
AffectStream: Kafka-based Real-time Affect

Monitoring System using Wearable Sensors

Jeonghyun Kima, Duri Leeb, Uichin Leec,∗

aKAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea,
jeonghyun.kim@kaist.ac.kr

bKAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea,
duri.lee@kaist.ac.kr

cKAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea,
uclee@kaist.ac.kr

Abstract

Real-time affect monitoring is essential for personalized and adaptive appli-
cations in fields like education, healthcare, and customer service. However,
existing systems often struggle with scalability and low-latency requirements
for processing high-frequency sensor data. To address these challenges, we
propose AffectStream, a Kafka-based real-time affect monitoring system that
processes wearable sensor data through a cloud-based pub/sub architecture
to the applications. AffectStream ensures scalability, fault tolerance, and
personalized emotional state analysis. Its robust performance is demon-
strated through trace-based evaluations using the WESAD dataset. This
open-source framework advances real-time emotion recognition, paving the
way for large-scale affective computing applications.

Keywords: Real-time affect monitoring, Kafka-based systems, Wearable
sensors, Personalized affect classification

Metadata

1. Motivation and significance

Real-time affect monitoring refers to the process of tracking and analyzing
a user’s affect state (e.g., feelings, moods, and stress levels) via real-time
sensor data analysis. Affect monitoring involves collecting various behavioral
(e.g., facial expression and voice [1]), physiological (e.g., heart rate, skin
conductance [2]), and psychological sensor data (e.g., self-reported stress and

∗Corresponding author

Preprint submitted to SoftwareX March 17, 2025

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Nr. Code metadata description Metadata
C1 Current code version 1.0
C2 Permanent link to code/repository

used for this code version
https://github.

com/Kaist-ICLab/

AffectStream

C3 Permanent link to Reproducible
Capsule

-

C4 Legal Code License MIT License
C5 Code versioning system used None
C6 Software code languages, tools, and

services used
Python, Java, Amazon Web
Service, Terraform, Locust,
Docker, SQL.

C7 Compilation requirements, operat-
ing environments & dependencies

Debian (Slim), Python
3.9.16, OpenJDK 21 (Early
Access, Build 11), other
requirements provided in
requirements.txt

C8 If available Link to developer docu-
mentation/manual

-

C9 Support email for questions jeonghyun.kim@kaist.ac.kr

Table 1: Code metadata.

mood [3]) to monitor the current affect state using wearable sensors (e.g.,
Samsung Watch and Google Fitbit).
Understanding and responding to users’ affect states is important, as it allows
for more personalized and adaptive interactions across various applications.
Personalized and adaptive services using real-time affect monitoring can be
applied in multiple fields, such as education [4], military training [5], health-
care [6], and empowerment at workplaces [7]. For example, educational soft-
ware can monitor students’ cognitive and emotional state, and dynamically
adjust the difficulty of the content or offer assistance that is appropriate
to their emotions and concentration levels to maximize learning effective-
ness [4, 8]. In military and medical training, it could provide a targeted
intervention by automatically monitoring trainees’ affect condition in highly
stressful environments, helping the trainees manage their emotions [9, 5].
In general, a real-time affect monitoring system consists of four continuous
and iterative stages: (1) data acquisition, (2) data streaming, (3) data pro-
cessing, and (4) data storage (see Figure 1) [10, 11]. First, in the data acqui-
sition stage, user data is collected in real time from one or multiple wearable

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://github.com/Kaist-ICLab/AffectStream
https://github.com/Kaist-ICLab/AffectStream
https://github.com/Kaist-ICLab/AffectStream


Figure 1: Four stages of real-time affect monitoring system.

