageName, isSystemApp, isUpdatedSystemApp, category: same as AppUsageEvent.csv.
•	 firstInstallTime: the Unix timestamp at which the application was first installed.
•	 lastUpdateTime: the Unix timestamp at which the application was updated recently.

•	 RingerModeEvent.csv: the smartphone’s current ringer mode that was collected only when the ringer mode 
changed.
•	 type: the currently-activated ringer mode whose values can be NORMAL, VIBRATE, or SILENT.

•	 PowerSaveEvent.csv: the smartphone’s current power-saving mode that was recorded only when the pow-
er-saving mode changed.
•	 type: ACTIVATE if the power-saving mode is activated, DEACTIVATE otherwise.

•	 ScreenEvent.csv: the smartphone’s current screen states that were collected only whenever the screen state 
changed.
•	 type: the current screen state whose values can be ON (the screen is turned on), OFF (the screen is turned 

off), or UNLOCK (the screen is unlocked).

•	 OnOffEvent.csv: the smartphone’s power state, which was recorded whenever the smartphone was turned on 
or off.
•	 type: ON if the smartphone is turned on, OFF otherwise.

•	 ChargeEvent.csv: the smartphone’s charging state, which was collected when the smartphone is connected to 
or disconnected from the charger.
•	 type: CONNECTED if the smartphone is charging, DISCONNECTED otherwise.

•	 MediaEvent.csv: the history of creating media, such as videos and photos, on your smartphone, which was 
collected when media were newly generated.
•	 bucketDisplay: the bucket display name of the media (e.g., the name of the directory where the media is 

stored).
•	 mimetype: the MIME type of the media

•	 Battery.csv: the status of the smartphone’s battery, which was collected when any change in the battery status 
occurred.
•	 level: the battery’s percentage level (%).
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•	 temperature: the temperature of the battery in degrees Celsius (°C).
•	 status: the current status of the battery that the Android OS displays in the system dialog, either CHARG-

ING (the battery is started charging), DISCHARGING (the batter is discharging), FULL (the battery is 
fully charged), or NOT_CHARGING (the battery is not charging).

•	 ActivityEvent.csv: the history of physical activities detected by Google’s Activity Recognition API (https://
developers.google.com/location-context/activity-recognition). These data were collected with adap-
tive sampling. For example, no reading was recorded if the smartphone became stable. Whereas, once the 
smartphone’s mobility was significantly changed, our implementation intended to collect these data every 
15 seconds. Such a sampling rate could be varied by the smartphone’s status, such as if the power-saving mode 
was activated or the screen was turned off.
•	 confidenceStill, confidenceWalking, confidenceRunning, confidenceOnFoot, confidenceInVehicle, confi-

denceOnBycicle, confidenceTilting, confidenceUnknown: the confidence level of activity detection asso-
ciated with a particular activity, ranging from 0 to 1. The name after confidence indicates detected physical 
activities: Still (the device is stable), Walking (the device is on a user who is walking), Running (the device 
is on a user who is running), OnFoot (the device is on a user who is running or walking), InVehicle (the 
device travels by car), OnBycicle (the device is on a bicycle), Tilting (the device’s tilt relative to gravity has 
varied considerably), Unknown (no activity is recognized by the device).

•	 ActivityTransition.csv: the history of changes in detected physical activities, which was recorded when one 
activity transitions to another.
•	 type: the transitional event of the physical activity, which was represented as the combination of the 

transition type (ENTER: the device is on a user who has started a certain physical activity; EXIT: the 
device detects that such physical activity is finished) and the physical activity type (STILL: the device is 
not moving; WALKING: the device is on a user who is walking; RUNNING: the device is on a user who 
is running; IN_VEHICLE: the device is in a vehicle); ON_BICYCLE: the device is on a bicycle), resulting 
in ten activity transition events. For example, ENTER_WALKING indicates that the user begins to walk.

•	 Location.csv: the history of locations visited. While our implementation asked the OS to report locations 
every three minutes or whenever a 5-meter displacement occurs, the actual sampling rate adaptively varied 
depending on the device’s mobility and battery level.
•	 accuracy: the error bound of the recorded location in meters (m).
•	 altitude: the altitude in meters (m).
•	 longitude: the disguised longitude in degrees (°). Since the GPS coordinates are representative priva-

cy-sensitive information and can be used to locate our participants, we disguised the actually-collected 
coordinates by adding a particular constant displacement to latitude and longitude. Because the relative 
spatial relationship between coordinates remains, such disguised coordinates would still be useful for the 
typical processing of location data, such as clustering, except for geocoding.

•	 latitude: the disguised latitude of the GPS coordinate in degrees (°), which was processed in the same way 
as the longitude to protect possible privacy leakage.

