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a b s t r a c t

Vehicular sensor networks (VSNs) enable brand new and promising sensing applications,
such as traffic reporting, relief to environmental monitoring, and distributed surveillance.
In our past work, we have designed and implemented MobEyes, a middleware solution to
support VSN-based urban monitoring, where agent vehicles (e.g., police cars) move around
and harvest meta-data about sensed information from regular VSN-enabled vehicles. In
urban sensing operations, multiple agents typically collaborate in harvesting and searching
for key meta-data in parallel. Thus, it is critical to effectively coordinate the harvesting
operations of the agents in a decentralized and lightweight way. The paper presents a
bio-inspired meta-data harvesting algorithm, called datataxis, whose primary goal is to
effectively cover large urban areas datataxis alternate foraging behaviors inspired by Esch-
erichia coli chemotaxis and by Lévy flights to favor agent movements towards ‘‘information
patches” where the concentration of meta-data is high. The proposed scheme avoids har-
vesting duplication by preventing superfluous concentration of agents in the same region
at the same time using stigmergy. We have validated datataxis via extensive simulations
that demonstrate how the proposed bio-inspired behavior of harvesting agents effectively
coordinates their movements, thus outperforming other decentralized strategies. Our solu-
tion was shown to be robust and to work well under a wide range of operation parameters,
thus making it easily and rapidly deployable for different urban sensing operations.
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1. Introduction

Vehicular sensor networks (VSNs) are becoming
increasingly popular and relevant to the industry due to re-
cent advances in inter-vehicular communication technolo-
gies and decreasing cost of communication devices.
Differently from traditional wireless sensor nodes, vehicles
are not typically affected by energy constraints and can
easily be equipped with powerful processing units, wire-
less communication devices, GPS, and sensing devices such
as chemical detectors, still/video cameras, vibration and
acoustic sensors. Thus, they enable brand new and promis-
ing sensing applications, such as traffic reporting, relief to
environmental monitoring, and distributed surveillance.
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In particular, there is an increasing interest in proactive ur-
ban sensing applications where vehicles continuously
monitor events from urban streets, maintain sensed data
in their local storage, process them (e.g., extracting license
plate numbers from still images), and route messages to
vehicles in their vicinity to achieve a common goal (e.g.,
to allow police agents to pursue the movements of run-
away cars). In general, VSNs could be an excellent comple-
ment to the fixed deployment of static cameras/sensors.
The distributed and opportunistic cooperation among sen-
sor-equipped vehicles has the additional benefit of making
it harder for potential attackers to thwart the surveillance.
Of course, this added level of surveillance capability may
raise privacy concerns, but in general people are willing
to accept it when only recognized authorities can collect
and process these data for forensic purposes, for counter-
acting terrorism, or simply for the common good (e.g., traf-
fic jam reporting).

The above examples show that VSN-based urban mon-
itoring often requires the collection, storage, and retrieval
of massive amounts of sensed data. This is a major depar-
ture from conventional sensor networks, where data is dis-
patched to ‘‘sinks” for further processing. Obviously, it is
impossible to deliver all the streaming data collected by vi-
deo sensors on regular cars to a police authority sink be-
cause of sheer volume; also a priori input filtering is
usually impossible because nobody can anticipate which
data will be of use for future investigations. Thus, there is
the hard technical challenge to find a completely decen-
tralized solution for VSN applications, with low overhead,
good scalability, and tolerance to disruption caused by
mobility/attacks. To that purpose, we have designed and
implemented the MobEyes middleware1 MobEyes agents
(e.g., police cars) move around and harvest meta-data (with
features about sensed data and context information such as
timestamp and location) when they are in direct communi-
cation range with regular vehicles; regular cars collect meta-
data from other opportunistically encountered vehicles. In
typical urban sensing operations, given the large scale of
the targeted regions, multiple agents should collaborate in
harvesting distributed meta-data and searching for key
information in parallel. Thus, it is critical to design an effec-
tive mechanism to coordinate the movement of agents so
that they can efficiently collect all meta-data of interest in
a totally decentralized and lightweight way. Multi-agent
harvesting is a challenging problem due to the very dynamic
nature of the target environment (e.g., continuous meta-data
creation/movement) and the scale of operation, without any
a priori knowledge of the needed meta-data location.

Based on the observation that social animals (ranging
from bacteria to vertebrae) efficiently solve a partially sim-
ilar challenge – namely the foraging problem to find good
food sources, this paper presents a novel multi-agent coor-
dination algorithm for MobEyes harvesting agents that
takes inspiration from biological systems. In particular,
we have considered multiple biological phenomena: (a)
Foraging behavior of Escherichia coli bacteria that operate
1 We provide a brief overview of MobEyes in Section 2; interested
readers can refer to [39] for the detailed description of MobEyes architec-
ture and protocols.
in distinct modes of locomotion based on the level of nutri-
ent concentration; (b) Lévy walk behavior of many biolog-
ical organisms and groups, e.g., albatrosses and fishing
boats, to improve food search over large-scale regions;
and (c) Stigmergy found in ants and other social insects
that use various types of pheromones to signal nest mates
with potential conflicts, e.g., a sort of ‘‘no entry” sign. By
delving into finer details, we propose a novel harvesting
strategy, called datataxis (á la chemotaxis of E. coli bacte-
ria), that guides the agents to stay and acquire meta-data
on ‘‘information patches,” the regions where newly created
and not-harvested meta-data are concentrated (based on a
simple metric for meta-data density estimation per road
segment). Secondly, MobEyes harvesting agents adapt
their behavior by following a 3-state transition diagram
that sometimes forces them to change their area of explo-
ration by exploiting Lévy walk-inspired movement pat-
terns, which are considered suitable for the large scale of
the typically targeted regions. Third, to avoid harvesting
work duplication, MobEyes agents exploit stigmergy-in-
spired techniques for conflict resolution to prevent useless
concentration of agents in the same region at the same
time.