devices (e.g., smartwatch and chest band). Second, during the data stream-
ing stage, large volumes of sensor data are transmitted and processed in real
time, requiring mechanisms to ensure data ordering and integrity. Third, in
the data processing stage, features are extracted and machine learning (ML)
models are applied to estimate users’ affect states from the collected data in
real time. Lastly, in the data storage stage, both the raw sensor data and the
inferred affect states are stored in a large-scale storage system (e.g., cloud
service) for further analysis and future use.
To perform such complex data processing for a real-time affect monitoring
system, a scalable open-source platform for real-time sensor data processing
is necessary. Among well-known architectures, in this work, we use the pub-
lisher/subscriber (pub/sub) architecture. The pub/sub architecture utilizes
one of the messaging patterns that allows for loose coupling between publish-
ers and subscribers. Therefore, it enhances the efficiency of data transmission
and processing, providing scalability and flexibility for the system. This ar-
chitecture has been widely used in prior studies. Lohitha et al. [12] employed
a cloud-based IoT platform utilizing a pub/sub architecture for real-time
sensor data analysis, and Haque et al. [13] proposed a distributed pub/sub
architecture for real-time remote patient monitoring using Movesense [14]
sensor, which is a wearable sensor for measuring electrocardiogram (ECG),
heart rate and movement. Various messaging systems, such as RabbitMQ,
ActiveMQ, and Kafka, implement the pub/sub architecture. RabbitMQ is a
message broker based on the Advanced Message Queuing Protocol (AMQP)
that excels in reliable message queuing and complex routing. Although Rab-
bitMQ supports pub/sub messaging, its queuing system architecture limits
high-frequency, high-volume continuous data processing [15]. ActiveMQ is a
Java Message Service (JMS)-supported message broker that offers both queue
and pub/sub models, making it suitable for transactional messaging and en-
terprise applications. In contrast, Kafka is a distributed streaming platform
optimized for high throughput and scalability, particularly for real-time data

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 2: The architecture of AffectStream.

streaming and log processing [16]. Notably, Kafka supports excellent real-
time throughput and provides superior performance in environments that
require large-scale real-time data processing and streaming [15].
Therefore, this paper proposes AffectStream, a real-time affect monitoring
system built on a Kafka-based architecture. The system enables real-time
affect tracking and is designed to be highly adaptable across various ap-
plications. This system leverages a real-time distributed system to handle
sensor data collection and storage in an end-to-end manner within a cloud
environment. AffectStream can reliably process sensor data without perfor-
mance degradation, even when multiple users simultaneously engage with the
system. Unlike conventional systems that classify emotions solely based on
collected data, AffectStream integrates a real-time distributed framework to
seamlessly manage processes from data collection to emotional classification
within a cloud-based environment. Applying AffectStream in various fields
such as education, healthcare, customer service, and psychological therapy,
we can understand the emotional states of users in real time and provide cus-
tomized responses accordingly. The following sections will provide a detailed
introduction to the architecture and applications of AffectStream.

2. Software description

AffectStream supports an end-to-end pipeline for real-time affect analysis,
from sensor data collection to modeling and management. It operates on a
Kafka-based cloud service and is designed to enable real-time classification of
personalized models as well as real-time affect recognition in the workflow of
Figure 2. In this section, we provide an overview of AffectStream and briefly

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 3: The architecture of Kafka.

describe the functionalities that the system supports. For detailed explana-
tions, please refer to the technical documents in our GitHub repository.

2.1. Software architecture

AffectStream is built on Kafka, designed to support parallel data processing.
The entire architecture operates in a cloud environment for a more flexible
system in case of an increase in sensors and users.

2.1.1. Basic architecture illustration

Kafka is based on a pub/sub architecture, where the producer acts as the
publisher and the consumer acts as the subscriber. Figure 3 illustrates the
basic structure and Table 2 summarizes the terminologies of Kafka. The pro-
ducer is the client that sends data received from users (i.e., wearable or IoT
sensor devices) to the broker in message units. Each data record contains
a key, value, timestamp, and optional metadata. After hash processing, the
data is serialized before being sent as messages to the broker. The broker
stores the data published by the producer and provides the requested data to
the consumer, thus managing the storage of records. Producers publish data
to topics, which brokers organize into partitions. These partitions are dis-
tributed across multiple brokers, enabling scalable and fault-tolerant storage.
Scalability is achieved by distributing partitions across brokers, allowing the
system to handle large data volumes efficiently. Fault tolerance is ensured
through replication: partitions are replicated across multiple brokers in a
cluster, so even if one broker fails, data remains accessible. This architecture
allows Kafka to maintain high availability and reliability in data-intensive en-
vironments. The consumer is the client that consumes the records generated
by the producer, processing the records received.