•	 speed: the movement speed measured by the smartphone overground in meters per second (m/s).

•	 WiFi.csv: This data is the list of nearby Wi-Fi access points (APs) scanned by the device. Because Our imple-
mentation tried to scan nearby APs every five minutes; however, the particular Android OS, whose version 
is equal to or greater than 8.0, allows the application to scan once in 30 minutes. In addition, the Android OS 
whose version equals to or is greater than 10 allows access to the information of APs scanned by other appli-
cations’ requests. Thus, the actual sampling rate can be highly different from five minutes.
•	 bssid: the disguised MAC address of the detected access point. Since the MAC address can be used to 

locate our participants, we replaced original MAC addresses, represented as 48-bit hexadecimal digits, 
with 28-bit random numbers generated by a universally unique identifier (UUID), where each MAC 
address uniquely maps to one UUID number.

•	 frequency: the band frequency of the detected access point in megahertz (MHz).
•	 rssi: the received signal strength indicator in decibels per milliwatt (dBm).

MS Band 2 smartwatch. 
•	 Acceleration.csv: the acceleration of the wrist sampled at 8.

•	 x: the acceleration of the x-axis in units of standard gravity (or G units), where 1 g is equivalent to 9.81 
meters per second squared (m/s2).

•	 y: the acceleration of the y-axis in G units.
•	 z: the acceleration of the z-axis in G units.

•	 StepCount.csv: the number of steps that the participant has taken, which was collected at a sampling rate of 
1Hz.
•	 stepsToday: the total number of steps taken today.
•	 totalSteps: the total number of steps taken since the participant has participated in the real-world data 

collection.
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•	 Distance.csv: the participant’s mobility information sampled at 1Hz.
•	 distanceToday: the total distance in centimeters (cm) that the participant has traveled today.
•	 totalDistance: the total distance in centimeters (cm) that the participant has traveled since participating 

in the real-world data collection.
•	 pace: the current pace in milliseconds per meter (ms/m).
•	 speed: the current speed in centimeters per second (cm/s).
•	 motionType: the type of physical activity detected by the device, whose values can be either IDLE (the 

device is stable), WALKING (the device is on a user who is walking), JOGGING (the device is on a user 
who is jogging), or RUNNING (the device is on a user who is running).

•	 AmbientLight.csv: the ambient brightness sampled at 2Hz.
•	 brightness: the light intensity in lumen per square meter (lm2 or lx).

•	 UltraViolet.csv: the exposure of ultraviolet radiation, which was recorded every 60 seconds.
•	 intensity: the current intensity index of the ultraviolet light, which is represented as one of NONE (a very 

low intensity), LOW (a low intensity), MEDIUM (a medium intensity), and HIGH (a high intensity).
•	 exposureToday: the amount of time in milliseconds (ms) that the device has been exposed to the ultravi-

olet light today.
•	 totalExposure: the amount of time in milliseconds (ms) that the device has been exposed to the ultraviolet 

light since the participant has participated in the real-world data collection.

•	 HR.csv: the participant’s heart rate, which was collected at a sampling rate of 1Hz.
•	 bpm: the number of heartbeats per minute (b/min).

•	 SkinTemperature.csv: the skin temperature of the wrist sampled at 1Hz.
•	 temperature: the skin temperature in degrees Celsius (°C).

•	 Calorie.csv: the number of calories that the participant has burned, which was collected at a sampling rate of 
1Hz.
•	 caloriesToday: the total number of kilocalories (kcal) burned today.
•	 totalCalories: the total number of kilocalories (kcal) burned since the participant took part in the real-

world data collection.

•	 EDA.csv: the participant’s skin resistance as measured by the electrodermal activity sensor, which was sam-
pled at 5Hz.
•	 resistance: the skin resistance measured in kiloohms (kΩ).

•	 RRI.csv: the interval between successive heartbeats, which was recorded only when consecutive readings were 
different.
•	 interval: the time between the last two consecutive heartbeats in milliseconds (ms).

technical Validation
Distribution of in-situ emotion, stress, and attention labels. During the real-world data collection, 
we collected 5,582 responses to in-situ questionnaires, where each participant provided 72.5 responses on aver-
age (SD = 16.0). In addition, 3,323 responses were received within 10 minutes of prompt arrival (mean = 43.7; 
SD = 19.4). The remaining responses were completed voluntarily or after a 10-minute expiration (mean = 29.3; 
SD = 16.3), where one participant (P71) never responded to ESM prompts and instead answered our question-
naires only in a voluntary manner.