We have thoroughly validated the datataxis perfor-
mance via an extensive simulation study taking into con-
sideration different scenarios with different search areas,
number of agents, and algorithm parameter settings. Using
a Manhattan mobility model, we compare the harvesting
efficiency of our datataxis foraging (DTF) with other decen-
tralized harvesting strategies, such as random walk forag-
ing (RWF), biased random walk foraging (BRWF), and an
idealized preset pattern foraging (PPF) where agents have
static knowledge on meta-data density distribution. From
this study, we show that DTF effectively balances the
movement of multiple agents and well distributes them
notwithstanding the minimum agent coordination needed.
The paper also shows that DTF always performs better than
RWF and BRWF, and very close to PPF in all cases. Finally,
we analyze the sensitivity of DTF performance with respect
to two key parameters (namely, constrained walk duration
and constrained walk radius), thus demonstrating the DTF
robustness for a wide range of the operation parameter
space.

The remainder of the paper is organized as follows: Sec-
tion 2 presents a brief overview of MobEyes to allow the
full understanding of the following agent coordination pro-
posal. Section 3 defines the addressed coordination prob-
lem, while Section 4 describes the foraging behaviors in
the nature that inspired our work. Then, we present our
original datataxis solution for multi-agent coordination in
Section 5, which is extensively evaluated in Section 6. Re-
lated work and conclusive remarks end the paper.
2. MobEyes overview

We first describe two application scenarios that are rep-
resentative of the MobEyes applications. Based on these
scenarios, we examine the key components of MobEyes,
namely meta-data dissemination, meta-data harvesting,
and data access.
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Fig. 1. MobEyes single-hop passive diffusion.
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2.1. Urban sensing scenarios

In the first scenario, police agents use the background
information collected by MobEyes-enabled vehicles to
investigate a tip that criminals might spread poisonous
chemicals in a particular section of the city (say, major city
intersection). The MobEyes vehicles are equipped with
cameras and chemical detection sensors. In this scenario,
a search of the MobEyes distributed database will help lo-
cate and verify the attack and track the criminal vehicles
leading to their capture. In the second scenario, we assume
there has been a suicide bombing at the Embassy. The po-
lice agents investigate the MobEyes database to recon-
struct the itinerary of the attack vehicle and detect
possible colluding vehicles.

These scenarios are both representative MobEyes sur-
veillance applications; yet, they are very different in terms
of search requirements. In the first case, there is a great ur-
gency to detect the location of the attack so that the
authority can possibly prevent it. However, the cars will
move in a regular traffic pattern. In the second case, the
investigation is more of forensic nature, but the traffic pat-
tern is very different because the cars near the explosion
site may try to escape the scene as quickly as possible.
However, in this case also the overall mobility will be con-
strained by the prevailing traffic conditions of the urban
grid (traffic lights, congestion at major intersections,
queues at freeway on ramps, etc). Experimental evidence
from realistic urban simulations has shown that, as a result
of the above traffic constraints, the vehicles carrying the
meta-data related to a particular event (e.g., gas leak,
explosion, attack trajectory, kidnapping, etc) tend to form
clusters that are concentrated over a confined area. This
observation is used in designing an effective search
strategy.

2.2. MobEyes protocol

In MobEyes, vehicles continuously generate a huge
amount of sensed data, store it locally, and periodically
produce small size meta-data chunks obtained by process-
ing the sensed data, e.g., license plate numbers or aggre-
gated chemical readings. They include meta-data
associated with the sensed data (e.g., vehicle position,
timestamp, vehicle ID number and possible additional con-
text such as simultaneous sensor alerts) and the features of
interest extracted by local filters. A set of chunks are
packed into a single packet for efficiency. This section
briefly describes our diffusion protocol that is used by
non-agent vehicles (i.e., regular nodes) to opportunistically
spread meta-data by exploiting mobility. The diffused
meta-data represent the first level distributed index that
can be used to support targeted searches. It then describes
the meta-data harvesting protocol used by agent vehicles
which are police cars in our example. The police agents
perform proactive harvesting in the background to build
a second level distributed index of sensed data that resides
on agent vehicles. The index is locally processed by police
vehicles to detect possible anomalies and trigger alarms,
and may also be interrogated electronically from the Cen-
tral Office in response to time critical queries. Finally, we
describe how the actual data can be retrieved. Note that
additional details about the design and implementation
of the MobEyes prototype are out of the scope of this pa-
per. Interested readers are referred to [5].