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Term Description
Broker A Kafka server that stores data and serves produc-

ers and consumers.
Topic A category or feed name to which records are pub-

lished.
Partition A division of a topic’s log, enabling parallel pro-

cessing.
Producer A client that publishes records to one or more

Kafka topics.
Consumer A client that reads records from one or more Kafka

topics.
Consumer Group A group of consumers that work together to con-

sume data from a set of topics.
Cluster A group of brokers working together.
Replication The process of duplicating data across multiple

brokers for fault tolerance.
Throughput The amount of data processed in a given time pe-

riod.
Latency The time it takes for a record to travel from pro-

ducer to consumer.
Stream Processing The real-time processing of data continuously from

a Kafka topic.

Table 2: Kafka terminology.

The operation of Kafka-based AffectStream is as follows (see Figure 3). The
producer (client side) creates records and uses a hash function to determine
the partition where the record will be stored. Records with the same key are
processed sequentially, and after hashing, they are serialized and sent to the
broker. The broker uses the key from the producer to partition the records
and then store them in the appropriate location. When a consumer sends
a request, the broker retrieves the relevant records and sends them to the
consumer. Within the same partition, the order of the data is guaranteed,
allowing for data streaming. Records arriving at the consumer undergo de-
serialization before being utilized in the application. Following Kafka’s basic
operation principles, consumers within a single consumer group cannot read
the same partition of the topic, which allows the system to be designed so
that specific data can be read appropriately by designated applications.

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



2.1.2. Rationales for core elements of AffectStream

Kafka-based pub/sub architecture. Kafka is selected because it can han-
dle large volumes of sensor data by processing it in parallel. This is achieved
by partitioning the data, which distributes the load across multiple brokers
to prevent overload and reduce latency, making real-time services possible.
Kafka also excels at managing time-series data, where the order of messages
is important. By partitioning messages and preserving their order, Kafka
facilitates smooth data streaming for machine learning models. Addition-
ally, Kafka provides reliable data delivery through data replication, ensuring
continuous service even if a subset of brokers fails.

Cloud-based scalable computing. AffectStream works in a cloud envi-
ronment. Cloud services are easy to set up and highly scalable, enabling
rapid adjustments to the required resources. In addition, the cloud environ-
ment facilitates the management and monitoring of remote device life cycles.
Furthermore, data stored and processed in the cloud can be accessed from
anywhere, significantly improving data mobility. High-speed networks and
data transfer technologies enable real-time data transmission, supporting the
effective processing of sensing data and enabling quick decision-making.

Sensor data schema registry. For efficient processing of sensing data,
AffectStream is designed for each component of the system to check the
structure and format of the sensor data through a predefined schema in the
schema registry. This allows for parallel construction of various sensing data
fields, making it easy to modify if the types of sensing data change. Such
flexibility facilitates the scalability and maintenance of the system.

2.2. Software functionalities

This section outlines key components and their roles in the workflow.