Figure 3 summarizes the responses to each question. Our participants reported a slightly positive level 
of valence (mean = 0.66; SD = 1.42) but a negligibly negative level of arousal (mean = −0.09; SD = 1.67). 
Additionally, they were slightly less stressed (mean = −0.26; SD = 1.62). Furthermore, their attention to the 
ongoing task was slightly positive (mean = 0.40; SD = 1.61). Responding to our in-situ questionnaire hardly 
disturbed their ongoing tasks (mean = −0.04; SD = 1.76) and barely changed their emotions (mean = −0.01; 
SD = 0.90). Their emotions lasted for 26.39 minutes on average (SD = 18.06).

Table 3 summarizes the repeated-measures correlation coefficients52 among the different response dimen-
sions. Overall, there were statistically significant correlations across all dimensions. Arousal was positively cor-
related with valence (r = 0.386; p < 0.001) and attention (r = 0.435; p < 0.001) to a moderate extent, suggesting 
that participants were likely to focus on their ongoing task while feeling positive when they were emotionally 
aroused. However, the strong negative correlation (r = −0.591; p < 0.001) between valence and stress indicates 
that participants may feel negative when stressed. Interestingly, a negative (r = −0.222; p < 0.001) correlation 
between disturbance and emotional change implies that participants disturbed by responding to the question-
naire tended to start feeling bad.

Machine-learning analysis. To confirm that our dataset is technically sound, we built and evaluated 
machine-learning models to predict individuals’ valence, arousal, stress, and task disturbance when an ESM 
prompt is triggered. For this, we preprocessed all data obtained from pre- and post-surveys and the real-world 
data collection. We then extracted many features corresponding to the responses to each in-situ questionnaire  
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from the pre-processed data. These features and responses were used to build machine learning models such as 
XGBoost and Random Forest. We conducted a leave-one-subject-out (LOSO) cross-validation (CV) scheme to 
assess the generalizability of our models for an unseen user. In addition, we explored important features that sig-
nificantly affected the structures of the models. The entire pipeline of our machine-learning analysis is illustrated 
in Fig. 4.

Preprocessing. Before building the machine-learning models, we first screened the data collected from the 
participants, considering the number of responses to in-situ questionnaires delivered via ESM prompts. Our 
task disturbance question aimed to measure how timely requests for answering questionnaires disturbed ongo-
ing tasks. Therefore, responses obtained when participants reacted to delivered ESM prompts and responded 
to questionnaires before the expiration time (i.e., 10 minutes) would be in line with our purpose. For this rea-
son, we first excluded 2,259 responses that were provided voluntarily or after a 10-minute expiration time. We 
then excluded 704 responses collected from 30 participants who reported fewer than 35 responses to ESM 
prompts, which is half the number of responses that we instructed (i.e., at least ten responses daily; a total of 70 
responses for weeklong data collection). Consequently, we used 2,619 responses from 47 participants to build 
machine-learning models.

After screening, to simplify the classification task, we converted the 7-point Likert scale responses to the 
valence, arousal, stress, and task disturbance questions into binary classes by encoding responses greater than 
zero as HIGH and the remaining as LOW. The class distributions for each label were skewed to some extent: 
1,556 (HIGH) vs. 1,063 (LOW) in valence; 1,033 (HIGH) vs. 1,586 (LOW) in arousal; 917 (HIGH) vs. 1,702 
(LOW) in stress; 1,110 (HIGH) vs. 1,509 (LOW) in task disturbance.

In addition, we preprocessed multimodal sensor data to extract meaningful fields from each sensing modal-
ity and generate single-dimensional time-series sensor readings. For example, Battery.csv contains several fields 
that describe the current state of the smartphone’s battery, such as its temperature, level, and status. These fields 
were transformed into independent sensor readings. The entire list of the preprocessed data is presented in 
Table 4.

Feature extraction. For every timestamp at which participants completed in-situ questionnaires, we generated 
a total of 3,356 features from different data sources, including pre- and post-surveys, multimodal sensor data, 
and responses to in-situ questionnaires, as follows:

•	 From the pre- and post-surveys, we extracted 11 features that reflect basic demographics, personality traits, 
and mental health.

•	 From the preprocessed categorical sensor data, we generated 856 features that reflect the current sensor read-
ings, the duration since the latest sensor readings changed, and the distribution of readings within a particular 
period just before participants reported their affective and cognitive states (i.e., a time window). Eight differ-
ent sizes of time windows were considered: 30-second, 1-minute, 5-minute, 10-minute, 30-minute, 1-hour, 
3-hour, and 6-hour.

Valence Arousal Attention Stress Task disturbance

Arousal 0.386***

Attention 0.288*** 0.435***

Stress −0.592*** −0.202*** −0.152***

Task disturbance −0.029** 0.028** 0.118*** 0.087***

Emotion change 0.316*** 0.167*** 0.116*** −0.291*** −0.222***

Table 3. Correlation matrix among affect responses (*p < 0.05, **p < 0.01, ***p < 0.001). The Emotion 
duration is excluded since it has non-numeric values.