2.2.1. Meta-data diffusion
A regular node periodically advertises newly generated

meta-data to its neighbors in order to increase the oppor-
tunities for agents to harvest the meta-data. Clearly, exces-
sive advertising will introduce too much overhead,
whereas too few advertising will result in delayed data
harvesting, as agents will need to contact more vehicles
to complete the harvesting process. MobEyes tries to bal-
ance the trade-off between harvesting latency and adver-
tisement overhead. In the meta-data advertisement, the
packet header includes a packet type, generator ID, locally
unique sequence number, packet generation timestamp,
and generator’s current position. Each packet is uniquely
identified by the generator ID and its sequence number
pair, and contains a set of meta-data locally generated dur-
ing a fixed time interval.

Neighbor nodes receiving a packet store it in their local
meta-data databases. Therefore, depending on the mobility
and the encounters of regular nodes, packets are opportu-
nistically diffused into the network of vehicles. We call this
a passive diffusion. MobEyes can be configured to perform
either single-hop passive diffusion (only the source adver-
tises its packet to current single-hop neighbors) or k-hop
passive diffusion (the packet travels up to k-hop as it is for-
warded by j-hop neighbors with j < k). As detailed in [39],
we find it is sufficient for MobEyes to use a lightweight k-
hop passive diffusion strategy with very small k values to
achieve a desired level of diffusion.

Fig. 1 depicts the operation of MobEyes with the case of
two sensor nodes, C1 and C2, whose radio ranges are rep-
resented as dotted circles. In the figure, a black triangle
with timestamp represents an encounter. According to
the MobEyes meta-data diffusion protocol, C1 and C2 peri-
odically advertise a new meta-data packet SC1;1 and SC2;1

respectively where the subscript denotes hID; Seq:#i. At
time T � t4, C2 encounters C1, and thus they exchange
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these advertisements. As a result, C1 carries SC2;1 and C2
carries SC1;1. We note that meta-data diffusion is time and
location sensitive; i.e., it is spatial-temporal information
diffusion. In fact, regular nodes keep track of the freshness
of meta-data packets by using a sliding window with the
maximum window size of a fixed expiration time. In addi-
tion, since a single advertisement packet may contain mul-
tiple meta-data records, it is possible to define packet
sensing location as the average position of all meta-data
in the packet. When a packet expires or the packet origina-
tor moves away more than a threshold distance from the
packet sensing location, the packet is automatically dis-
posed. The expiration time and the maximum distance
are system parameters that should be configured depend-
ing on the requirements of an urban monitoring
application.

2.2.2. Meta-data harvesting
In parallel with the meta-data diffusion, the MobEyes

agents may collect meta-data from regular nodes by peri-
odically querying the nearby nodes. The goal of meta-data
harvesting is to collect all the meta-data generated in a
specified area. For efficiency, a police agent should harvest
only those meta-data packets that have not been collected
already. In order to identify missing packets, a MobEyes
agent node compares its list of meta-data packets with that
of its neighbors, by exploiting a space-efficient data struc-
ture for membership checking. In our design, a MobEyes
agent uses a Bloom filter to advertise its set of recently har-
vested meta-data packets. Since each meta-data has a un-
ique node ID and sequence number pair, we use this as
input for the hash functions of the Bloom filter. When an
agent broadcasts a harvest request message it includes a
Bloom filter for the meta-data it has already harvested.
Upon receiving this, a regular node prepares a list of pack-
ets that are not already in the agent’s packet list, and sends
them to the agent using a random back-off to minimize
collisions. In response, the agent sends back an acknowl-
edgment with a piggybacked list of successfully received
packets. Upon overhearing this, each neighbor updates
their list of packets to send.

In the basic design of MobEyes, we have only consid-
ered a single agent scenario and a multi-agent scenario
where the agents harvested data without coordination
using random movement [39]. In general, however, we
envision that there will be multiple collaborating agents
that try to harvest important information concurrently.
Thus MobEyes should support the operation of multiple
agents. In effect, multiple agents create a distributed and
partially replicated index of sensed data. The main goal
of this paper is to strategically control the trajectory of
agent nodes to efficiently harvest meta-data so that they
can be collectively used for later data access. We present
a detailed problem description for this paper in the next
section.

2.2.3. Data access
In vehicular area networks (VANETs), geographic rout-

ing (or geo-routing) has been investigated extensively for
its scalability. To handle intermittent connectivity due to
heterogeneous vehicle distribution and time-of-day effects
(e.g., during off-rush hours and in peripheral areas), mobil-
ity has been exploited to ‘‘assist” geo-routing; i.e., a vehicle
carries packets and forwards them to a newly found vehi-
cle that is moving towards the destination [38,69,73]. A
prerequisite for geo-routing is a location service that tells
where the destination is. However, it is challenging to de-
vise an efficient, scalable, and robust location service pro-
tocol due to the dynamic nature of vehicular networks
(mobility, channel errors) [72]. An elegant way of reducing
this cost is by exploiting spatial-temporal correlation that
exists in most realistic mobility patterns; i.e., the distance
between two nodes is more or less correlated with the time
elapsed since they last encountered each other. This obser-
vation brought forth Last Encounter Routing (LER) [31]. In
MobEyes, since each vehicle can piggyback the current po-
sition into its meta-data advertisement, LER can be sup-
ported at no extra cost. LER, however, does not address
the intermittent connectivity problem. In MobEyes, LER is
enhanced with the carry-and-forward functionality. The
enhanced LER plays a key role when an agent tries to re-
trieve the actual data, or to send a dump request to the tar-
get vehicle.
3. Problem definition: multi-agent coordination

Our primary objective of this paper is to design an algo-
rithm to control the movement of multiple agents to harvest
dynamically generated meta-data in an unspecified region
as efficiently as possible.