Producer. The producer in AffectStream is an API server that transmits
user sensor data from various sensors to the broker. Multiple producer pods
use a load balancer to evenly distribute user data and manage traffic. Data
is collected from sensors and sent in predefined segments, with the producer
using a user ID as the key for the hash function to assign partitions. Records
with the same key are stored sequentially in the same partition, ensuring that
data from the same user is stored sequentially in the same partition. The
data is then serialized based on the schema defined in the Schema Registry
before transmission to the broker. Note that the Schema Registry manages
data schema, allowing producers and consumers to share a common format
for serialization and deserialization

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Broker. The broker in AffectStream stores sensor data in partitions based
on the key and transmits it to consumers. Partitioning is performed to ensure
that the data from all users is evenly distributed across the partitions. Kafka
maintains order within partitions, ensuring sequential storage of a user’s
data. Additionally, data replication across multiple brokers enhances system
reliability despite failures. By using the user ID as the key in the hash
function, the producer ensures that data from the same user is stored in the
same partition of the broker. In AffectStream, the number of consumer pods
on Kubernetes matches the number of broker partitions, allowing Kafka to
guarantee the order of data for each person within the same partition.

Consumer. A consumer group in AffectStream has multiple consumers
reading data from the same topic. Each consumer subscribes to specific par-
titions, ensuring exclusive processing per partition. Matching the number of
consumers to partitions in the broker assigns each user’s data consistently to
one consumer, ensuring sequential processing and order of each user’s data.
Each consumer pod independently processes and analyzes data in real time
through three steps. (1) Deserialization parses data using the schema defined
in the Schema Registry for structured formatting. (2) Feature extraction
applies a sliding window, dividing the incoming data stream into fixed-size
segments (windows) and overlapping intervals that shift forward by a set
step size. Through this segmentation, user-specific features can be extracted.
(3) Affect classification uses extracted features and a pre-trained model for
continuous, real-time affect state detection.

2.3. Implementation

The producer, consumer, and simulator were deployed on Kubernetes using
Amazon Web Services (AWS) [17]. Kubernetes is an open-source container
orchestration platform that automates the deployment, scaling, and manage-
ment of containerized applications. It also supports various cloud resources
and infrastructures for the Kafka system [18, 19, 20]. The producer was
implemented based on a Spring-based API server that handles data trans-
mission to the broker.

3. Illustrative examples

As an example use case, we selected a scenario where AffectStream is imple-
mented to detect stress [21, 22, 23] of call agents at a typical call center with
around 100 employees. We set up the evaluation environment using a widely
used dataset for stress detection, and the system was tested for real-time
stress detection in this scenario.

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Components Configurations
Producer 10 * {1 vCPU, 4 GiB memory}
Broker 3 * {2 vCPUs, 2 GiB memory}, 12 partitions
Consumer 12 * {1 vCPU, 1.5 GiB memory}
Load test simulator 6 * {1 vCPU, 2 GiB memory}

Table 3: System configuration for trace-based evaluation. vCPU (virtual CPU) represents
a virtualized processing unit assigned to instances, where 1 vCPU = 1000 m in Kubernetes.

3.1. Trace-based evaluation setup

System configuration. To evaluate the system’s performance under real-
world conditions, we deployed the producer, broker, consumer, and load test
simulator on a distributed infrastructure. Table 3 summarizes the system
configuration used for trace-based evaluation. Similar to a prior work [24],
the system consisted of 10 producer instances, each with 1 vCPU (virtual
CPU) and 4 GiB memory, responsible for handling high-frequency sensor
data ingestion. The broker was deployed with 3 instances, each having 2
vCPUs and 2 GiB memory, and configured with 12 partitions. The consumer
consisted of 12 instances, each with 1 vCPU and 1.5 GiB memory, processing
incoming messages in parallel. Additionally, 6 load test simulator worker
instances, each with 1 vCPU and 2 GiB memory, were used to generate
traffic, simulating real-world workloads.

Trace dataset. We used the WESAD wearable dataset [25], which includes
multimodal physiological sensor data such as acceleration, temperature, mus-
cle activity, skin conductance, heart activity, and respiration. These data
points were collected at 700 Hz during stress-inducing tasks to classify af-
fective states like neutral, stress, and amusement. Since AffectStream is
designed to detect stress for individual users, we added a unique user iden-
tifier (UUID) to each data record. The original WESAD dataset does not
contain any user-specific identifiers, so we generated UUIDs to distinguish
data from different users. This allows the system to analyze stress patterns
on a per-user basis and supports real-time stress monitoring for multiple
users, as required in scenarios such as call centers.