Fig. 3 Distributions of responses to in-situ questionnaires. White dots are the mean of responses. Due to the 
difference in the scale, the emotion duration is illustrated in a separate sub-figure.
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•	 From the preprocessed numerical sensor data, we extracted 2,470 features relevant to the current sensor 
readings and the distribution of readings within a given time window. As in the categorical sensor data, we 
considered eight different time windows.

•	 From the in-situ questionnaires, we extracted 16 features relevant to the temporal contexts in which ESM 
prompts appeared on the participants’ smartphones. In addition, we generated three features reflecting the 
likelihood of a participant previously being in a HIGH affective or cognitive state within three different time 
windows, including 6-, 12-, and 24-hour. For example, for a given participant who reported their valence five 
times with three of these responses labeled as HIGH for 6 hours just before a particular timestamp, the feature 
value was 0.6.

A more detailed description of our features is presented in Table 5

Cross-validation. We conducted LOSO CVs to approximate our models’ general performance in predicting 
the affective and cognitive states of an unseen user. For each participant, we partitioned our feature and label 
data into a testing fold with data from that participant and a training fold with data from the other participants 
(this set of the training and testing folds is hereafter referred to as “split”). We then trained our machine-learning 
models using the training fold data and evaluated them using the testing fold. As data from 47 participants 
remained after preprocessing, we repeated the partitioning, training, and evaluation processes 47 times.

For every training process, we first selected important features because the number of labeled data (2,619) 
was less than the dimensionality of our feature space (3,356), possibly leading to a p ≫ n (big-p, little-n) problem 
that requires more computing resources for model training and even deteriorates performance53. To this end, 
we trained an L1-norm support vector machine (the regularization parameter C was set to 0.01) with a linear 
kernel and squared-hinge loss function. This model estimates each feature’s coefficient, which indicates the effect 
of the feature on the prediction; the coefficients of the less important features become close to zero. Therefore, 
we selected only features with coefficients greater than zero. Note that we empirically selected the regulariza-
tion parameter (i.e., C) that can reduce the feature space to about 10% of the number of labeled data (i.e., 2,619 
to 261.9) because the rule-of-thumb on the number of samples required to build machine-learning models is 
unofficially known to be five or ten times the dimensionality of the feature space. Through feature selection, the 
mean dimensionality of the feature space per split was reduced from 3,356 to 235.6 (SD = 6.4) for valence, 245.9 
(SD = 6.4) for arousal, 225.4 (SD = 6.6) for stress, and 209.5 (SD = 6.2) for task disturbance.

Fig. 4 Our machine learning pipeline.
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Raw data file Preprocessed data Data type Description

Smartphone data

ActivityEvent.csv

ACE_UNK Num. The ‘confidenceUnknown’ field.

ACE_FOT Num. The ‘confidenceOnFoot’ field.

ACE_WLK Num. The ‘confidenceWalking’ field.

ACE_FOT Num. The ‘confidenceOnFoot’ field.

ACE_VHC Num. The ‘confidenceInVehicle’ field.

ACE_BCC Num. The ‘confidenceOnBicycle’ field.

ACE_RUN Num. The ‘confidenceRunning’ field.

ACE_TLT Num. The ‘confidenceTilting’ field.

ActivityTransition.csv ACT Cat. The ‘type’ field of a physical activity that is currently conducted.

AppUsageEvent.csv
APP_PAC Cat. The ‘packageName’ field of an application that is currently in the foreground.

APP_CAT Cat. The ‘category’ field of an application that is currently in the foreground.

Battery.csv

BAT_LEV Num. The ‘level’ field.

BAT_STA Cat. The ‘status’ field.

BAT_TMP Num. The ‘temperature’ field.

CallEvent.csv CAE Cat. ‘CALL’ if the phone is on the call; otherwise, ‘IDLE.’

ChargeEvent.csv CHG Cat. The ‘type’ field.

Connectivity.csv CON Cat. The ‘type’ field.

DataTraffic.csv
DAT_RCV Num. The ‘rxKiloBytes’ field

DAT_SNT Num. The ‘txKiloBytes’ field.

InstalledApp.csv WIF_COS Num. The Jaccard similarity between consecutive readings’ ‘packageName’ fields.

Location.csv
LOC_CLS Cat. 7-bit geohash of the ‘latitude’ and ‘longitude’ fields.

LOC_DST Num. Haversine distance in meters between consecutive readings’ ‘latitude’ and ‘longitude’ fields.