The design goals for our multi-agent harvesting algo-
rithm can be summarized as follows:

� Low communication overhead: The protocol should not
involve a tight, close range control of agents’ movement
based on continuous streaming of agents coordinates
since such a scheme would incur heavy communication
overhead, and would not be robust in the face of inter-
mittent connectivity.

� Data harvesting efficiency: The protocol must be efficient.
Ideally, we want our algorithm to perform similarly to a
centralized coordination algorithm, in terms of data har-
vesting efficiency (i.e., how fast we can collect all the
data that we are interested in) and the control efficiency
of agents movement (i.e., how much redundant data col-
lection could be avoided).

� Self-organization: The protocol should be self-organizing
and adaptive to the dynamics of the environment, such
as the changes in the movement patterns and densities
of the vehicles in VSN and the data carried by those
vehicles, and also to the dynamic events and creation
of interesting data.

� Delay tolerance: Some or most part of the network
formed by vehicles may exhibit intermittent connectiv-
ity. Hence, we require our algorithm to work well in a
delay tolerant scenario.

For all the requirements listed above, we notice that the
nature has already solved a similar problem. In particular,
social insects and animals coordinate their efforts to effec-
tively collect food without prior knowledge of the food
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sources; yet they are known to solve this problem quite
effectively, if not optimally [61]. According to the foraging
theory, animals are presumed to search for nutrients and
obtain them in a way to maximize the ratio of energy in-
take over the time spent for foraging. In effect, they are
solving the multi-agent harvesting problem.

We also notice that our problem is related to a problem
found in robotics, in which multiple cooperative robots try
to complete a task quickly and reliably. In this case, three
generic multi-agent tasks have been considered, namely
forage, consume, and gaze. The forage task is to wander
around the environment looking for the items of interests
(attractors) [51]. After picking up these items, the robot
agent takes them to a specified home base. Similarly to for-
age, the consume task involves wandering about the envi-
ronment to find attractor, but upon finding an attractor, it
performs a task on the object (e.g., toxic waste cleanup,
assembly) [67]. In the gaze task, a robot searches for an
area that has not been gazed, moves towards it, and then
gazes over it until the entire environment has been cov-
ered (e.g., vacuuming house, lawn mowing) [43]. Our
meta-data harvesting scenario is similar to the consume
task. However, there is a major difference. In our case,
the data sources are mobile and the meta-data are epidem-
ically disseminated in the network. Since vehicles move in
an urban grid, it is possible that after a while the same area
may become ‘‘productive” again, as more data pours in
from alternate paths or (in the case of trajectory tracking)
from different view points. Thus, harvested areas are
replenishable after a time-out and for a limited period.
To the best of our knowledge, the literature in cooperative
robots did not deal with this scenario.
4. Foraging behaviors in the nature

We review key foraging behaviors observed in the nat-
ure that can be applied to tackle our problem. We first re-
view the social foraging behavior of insects such as ants
and honey bees. These insects use stigmergy or dances to
communicate information about the food sources and re-
cruit other members. We then review the chemotaxes of
E. coli bacteria, which operates in various modes, i.e., for
searching nutrients and moving towards an area whose
density in nutrients is high. Finally, we review the model
for Lévy walk, which can be used to take agents to a rela-
tively long distance so that when multiple agents collide
in the same area, they can exhibit an efficient search
behavior.

4.1. Stigmergy

Information harvesting, which is our main theme of this
paper, is directly related to the food foraging problem
solved by stigmergy. Ants need to find routes in an effec-
tive manner to possibly ephemeral food sources. Since it
is not immediately obvious how long the current site will
remain as a valid foraging site, they have to solve a dy-
namic problem of remembering a rewarding source while
exploiting newly discovered food sites. It has been estab-
lished that ants can optimize their foraging by selecting
the most rewarding source. Several works have confirmed
that the selection is the result of a trail modulation accord-
ing to food quality, and have shown the existence of an
optimal quantity of laid pheromone for which the selection
of a source is at the maximum. Moreover, the selection of a
rich source is more efficient if many individuals lay small
quantities of pheromone, instead of a small group of indi-
viduals laying a higher trail amount. In many cases, the
nutrients are distributed in patches, and the main issue of
foraging is finding such patches, and deciding how long it
will take before depleting and leaving the current food
sources.

Physical contacts and other forms of direct communica-
tion, e.g., via sound or vibrations, are limited both spatially
and temporally; only neighbors in the vicinity can receive
the signal. On the contrary, pheromone trails are long last-
ing and can be considered a wide broadcast that slowly
dissipates in time. Researchers have found that there are
different types of pheromones used by ants. First, there
are long-lasting pheromones, which are used to maintain
the spatial organization of ant networks, and volatile pher-
omones, which are used to quickly mark routes leading to
current food sources. For instance, the pygidial gland L.
distinguenda produces a long-lasting trail pheromone (that
lasts about 25 min), which guides the ants back to the trail
or the colony when they are detached from the trail net-
work [34]. Second, there is a short-live repellent phero-
mone, which effectively serves as a no-entry signal. This
is quite different from attractant pheromones used to mark
the routes to food sites.