Sensor data generator. Figure 4 illustrates a simulation implemented
using Locust [26], an open-source tool for load testing of the system using
HTTP and other protocols, to generate traffic for producers that closely
resembles real-world scenarios. In this simulation, a total of 100 users were
simulated by configuring Locust to spawn virtual users at a rate of 20 users

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



spring-boot

spring-boot

spring-boot

Kafka ClusterLocust
Load Balancer

POST

Producer

Producer

Producer

HTTP Server

Test Simulation

Kubernetes

Figure 4: Trace-based evaluation setup for load testing.

per second. Sensor data was transmitted at a rate of 700 Hz with each
segment spanning 1 second to the producer via POST.

Consumer of AffectStream. A sliding window [27] was applied to per-
form feature extraction in the consumers of AffectStream, with a window size
of 2 seconds and an overlap of 1 second.

3.2. Functionality Evaluation of AffectStream

This section evaluates three key functionalities of AffectStream: (1) validat-
ing schema and maintaining data consistency, (2) enabling real-time person-
alized affect classification, and (3) ensuring data order during processing.
These were evaluated through latency, throughput, and metadata analysis.

Schema validation and data consistency. The schema defines data
structure and types, ensuring that all messages adhere to a predefined for-
mat. AWS Glue Schema Registry is used to enforce schema validation during
serialization and deserialization between producers and consumers. The val-
idation process includes format verification, field presence checks, and data
type validation to prevent schema violations. Producers serialize data accord-
ing to the registered schema before sending it to the broker, and consumers
deserialize the data while verifying its integrity against the schema. Incon-
sistent or incompatible data is rejected during this process, ensuring data
consistency across the system.

Personal affect classification in real time. AffectStream’s capability
to support real-time personalized affect classification was evaluated using
end-to-end pipeline (E2E) latency and throughput. E2E latency, from data

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Latency Distribution

Latency (ms)

Fr
eq

ue
nc

y

200 400 600 800 1000 1200 1400

250

500

750

1000

1250

1500

1750

2000 Avg latency: 353.14 ms
99% percentile latency: 821.02 ms

Figure 5: End-to-end latency distribution.

Throughput Averaged Over 5-Second Intervals

Time Interval (sec)
0 100 200 300 400 500 600

19.5

20.0

20.5

21.0

21.5
Avg throughput: 20.02 records/sec

Av
g 

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

ec
)

Figure 6: Throughput averaged over 5-second intervals.

generation in the simulator to classification completion in the consumer, in-
cludes transmission through the Producer-Broker-Consumer pipeline. Through-
put is the number of records processed per second. Timestamps recorded at
data generation completion and classification completion provided the basis
for calculating latency and throughput. Figure 5 shows a mean latency of
55.89 ms and a 99th percentile of 141.00 ms, verifying low-latency operation.
Figure 6 confirms no data loss, as it matches Locust’s 20 users/s spawn rate,
demonstrating robustness and scalability.

Data order guarantee. To maintain data order, each message includes
a user ID, timestamp, and offset value. The offset is a unique identifier
assigned to each message within a partition, incrementing sequentially as

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



new messages arrive. The consumer processes messages in order by tracking
offsets, ensuring that records are consumed in the same sequence as they
were produced. The experimental results were validated by checking that
all messages belonging to the same user were in the correct order within a
partition.