MediaEvent.csv

MED_VID Num. 1 if the ‘mimetype’ field indicates a video file (i.e., video/*).

MED_IMG Num. 1 if the ‘mimetype’ field indicates an image file (i.e., image/*).

MED_ALL Num. 1 if the ‘mimetype’ field is not empty.

MessageEvent.csv

MSG_SNT Num. 1 if the ‘messageBox’ field equals to ‘SENT.’

MSG_RCV Num. 1 if the ‘messageBox’ field equals to ‘INBOX.’

MSG_ALL Num. 1 if the ‘messageBox’ field is not empty.

OnOffEvent.csv ONF Cat. The ‘type’ field.

PowerSaveEvent.csv PWS Cat. The ‘type’ field.

RingerModeEvent.csv RNG Cat. The ‘type’ field.

ScreenEvent.csv SCR Cat. The ‘type’ field.

WiFi.csv

WIF_COS Num. The cosine similarity between consecutive instances’ ‘rssi’ fields.

WIF_EUC Num. The Euclidean similarity between consecutive readings’ ‘rssi’ fields.

WIF_EUC Num. The Manhattan similarity between consecutive readings’ ‘rssi’ fields.

WIF_JAC Num. The Jaccard similarity between consecutive readings’ ‘bssid’ fields.

Wearable data

Acceleration.csv

ACC_AXX Num. The ‘x’ field.

ACC_AXY Num. The ‘y’ field.

ACC_AXZ Num. The ‘z’ field.

ACC_MAG Num. The square root of the sum of squared ‘x’, ‘y’, and ‘z’ fields.

AmbientLight.csv AML Num. The ‘brightness’ field.

Calorie.csv CAL Num. The difference between consecutive readings’ ‘totalCalories’ fields.

Distance.csv

DST_DST Num. The difference between consecutive readings’ ‘totalDistance’ fields.

DST_MOT Cat. The ‘motionType’ field.

DST_PAC Num. The ‘pace’ field.

DST_SPD Num. The ‘speed’ field.

EDA.csv EDA Num. The ‘resistance’ field.

HR.csv HRT Num. The ‘bpm’ field.

RRI.csv RRI Num. The ‘interval’ field.

SkinTemperature.csv SKT Num. The ‘temperature’ field.

StepCount.csv STP Num. The difference between consecutive readings’ ‘totalSteps’ fields.

UltraViolet.csv
ULV_INT Cat. The ‘intensity’ field.

ULV_EXP Num. The difference between consecutive readings’ ‘totalExposure’ fields.

Table 4. Description of preprocessing on multimodal sensor data. Cat.: categorical preprocessed data; Num.: 
numerical preprocessed data.
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In addition, we balanced the label distribution on the training fold because our binary labels had skewed 
distributions, with ratios of HIGH to LOW being 1.46 for valence, 0.65 for arousal, 0.54 for stress, and 0.74 for 
task disturbance. Such an imbalance may cause machine-learning models to be less trained in the minority class, 
a class with smaller samples than other classes. To avoid this issue, we adjusted the ratio of HIGH to LOW to 1:1 
by oversampling samples belonging to the minority class using the synthetic minority oversampling technique 
for data mixed with nominal and continuous fields (SMOTE-NC)54. We also considered the original imbalanced 
data to investigate the effects of oversampling on our models’ performance. Note that oversampling was con-
ducted only in the training fold and not in the testing fold.

Subsequently, we trained the prediction models using two different learning algorithms: Random Forest55 
and XGBoost56. Both algorithms are tree-based ensemble learning methods capable of handling a large feature 

Feature Feature type Description

Pre- and post-surveys

PIF#AGE Num. The age of a participant.

PIF#GEN Cat. The gender of a participant.

PIF#BFI_OPN Num. The openness score in the BFI questionnaire.

PIF#BFI_CON Num. The conscientiousness score in the BFI questionnaire.

PIF#BFI_NEU Num. The neuroticism score in the BFI questionnaire.

PIF#BFI_EXT Num. The extroversion score in the BFI questionnaire.

PIF#BFI_AGR Num. The agreeableness score in the BFI questionnaire.

PIF#PSS Num. The degree of perceived stress score during the data collection period derived by 
the PSS questionnaire

PIF#PHQ Num. The degree of depression severity during the data collection period derived by the 
PHQ questionnaire

PIF#GHQ Num. The degree of psychiatric well-being during the data collection period derived by 
the GHQ questionnaire

Pre-processed categorical sensor data (e.g., APP_CAT)

{DATA}#VAL = {VALUE} Cat. TRUE if the value recorded at the time nearest to a given timestamp is equals to 
‘VALUE’, FALSE otherwise.