Although, insects generally use pheromone to mark a
trail leading to food sources, their usage in the biological
world is not only to generate attraction but also as a flag
of dominance, or ‘‘antagonism” as found in fish and mam-
mals [28,19]. For instance, the urine signals social rank in
tilapia [3], which has the same meaning as the fecal gluco-
corticoid laid down (and not accumulated) in some mam-
mals [26,30]. In addition, there are several examples of
non-accumulability and diffusive (or mobile) behavior.
There is recent work on human [42,70] showing that diffu-
sive, sub-threshold quantities (i.e., low quantity and not
accumulable) of certain pheromones produce effects in
humans.

In the literature, an algorithm following an ant-like
behavior has been proposed for network routing (see Sec-
tion 7 for more discussion); however, the concept of pher-
omones has not been explored in the context of mobile
sensor networks. In this paper, we borrow the idea of
stigmergy for indirect communication between agents to
mark the areas that they have swept for information. In
this way, the agents can move out from the area that has
already been searched for by other agents.

4.2. Chemotaxis of E. coli

Another biological foraging behavior that we study in
the context of information harvesting is the chemotactic
(or foraging) behavior of E. coli bacteria [6]. E. coli is one
of the main species of common bacteria that live in the
lower intestines of mammals including humans. E. coli gets
its locomotion from a set of rigid flagella that enables the
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bacteria to swim. When the flagella turn clockwise, the
bacteria tumble and do not move to any particular direc-
tion. On the other hand, when flagella turn counter-clock-
wise, the bacteria will swim in a directional movement.
The sensors of an E. coli are the receptor proteins that are
stimulated by external substances. Based on the level of
nutrients (or attractants) a bacterium will move in differ-
ent modes. More specifically, when an E. coli is in some
substance without food or noxious substances, its flagella
will alternate between moving clockwise and counter-
clockwise so that the bacterium will alternate between
tumbling and swimming. This alternation will move the
bacterium in random directions. We can consider this
movement mode a search for food. If the bacteria are
placed in a substance with a nutrient with homogenous
concentration, they will exhibit a search behavior but with
increased run length of swimming and decreased tumble
time. In effect, they will search for nutrients more aggres-
sively when they are in a nutrient environment. Finally,
when the bacteria detect a change in the concentration le-
vel of nutrition, they will swim along the gradient of con-
centration toward the most nutrition rich area, and
spend less time tumbling. If somehow an E. coli encounters
a region where nutrient gradient does not increase after
the swim, it will return to the baseline search mode to
search for even higher concentrations.

The chemotactic behavior of E. coli is very simple. From
an algorithmic perspective, it combines a greedy heuristic
with random search – when the nutrient gradient is de-
tected a bacterium moves along the highest gradient and
when it hits a hill it starts a random search. A similar strat-
egy can be employed by data harvesting agents – the
agents can try to move towards an area where the density
of new information is high, and before they detect enough
concentration of new information, they can roam around
to detect an area with promising outcomes. This is one of
the main ideas that we will evaluate quantitatively using
simulations in Section 6. Of course, the functional capabil-
ity of E. coli is very simplistic and primitive, and we should
not restrict our algorithms to exactly follow its behavior.
Thus we leverage extra information and communication
means, e.g., from pheromone trails left by other agents
and the history of information density in the region, to
coordinate the movements and the queries of the agents
more effectively.

4.3. Lévy walk

The intense programs of observations and data collec-
tion of animal foraging strategies have attracted the inter-
est of mathematicians and computer scientists. A freely
diffusive particle is characterized by a mean square dis-
placement which increases linearly in time, hX2ðtÞi � t.
However, a variety of interesting physical and biological
systems violate this temporal behavior. There is nowadays
a growing agreement that foraging and movement pat-
terns of some biological organisms may have so-called
‘‘Lévy-flight” characteristics. Lévy flights or random walks,
named after the French mathematician Paul Pierre Lévy
[41], are known to outperform Brownian random walks
for searching when the precise location of the targets is
not known a priori but their spatial distribution is uniform.
A Lévy walk comprises random sequences of movement-
segments, with lengths l, drawn from a probability distri-
bution function having a power-law tail, pðlÞ � ‘�a where
1 < a < 3. In other words, a Lévy walk has no intrinsic step
length scale and thus steps of seemingly very long length
may be observed. Such a distribution is said to have a
‘‘heavy” tail because large-length values are more preva-
lent than would be present within other random distribu-
tions, such as Poisson or Gaussian. Viswanathan et al.,
[66,4] demonstrated that a ¼ 2 constitutes an optimal
Lévy-flight search strategy for locating targets that are dis-
tributed randomly and sparsely. Under such conditions,
the Lévy search strategy with a ¼ 2 minimizes the mean
distance traveled and presumably the mean energy ex-
pended before encountering a target.