4. Impact

AffectStream, a system that monitors users’ affect state in real time using
wearable sensor data, can be used to realize affective computing applications
in various domains such as education, military training, healthcare, and em-
powerment at workplaces. For example, integrating AffectStream with voice
assistants or chatbots in a call center setting can enable real-time detection of
customer dissatisfaction or confusion, improving interactions by responding
appropriately [28, 29]. This would enhance the user experience and con-
tribute to improved service quality. Notably, there is significant potential for
integrating AffectStream into systems designed for education and training.
Previous studies have shown that emotion recognition software in education
can maximize learning outcomes by adjusting the difficulty of the material
or providing encouragement based on the student’s emotional state [4, 8, 30].
By combining such software with AffectStream, which monitors real-time
changes in a student’s emotional state using multimodal data, it is possible to
meet individual emotional needs and create a more effective learning environ-
ment. This approach is particularly useful in military and medical training,
where trainees often practice in simulated high-stress conditions [9, 5]. With
AffectStream, trainers can adjust the training process in response to trainees’
emotional states, providing just-in-time interventions to help them manage
stress more effectively. Given the recent trend of actively introducing virtual
and augmented reality into simulation training in these fields [31, 32, 33],
systems for real-time affect recognition such as AffectStream are essential.
Further, when combined with AI-driven human-robot interaction (HRI), it
can offer more natural interactions [34, 35].

5. Conclusions

We proposed AffectStream, a real-time affect monitoring system that uses a
Kafka-based cloud infrastructure for large-scale affect analysis in real time.
Notably, Kafka-based pub/sub architecture in cloud environments enables
the processing of large-scale user data in real time thanks to a high-performance
distributed system architecture, effectively detecting emotional states such as
stress. We demonstrated the applicability of AffectStream for real-time affect

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



recognition by conducting a trace-based evaluation with data from wearable
sensors. AffectStream has the potential to deliver a more personalized user
experience across fields such as education, healthcare, customer service, and
military training, thereby enhancing learning efficiency, user satisfaction, and
emotional responsiveness.

CRediT authorship contribution statement

Jeonghyun Kim: Conceptualization, Software, Writing – original draft,
Writing – review & editing. Duri Lee: Writing – review & editing, Super-
vision. Uichin Lee: Supervision, Conceptualization, Writing – review &
editing, Funding acquisition.

Declaration of Competing interest

The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgements

This work was supported by the Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korean gov-
ernment (MSIT) (No. 2022-0-00064, Development of Human Digital Twin
Technologies for Prediction and Management of Emotion Workers’ Mental
Health Risks).

References

[1] C. Y. Park, N. Cha, S. Kang, A. Kim, A. H. Khandoker, L. Hadjileon-
tiadis, A. Oh, Y. Jeong, U. Lee, K-emocon, a multimodal sensor dataset
for continuous emotion recognition in naturalistic conversations, Scien-
tific Data 7 (1) (2020) 293.

[2] K. Hovsepian, M. Al’Absi, E. Ertin, T. Kamarck, M. Nakajima, S. Ku-
mar, cstress: towards a gold standard for continuous stress assessment
in the mobile environment, in: Proceedings of the 2015 ACM interna-
tional joint conference on pervasive and ubiquitous computing, 2015,
pp. 493–504.

13

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



[3] P. Zhang, G. Jung, J. Alikhanov, U. Ahmed, U. Lee, A reproducible
stress prediction pipeline with mobile sensor data, Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
8 (3) (2024) 1–35.

[4] E. Sarmiento-Calisaya, P. C. Ccori, A. C. Parari, An emotion-aware
persuasive architecture to support challenging classroom situations, in:
2022 IEEE International Conference on Consumer Electronics (ICCE),
IEEE, 2022, pp. 1–2.

[5] L. Linssen, A. Landman, J. U. van Baardewijk, C. Bottenheft, O. Bin-
sch, Using accelerometry and heart rate data for real-time monitoring of
soldiers’ stress in a dynamic military virtual reality scenario, Multimedia
Tools and Applications 81 (17) (2022) 24739–24756.

[6] D. S. Elvitigala, P. M. Scholl, H. Suriyaarachchi, V. Dissanayake,
S. Nanayakkara, Stressshoe: a diy toolkit for just-in-time personalised
stress interventions for office workers performing sedentary tasks, in:
Proceedings of the 23rd International Conference on Mobile Human-
Computer Interaction, 2021, pp. 1–14.