{DATA}#DSC Num. The duration between the latest value changes and a given timestamp.

{DATA}#DSC = {VALUE} Num. The duration between the time that a given ‘VALUE’ was recently recorded and a 
given timestamp.

{DATA}#ETP#{WINDOW} Num. The information entropy of readings within a given time window.

{DATA}#ASC#{WINDOW} Num. The number of changes between consecutive readings within a given time 
window.

{DATA}#DUR = {VALUE}#{WINDOW} Num. The duration that a ‘VALUE’ lasted within a given time window.

Pre-processed numerical sensor data (e.g., DAT_RCV)

{DATA}#VAL Num. The value recorded at the time nearest to a given timestamp

{DATA}#AVG#{WINDOW} Num. The sample mean of data within a given time window.

{DATA}#STD#{WINDOW} Num. The sample standard deviation of data within a given time window.

{DATA}#SKW#{WINDOW} Num. The sample skewness deviation of data within a given time window.

{DATA}#KUR#{WINDOW} Num. The sample kurtosis deviation of data within a given time window.

{DATA}#ASC#{WINDOW} Num. The sum of absolute differences of data within a given time window.

{DATA}#BEP#{WINDOW} Num. The binned entropy of data within a given time window.

{DATA}#MED#{WINDOW} Num. The median of data within a given time window.

{DATA}#TSC#{WINDOW} Num. The time-series complexity estimate87 of data within a given time window.

In-situ questionnaires

ESM#DOW = {VALUE} Cat.
TRUE if the day of the week when a given prompt was triggered equals ‘VALUE’ 
(which can be either MON: Monday; TUE: Tuesday; WED: Wednesday; THU: 
Thursday; FRI: Friday; SAT: Saturday or SUN: Sunday), FALSE otherwise.

ESM#WKD Cat. TRUE if the time when a participant received a given prompt is a weekend, 
FALSE otherwise.

ESM#HRM = {VALUE} Cat.

TRUE if the name of the hour when a given prompt was delivered equals 
‘VALUE’ (which can be either DAWN: 6AM–9AM; MORNING: 9AM–12PM; 
AFTERNOON: 12PM–3PM; LATE_AFTERNOON: 3PM–6PM; EVENING: 
6PM–9PM; NIGHT: 9PM - 12AM; or MIDNIGHT: 12AM - 6AM), FALSE 
otherwise.

ESM#LIK#{WINDOW} Num. A prior likelihood of being in a HIGH affective state (i.e., the proportion of HIGH 
labels over whole labels within a given time window)

Table 5. Description of extracted features in the technical validation. DATA: a name of preprocessed sensor 
data; VALUE: one of the possible values that a given categorical data can have; WINDOW: a name of a given 
time window, which can be either S30 (30-second), M01 (1-minute), M05 (5-minute), M10 (10-minute), M30 
(30-minute), H01 (1-hour), H03 (3-hour), H06 (6-hour), H12 (12-hour), or H24 (24-hour); Cat.: a categorical 
feature; Num.: a numerical feature.
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space and capturing non-linear relationships between features. Because of this advantage, they have been 
widely used to predict user behaviors and cognitive states using mobile sensor data57–59, a setting similar to the 
K-EmoPhone dataset. We also trained a baseline model that always predicts the majority class for comparison 
with our models.

We then evaluated our prediction models using the testing fold data with performance metrics, including 
F1-scores for the minority and majority classes, the average of both F1-scores (i.e., macro-averaged F1-score), 
and accuracy. The final metric was derived by averaging the metrics calculated from 47 splits. Furthermore, 
the top ten important features for each split model were aggregated to further analyze the major contributing 
features of our models.

Prediction performance. Table 6 presents the performances for predicting valence, arousal, stress, and task 
disturbance across different learning algorithms and oversampling usages. Overall, the performance of our pre-
diction models surpassed that of the baseline model in terms of the macro-averaged F1 and accuracy. Regarding 
the macro-averaged F1, the XGBoost algorithm performed better than the baseline and Random Forest, except 
for predicting arousal. However, the accuracy metric revealed that the Random Forest algorithm could better 
predict valence, stress, and task disturbance. Interestingly, oversampling improved our models’ performances in 
predicting the minority class, as shown in the F1 score concerning the minority class (e.g., F1LOW for valence 
and F1HIGH for the others).