It has been also reported that the Lévy strategy is opti-
mal, which results in space filling paths, if the searcher has
no prior knowledge of target locations, and if the mean
spacing between successive targets greatly exceeds the
searcher’s perceptual range. A growing literature is show-
ing that Lévy-flights with a = 2 characterize the movement
patterns of a diverse range of animals [58,55,54,68,59,65]
including, albatrosses, deer, bumblebees, ants, beetles,
grasshoppers, spider mites, jackals, microzooplankton,
bacterial motion, fruit fly flight patterns, spider monkeys
and even human hunter-gathers, and human eye
movements.

Although the validity of power law tails in the search
pattern of some animal species such as albatrosses and
deer is still under debate, there are growing evidences of
Lévy search in human physiology and behaviors, which
are crucial to our model. For instance, Segev et al. [56] re-
cently reported that Lévy-stable distributions with an in-
verse-square law tail characterize the electrical activity of
some neuronal networks. Odorant receptors whose se-
quence and structure are strongly conserved from low ver-
tebrates to human, determine scale-free pheromone
tracking [54,55]. More importantly, human scan paths
and travels have Lévy characteristics [9,10]. One of the
main conclusions from the past research on Lévy walks is
that occasional long jumps combined with short range
search makes an effective search pattern when the target
locations are unknown, and randomly dispersed in a large
area. We use this insight to design the wide area search
behavior of the agents, especially when they discover mul-
tiple agents operating in the same region.
5. Bio-inspired agent coordination for meta-data
harvesting

Inspired by the foraging behaviors and search patterns
found in the nature that we studied above, we now present
an algorithm for multi-agent meta-data harvesting in ur-
ban environments.

5.1. Information density and datataxis

One of the key insights learned from the common forag-
ing behavior in the nature is that, to maximize energy in-
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take efficiency over time and labor, each agent should
move towards geographical areas where nutrition is cur-
rently richer. In MobEyes, vehicle mobility is exploited
for effective and inexpensive meta-data dissemination,
i.e., regular cars carry-and-forward meta-data to harvest-
ing agents. Therefore, meta-data are likely located where
the number of vehicles is greater. As an indicator to the
concentration of information, we define the information
density as the number of meta-data carriers, i.e., regular
cars actually transporting meta-data, in a road segment.
In our scenario, it is obvious that vehicle density is propor-
tional to information density. Like E. coli bacteria, our goal
is to find a patch that contains a large number of ‘‘useful”
meta-data carriers with information not yet harvested by
either the same or another cooperating harvesting agent.
For instance, Fig. 2 shows an example of Manhattan grid
style road layout, and the number of vehicles in S # 1 is
greater than that in S # 2. As a first level approximation,
a promising solution for agents is to mimic the foraging
behavior of E. coli by estimating the gradient of information
density and moving to a direction where this gradient in-
creases (similarly to the swim of E. coli in a solution with
a nutrient gradient), while performing a random search
when there is no specific gradient (similarly to the tumble
of E. coli in a homogeneous environment). We name this
bio-inspired behavior of harvesting agents as datataxis (in-
spired by the chemotaxis of E. coli).

The key for effective datataxis is to estimate the vehicle
density of a region in a decentralized way with minimum
overhead. To achieve this goal, we use the concept of a vir-
tual urban grid to divide an urban area into a set of seg-
ments of equal size. With GPS and similar location
services available to MobEyes agents the concept of virtual
grid can be easily implemented. In this paper, we use a spe-
cial type of urban grid based on road segments that are va-
lid in Manhattan-style urban area for illustration and
evaluation. For the sake of simplicity, we define a road seg-
ment as segment of a road in between two nearby junction
points, or intersections. For instance, the two junction
points, S # 2 and A # 1, and S # 2 and A # 2 in Fig. 2, form
a road segment.
Road
Segment

S#1

A#1

S#2

A#2

Fig. 2. Urban road layout (Manhattan grid) example.
While MobEyes regular nodes are in a specific road seg-
ment, they periodically estimate density of that segment
by simply counting the number of their neighbors. The
per-segment density is the average of the estimated den-
sity values of a specific road segment, and agents can col-
lect such per-road segment density samples via the
regular MobEyes protocol for meta-data harvesting, with
no additional communication overhead. To obtain more
accurate and statistically appropriate density estimations,
agents locally compute average densities over time in the
following way. For each road segment an agent maintains
the density estimation over a fixed window of size T(sec-
onds). Time is discretized into bins whose size is D(sec-
onds) each, and each epoch starts every D(seconds).
There are K ¼ T=D bins for each road segment. Let Di de-
note the density estimate during ½Tc � ðiþ 1ÞD; Tc � iD�
(i.e., the average density for a given epoch) where Tc is
the latest epoch time. For each incoming density sample,
an agent first checks whether the sample is within the
range T; if so, the corresponding bin is updated. The aver-
age density is then calculated as the average of all the bins,
i.e.,

PK�1
i¼0 Di=K . Note that this average density no longer re-

flects ‘‘absolute” density, but ‘‘relative” density over a per-
iod of time. In Section 6, we show that this can effectively
estimate the real density in urban environments.