[7] V. Rivera-Pelayo, A. Fessl, L. Müller, V. Pammer, Introducing mood
self-tracking at work: Empirical insights from call centers, ACM Trans-
actions on Computer-Human Interaction (TOCHI) 24 (1) (2017) 1–28.

[8] M. Ez-Zaouia, A. Tabard, E. Lavoué, Emodash: A dashboard support-
ing retrospective awareness of emotions in online learning, International
Journal of Human-Computer Studies 139 (2020) 102411.

[9] K. Lai, S. N. Yanushkevich, V. P. Shmerko, Intelligent stress monitoring
assistant for first responders, IEEE Access 9 (2021) 25314–25329.

[10] D. McDuff, K. Rowan, P. Choudhury, J. Wolk, T. Pham, M. Czerwin-
ski, A multimodal emotion sensing platform for building emotion-aware
applications. arxiv 2019, arXiv preprint arXiv:1903.12133.

[11] K. Choksi, H. Chen, K. Joshi, S. Jade, S. Nirjon, S. Lin, Sensemo:
Enabling affective learning through real-time emotion recognition with
smartwatches, arXiv preprint arXiv:2407.09911 (2024).

[12] N. S. Lohitha, M. Pounambal, Integrated publish/subscribe and push-
pull method for cloud based iot framework for real time data processing,
Measurement: Sensors 27 (2023) 100699.

14

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



[13] K. N. Haque, J. Islam, I. Ahmad, E. Harjula, Decentralized pub/sub
architecture for real-time remote patient monitoring: A feasibility
study, in: Nordic Conference on Digital Health and Wireless Solutions,
Springer, 2024, pp. 48–65.

[14] Movesense, Wearable sensor — movesense, accessed March 17,
2025(2023).
URL https://www.movesense.com/

[15] R. Maharjan, M. S. H. Chy, M. A. Arju, T. Cerny, Benchmarking mes-
sage queues, in: Telecom, Vol. 4, MDPI, 2023, pp. 298–312.

[16] A. S. Foundation, Apache kafka, accessed March 17, 2025(2012).
URL https://kafka.apache.org/

[17] Amazon, Amazon web service (aws), accessed March 17, 2025(2024).
URL https://aws.amazon.com

[18] H. Wu, Z. Shang, K. Wolter, Performance prediction for the apache kafka
messaging system, in: 2019 IEEE 21st International Conference on High
Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), IEEE, 2019, pp. 154–
161.

[19] J. George, Build a realtime data pipeline: Scalable application data
analytics on amazon web services (aws) (2024).

[20] S. Boscain, Aws cloud: Infrastructure, devops techniques, state of art.,
Ph.D. thesis, Politecnico di Torino (2023).

[21] Y. Yurtay, H. Demirci, H. Tiryaki, T. Altun, Emotion recognition on
call center voice data, Applied Sciences 14 (20) (2024) 9458.

[22] J. Hernandez, R. R. Morris, R. W. Picard, Call center stress recognition
with person-specific models, in: Affective Computing and Intelligent
Interaction: 4th International Conference, ACII 2011, Memphis, TN,
USA, October 9–12, 2011, Proceedings, Part I 4, Springer, 2011, pp.
125–134.

[23] S. Bromuri, A. P. Henkel, D. Iren, V. Urovi, Using ai to predict service
agent stress from emotion patterns in service interactions, Journal of
Service Management 32 (4) (2021) 581–611.

15

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://www.movesense.com/
https://www.movesense.com/
https://kafka.apache.org/
https://kafka.apache.org/
https://aws.amazon.com
https://aws.amazon.com


[24] T. P. Raptis, A. Passarella, On efficiently partitioning a topic in apache
kafka, in: 2022 International Conference on Computer, Information and
Telecommunication Systems (CITS), IEEE, 2022, pp. 1–8.

[25] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, K. Van Laerhoven,
Introducing wesad, a multimodal dataset for wearable stress and affect
detection, in: Proceedings of the 20th ACM international conference on
multimodal interaction, 2018, pp. 400–408.