These results are notable compared to previous studies on using sensor data to predict emotional states. 
For example, the MAHNOB-HCI developed classification models that predicted three levels of valence and 
arousal based on physiological responses and eye gaze data collected in a laboratory setting12. The models built 
from peripheral physiological signals, including EDA, ECG, respiration patterns, and skin temperature, pro-
duced a macro-averaged F1 score of 0.39 for valence prediction and 0.38 for arousal prediction via LOSO CVs. 
Similarly, the DEAP evaluated binary classification models for valence and arousal with peripheral physiolog-
ical responses obtained in a laboratory setting via LOSO CVs13, achieving a macro-averaged F1 score of 0.60 
for valence prediction and 0.53 for arousal prediction. However, we trained prediction models with real-world 
multimodal data, where collecting high-quality sensor data is challenging. Therefore, it is noteworthy that our 
models showed comparable performance (0.53 for valence and 0.54 for arousal) to previous models with data 
collected in an in-lab setting, even though the MAHNOB-HCI tried to resolve more complicated classifica-
tion tasks (i.e., multiclass classification) than ours (i.e., binary classification). Our results are also comparable 
to prior studies conducted in a real-world setting. For example, Schmidt et al.37 trained binary classification 
models for stress using physiological sensor readings collected from 11 participants over 16 days. These models 
achieved a macro-averaged F1 score of 0.47 for stress prediction via LOSO CVs, comparable to our models’ 

Avg. F1 (SD) F1LOW (SD) F1HIGH (SD) Accuracy (SD)

Valence

Baseline 0.358 (0.114) 0.000 (0.000) 0.715 (0.229) 0.597 (0.233)

Random Forest (w/o oversampling) 0.523 (0.098) 0.358 (0.238) 0.687 (0.229) 0.662 (0.115)

Random Forest (w/ oversampling) 0.539 (0.093) 0.419 (0.236) 0.659 (0.238) 0.661 (0.115)

XGBoost (w/o oversampling) 0.543 (0.104) 0.408 (0.239) 0.677 (0.216) 0.659 (0.114)

XGBoost (w/ oversampling) 0.534 (0.097) 0.428 (0.233) 0.639 (0.216) 0.635 (0.109)

Arousal

Baseline 0.364 (0.090) 0.729 (0.180) 0.000 (0.000) 0.600 (0.200)

Random Forest (w/o oversampling) 0.499 (0.087) 0.703 (0.173) 0.295 (0.181) 0.626 (0.132)

Random Forest (w/ oversampling) 0.534 (0.096) 0.670 (0.183) 0.399 (0.181) 0.623 (0.139)

XGBoost (w/o oversampling) 0.532 (0.084) 0.679 (0.177) 0.385 (0.209) 0.634 (0.115)

XGBoost (w/ oversampling) 0.529 (0.085) 0.626 (0.181) 0.433 (0.187) 0.600 (0.111)

Stress

Baseline 0.390 (0.064) 0.779 (0.129) 0.000 (0.000) 0.655 (0.168)

Random Forest (w/o oversampling) 0.469 (0.076) 0.767 (0.131) 0.171 (0.172) 0.666 (0.141)

Random Forest (w/ oversampling) 0.508 (0.062) 0.730 (0.142) 0.285 (0.155) 0.644 (0.131)

XGBoost (w/o oversampling) 0.516 (0.058) 0.734 (0.135) 0.299 (0.187) 0.656 (0.111)

XGBoost (w/ oversampling) 0.517 (0.073) 0.685 (0.160) 0.350 (0.173) 0.620 (0.120)

Task disturbance

Baseline 0.346 (0.136) 0.692 (0.271) 0.000 (0.000) 0.588 (0.294)

Random Forest (w/o oversampling) 0.517 (0.094) 0.661 (0.283) 0.372 (0.327) 0.722 (0.159)

Random Forest (w/ oversampling) 0.520 (0.081) 0.633 (0.316) 0.407 (0.317) 0.727 (0.153)

XGBoost (w/o oversampling) 0.523 (0.076) 0.626 (0.292) 0.420 (0.307) 0.708 (0.151)

XGBoost (w/ oversampling) 0.525 (0.073) 0.608 (0.280) 0.442 (0.300) 0.695 (0.155)

Table 6. Performance evaluation results. F1LOW and F1HIGH are the F1-scores when the labels LOW and HIGH 
are regarded as positive classes, respectively. Avg. F1 is the average of F1LOW and F1HIGH (i.e., macro-averaged 
F1-score). The best performance is highlighted in bold.
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performance (i.e., 0.52). Consequently, we expect the K-EmoPhone dataset to have great potential for develop-
ing machine-learning models for emotion recognition, stress detection, and attention management.