5.2. Differentiating the foraging-based behavior of MobEyes
agents

Simply implementing the model of a simple E. coli
behavior in all cooperating agents is insufficient to realize
effective harvesting of meta-data in urban environments.
As corroborated by the wide set of simulation results re-
ported in the following section, a significant performance
improvement can be obtained by differentiating the
behavior of harvesting agents depending on their opera-
tion state. We have extensively explored bio-inspired coor-
dination behaviors to identify, evaluate, and adopt the
most suitable differentiated working modes to obtain the
largest harvesting coverage with minimum overhead. In
our design, MobEyes agents operate in one of the following
three modes: (a) the Lévy Jump (LJ) mode, (b) the Biased
Jump (BJ) mode, and (c) the Constrained Walk (CW) mode.
The LJ/BJ modes are considered as the exploration stage to
find the best possible location to start a more focused
search, whereas the CW mode can be considered as the
exploitation stage where agents try to harvest as much as
possible by carefully and finely controlling their move-
ments. Fig. 3 presents a transition diagram consisting of
Target zone found 

Conflicts, low yield

Arrival

Fig. 3. Agent state diagram.
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the three possible states of operation of MobEyes harvest-
ing agents.

First of all, a MobEyes agent starts with the LJ mode and
searches for dense areas with vehicles. In the Lévy jump lit-
erature, the jump distance following a power law distribu-
tion with the exponent of 2 is known to be optimal for
non-destructive foraging, i.e., a foraging scheme where
the agent can ‘‘productively” visit the same place many
times [66].2 The key idea of the LJ mode is that agents can
choose a long distance with some probability, due to the
heavy tail of the power law distribution. Thanks to the long
jumps, the area covered by the agents will be much larger
than the area that would have been covered by only random
walk movement patterns [66]. In our model, the network
size is finite, and thus, we use a truncated Lévy jump distri-
bution: f ðdÞ ¼ dmaxdmin

dmax�dmin

1
d2 where we set the dmax as the net-

work diameter and dmin as the communication range. The
angle of a jump from the current location is selected ran-
domly. For each jump, the agent steers its movement to-
wards the road segment that minimizes the distance to
the new jump location. However, for a given location, it
may not be feasible to jump toward a certain direction. For
instance, if an agent is located at the bottom left corner of
the network, a jump is feasible toward the first quadrant.
The key idea of a Lévy jump is to have a long jump with
some probability for efficient exploration. Thus, we modify
the angle selection such that we only consider the region
that can span a chosen distance. In the previous example,
the jump direction is chosen from the first quadrant.

Once the agent finds a dense area above a certain
threshold dh, the agent changes its operation state to the
BJ mode so that it can move toward that location. The tar-
get location is the mid-point of the densest road segment,
which is also set as the reference point of the CW mode
that will be used by the agent as described below. The
agent steers its movement towards the road segment that
minimizes the distance to the determined reference point
(i.e., a simple greedy movement).

When entering the CW region (the circular area with
center the reference point and radius R), the agent switches
its mode to the CW mode and starts harvesting meta-data
within that region. The default choice in MobEyes is to
automatically set the distance parameter R as a function
of the number of agents and the size of the overall search
area. MobEyes supports two operating sub-modes for an
agent in the CW state. First, the agent follows the road seg-
ment that maximizes the positive per-segment density
change. In this case, since we exclude the current road seg-
ment from the candidate road segment for the next move-
ment, it is possible that the rate change may be negative. If
this occurs, the harvesting agent chooses the road segment
that minimizes the change. Second, the agent can follow a
biased random walk along a set of road segments in the
vicinity; the set consists of the segments with density
greater than a configurable threshold. If the explored urban
area has the shape of a long strip, staying within a CW re-
gion could be inefficient. For this reason, the MobEyes
2 Recall that since vehicles move in the urban grid, it may be possible
that after a while the same area may become ‘‘productive” again.
agent periodically performs short range jumps to explore
the nearby area after CW duration Tcw, thus changing its
reference point. To avoid the worst case of continuous
jumping around a region where there is not much gain,
after a configurable time interval, the agent performs a
long jump to a random direction, and switches its mode
to the LJ mode to collect the density information again as
in the initial phase. This behavior is repeated until the har-
vesting procedure has ended.
5.3. Conflict resolution

One crucial issue in multi-agent harvesting is to coordi-
nate the search operations of multiple cooperating agents.
Ideally, we want the agents to direct themselves in the
richest information areas while not stepping other agents’
toes. In other words, each agent coverage area should be
non-overlapping with the others and, when agents
encounter each other, one of them should be able to
quickly move to a different non-overlapping region. This
agent conflict problem can be generally handled in the fol-
lowing two ways. The first approach is based on an implicit
detection mechanism. When multiple agents are present in
the same region, the estimated information density will be
lower than normal because much of the meta-data would
have already been harvested by other agents. Thus, the
agents can infer that there may be other agents if the infor-
mation density is lower than usual or significantly drops
suddenly. We call this implicit since it does not require
any extra inter-agent communication.

The second conflict detection mechanism is explicit and
is inspired by the stigmergy. Similar to the pheromone trail
left by ants, a harvesting agent leaves a trail on the regular
vehicles when it collects meta-data. The trail information
will contain the ID of a collecting agent and the timestamp
of data collection. The trail expires after a fixed period of
time Texp. We set the time threshold based on the agent’s
average speed, and the size of the network. Each regular
vehicle records this trail information which is returned to
a newly encountered agent. If there are more than two
agents harvesting in a same region, a conflict is detected.
In this case, an agent with lower ID will perform a long
jump to a random location that is outside the CW region
of the conflicting agents. As a result, the LJ mode will be
initiated and thus, the overall process starts over. Note that
although we assume that the agent does not use the previ-
ously learned statistics, we can better optimize the knowl-
edge of the history data such that the jump direction can
be configured toward the direction that yields a better har-
vesting rate.