[26] Locust, Locust: An open source load testing tool, accessed March 17,
2025(2020).
URL https://locust.io

[27] M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statis-
tics over sliding windows, SIAM journal on computing 31 (6) (2002)
1794–1813.

[28] C. Liu, P. Agrawal, N. Sarkar, S. Chen, Dynamic difficulty adjustment in
computer games through real-time anxiety-based affective feedback, In-
ternational Journal of Human-Computer Interaction 25 (6) (2009) 506–
529.

[29] A. P. Henkel, S. Bromuri, D. Iren, V. Urovi, Half human, half machine–
augmenting service employees with ai for interpersonal emotion regula-
tion, Journal of Service Management 31 (2) (2020) 247–265.

[30] C.-H. Wu, Y.-M. Huang, J.-P. Hwang, Review of affective computing
in education/learning: Trends and challenges, British Journal of Edu-
cational Technology 47 (6) (2016) 1304–1323.

[31] P. Onu, A. Pradhan, C. Mbohwa, Potential to use metaverse for future
teaching and learning, Education and Information Technologies 29 (7)
(2024) 8893–8924.

[32] V. Kuleto, M. P. Ilić, M. Ranković, M. Radaković, A. Simović, Aug-
mented and virtual reality in the metaverse context: The impact on the
future of work, education, and social interaction, in: Augmented and
Virtual Reality in the Metaverse, Springer, 2024, pp. 3–24.

[33] D. Yu, Designing effective learning environments in the educational
metaverse: The role of augmented and virtual reality, in: Augmented
and Virtual Reality in the Metaverse, Springer, 2024, pp. 81–100.

16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://locust.io
https://locust.io


[34] L. T. C. Ottoni, J. d. J. F. Cerqueira, A systematic review of human–
robot interaction: The use of emotions and the evaluation of their per-
formance, International Journal of Social Robotics (2024) 1–20.

[35] A. Obaigbena, O. A. Lottu, E. D. Ugwuanyi, B. S. Jacks, E. O. Sodiya,
O. D. Daraojimba, Ai and human-robot interaction: A review of recent
advances and challenges, GSC Advanced Research and Reviews 18 (2)
(2024) 321–330.

17

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660Preprint not peer reviewed



This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Preprint not peer re
viewed



This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Preprin
t n

ot p
eer re

viewed



spring-boot

spring-boot

spring-boot

Kafka ClusterLocust
Load Balancer

POST

Producer

Producer

Producer

HTTP Server

Test Simulation

Kubernetes

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Preprint not peer re
viewed

https://aws.amazon.com/architecture/icons/
https://www.figma.com/community/file/1237887298592882853
https://www.figma.com/community/file/1225882386299815824
https://www.figma.com/community/file/1036052138421089717/entity-relationship-er-diagram
https://www.figma.com/community/file/967073537461695594/figjam-tips
https://www.figma.com/community/file/1103391126841329366/User-Interview
https://www.figma.com/community/file/1027358830096634813
https://www.figma.com/community/file/1103779267637172165


Latency Distribution

Latency (ms)

Fr
eq

ue
nc

y

200 400 600 800 1000 1200 1400

250

500

750

1000

1250

1500

1750

2000 Avg latency: 353.14 ms
99% percentile latency: 821.02 ms

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Preprint not peer re
viewed



Throughput Averaged Over 5-Second Intervals

Time Interval (sec)
0 100 200 300 400 500 600

19.5

20.0

20.5

21.0

21.5
Avg throughput: 20.02 records/sec

Av
g 

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

ec
)

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5193660

Preprint not peer re
viewed


	Motivation and significance
	Software description
	Software architecture
	Basic architecture illustration
	Rationales for core elements of AffectStream

	Software functionalities
	Implementation

	Illustrative examples
	Trace-based evaluation setup
	Functionality Evaluation of AffectStream

	Impact
	Conclusions