Feature importance. We further analyzed the learning models to determine the major contributing features, 
as shown in Fig. 5. In general, the likelihood that affective or cognitive states were in a HIGH state within 
6- and 24-hour windows before the arrival of a given ESM prompt (i.e., ESM#LIK#H06 and ESM#LIK#H24) 
was the most important feature for all prediction models, indicating that the affect in the last few hours signifi-
cantly impacted the current affect. In addition, our models for predicting valence indicated that the neuroticism 

Fig. 5 Top ten important features across models and labels.
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personality trait (i.e., PIF#BFI_NEU), which is relevant to emotional instability and sadness, is an important 
feature. Regarding arousal prediction, our Random Forest model indicated that the extraversion personal-
ity trait (i.e., PIF#BFI_EXT), which reflects excitability and emotional expressiveness, was significant. At the 
same time, XGBoost showed the duration for which participants used particular smartphone applications in 
the social category within a five-minute window (i.e., APP_CAT#DUR = SOCIAL#M05) was necessary. In 
predicting whether participants were stressed, the Random Forest and XGBoost algorithms considered how 
long participants walked within a 3-hour or 30-minute window before a prompt arrived as important (i.e., 
ACT#DUR = WALKING#H03 or ACT#DUR = WALKING#M30). Moreover, the task disturbance prediction 
was highly related to individuals’ depression severity and the conscientiousness personality trait, which is rele-
vant to thoughtfulness (i.e., PIF#PHQ and PIF#BFI_CON).

Usage Notes
Potential applications. As discussed, the K-EmoPhone dataset is intended to help researchers under-
stand affective and cognitive states using multimodal data, including physiological signals, individuals’ contexts 
and interactions captured by smartphones, personal attributes, and mental health. Our dataset provides several 
advantages with a large number of engaged participants (N = 77); a variety of sensing modalities reflecting mobil-
ity, behavioral, and smartphone usage contexts; timely response to affective and cognitive states; and real-world 
data collection settings.

We expect the K-EmoPhone dataset to help build machine learning models that predict mental well-being 
and productivity, such as emotion cognition7,60 and stress detection21. Additionally, this dataset can be utilized in 
attention management studies by considering attention and task disturbance levels42,61. Furthermore, with appli-
cation usage and mobility information obtained from smartphones, this dataset allows researchers to investigate 
real-world behavioral patterns8,9,62. It is also promising to understand how emotional states can be affected by 
tasks that require timely responses to ESM prompts63.

Limitation. Unfortunately, the MS Band 2 is no longer available for measuring physiological signals as the 
companion app stopped working on May 31, 2019. Commercial wrist-worn sensors from Fitbit, Garmin, Apple, 
and Empatica support sensing features similar to those of the MS Band 2; however, some sensing modalities are 
missing. Thus, researchers who wish to collect the same sensing modalities as those in the K-EmoPhone dataset 
may be required to consider two or more sensing devices. Nevertheless, we expect the K-EmoPhone dataset to be 
utilized as a first step toward exploring candidate sensing modalities for those studying affective computing with 
mobile sensors.

During the real-world data collection, we did not monitor the data collection process in real-time. While we 
provided detailed instructions of tasks that participants should consider (e.g., securing the MS Band 2 on their 
non-dominant wrist from 10 AM to 10 PM daily, reporting ten responses to in-situ questionnaires delivered 
via ESM prompts, and keeping our data collection application activated), there might exist a case where partic-
ipants did not follow our instructions either intentionally or by mistake. Thus, the quality of the collected data 
may have been negatively affected in part. For example, as previously mentioned, one participant (P71) never 
responded to ESM prompts but consistently reported their affect voluntarily. Nonetheless, our technical valida-
tion shows that our dataset is promising for the binary classification of affective and cognitive states.

Our machine learning analysis binarized the labels with a simple threshold (i.e., zero), leading to an imbal-
anced label distribution. While we balanced the label distribution with oversampling during training and 
improved our models’ capability to predict the minority class, there may be other ways to address such an 
imbalance, with a greater potential performance improvement. For example, each participant may have their 
standards for rating their valence, which may result in responses from one participant being skewed toward 
a high valence and those from another toward a low valence. One possible way to handle this interpersonal 
difference is to set the threshold as the mean value of the responses for each participant instead of zero; in other 
words, responses higher than the per-person threshold may be encoded as HIGH, and those below the threshold 
encoded as LOW. We expect such a method to generate almost equally distributed labels, possibly improving 
performance without oversampling the minority class.

Code availability
We implemented an Android smartphone data collection application and used it to collect the K-EmoPhone 
dataset, which is available at https://github.com/Kaist-ICLab/K-EmoPhone_Logger. This application is intended 
to be run on smartphones with an Android API level of 21 or above. However, smartphones with an API level 
of 26 or above may not demonstrate the intended behavior owing to new privacy policies and deprecated data 
classes. In addition, our data exploration and machine-learning processes were written in a Jupyter notebook, 
which is available at https://github.com/Kaist-ICLab/K-EmoPhone_SupplementaryCodes.
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