In addition to these two approaches, other more com-
plex solutions are possible. For instance, a harvesting agent
could proactively broadcast its presence to the other
agents (say up to k-hop neighbors). Moreover, agents could
steer their mobility patterns to minimize conflict possibil-
ities, e.g., by forming a Voronoi constellation, at the cost of
high communication overhead. However, we find that our
simple pheromone trail is sufficiently efficient as conflict
detection method as shown in the experimental result sec-
tion, while imposing only a small amount of overhead.
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In this paper, we estimate the information density as
proportional to vehicle density. We neglected the fact that
in mobility-assisted data dissemination, how frequently a
neighbor set changes has a great impact on the efficiency
of data dissemination. For instance, if a group of nodes tra-
vel together, there will be no information dissemination
within themselves. We consider the usefulness of informa-
tion carriers using Neighborhood Changing Rate (NCR)
[32]. Given a sample interval, NCR is defined as a fraction
of leaving neighbors over the total number of neighbors
(i.e., the number of nodes at the beginning and the number
of incoming nodes). This statistics can be used along with
density estimates to more accurately estimate the infor-
mation density in MobEyes.

6. Evaluation

We evaluate the proposed meta-data harvesting algo-
rithm via extensive ns2 [50] simulation experiments run
in different urban deployment environments. After
describing the simulation setup, we report the accuracy
of density distribution estimates perceived by agents and
compare various foraging schemes. Then, we analyze the
performance of our proposal and its robustness (insensitiv-
ity) to configuration parameters by simulating its opera-
tion under various parameter ranges.

6.1. Simulation setup

In all the reported experiments mobile nodes commu-
nicate by using IEEE 802.11 with fixed bandwidth of
11Mbps and nominal radio range of 250 m. Two-ray
ground propagation is the model used for physical layer
characteristics [53]. We have chosen the model parameter
values according to state-of-the-art work in the vehicular
field [73,20].

Vehicle movements comply with the Manhattan mobil-
ity model (MT) by Bai et al. [25]. In MT, mobile nodes move
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Fig. 4. Street maps used for the Manhattan mobility model: (a) 2400 m � 2400 m
are initially populated. (b) 4800 m � 4800 m network area. Horizontal streets 3
cases, the regular mobility pattern (marked with thick dotted lines with sequen
on the streets defined by a map that is composed of a num-
ber of horizontal and vertical streets. Each street has two
lanes for each direction, as shown in Fig. 4. Nodes are al-
lowed to move along the grid of horizontal and vertical
streets; at each intersection, vehicles make independent
decisions about the next direction; the choice of direction
(straight, left, right) is equally probable. To evaluate the
independence on specific deployment environment char-
acteristics, we have run simulations in two different sets
of scenarios: 7 � 7 and 14 � 14 grids (the length of each
grid segment is set to 300 m to avoid interference between
nearby streets). As shown in Fig. 4, some horizontal streets
are initially populated by vehicles: Streets 2 and 6 for 7 � 7
grids and Streets 3, 8, and 13 for 14 � 14 grids.

To model the above streets as dense areas, we set tran-
sition probabilities such that vehicles on these streets
make left or right turns with probability 0.1, and go
straight with probability 0.8. When nodes reach the
boundary of the simulated region, they bounce back by
inverting their direction (modeled by forcing U-turn with
probability 1). If this happens, we reset the node and treat
it as a new incoming node that carries no meta-data. In this
way, we can keep constant the node density in the simula-
tion area. Note that this is a worst case scenario for data
harvesting since in reality new cars entering the targeted
region may have had opportunities to encounter other cars
outside the region and as a result may already carry some
useful meta-data.

In addition, MT mimics the mobility of real vehicles by
using acceleration and deceleration. Moreover, nodes driv-
ing on the same lane maintain a predefined safety distance
and the speeds of two consecutive nodes are dependent,
i.e., overtaking is not allowed. The speed is randomly
drawn from ½vmin; vmax�. We consider different numbers of
nodes N ¼ 100;200;300. The minimum speed is set to
vmin ¼ 1 m/s and the maximum speed is set to
vmax ¼ 10;20;30 m/s. We fix the speed of harvesting agents
to a constant, 10 m/s.
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We consider and evaluate the following foraging
schemes for meta-data harvesting agents: (a) Random
Walk Foraging (RWF), (b) Biased Random Walk Foraging
(BRWF), (c) Preset Pattern Foraging (PPF), and (d) Data-
Taxis Foraging (DTF). Agents in RWF randomly choose road
segments and harvest meta-data from encountered vehi-
cles. Agents in BRWF operate similarly to RWF ones except
that they choose road segments based on a defined transi-
tion probability that is biased by knowledge about ‘‘food
sources” and thus, in our simulation setting, they are more
likely to stay in initially populated streets (i.e., street 2 and
6 for 7 � 7 grids, and street 3, 8, and 13 for 14 � 14 grids).
In PPF, we define a preset mobility pattern for the agents
representing that the agents are fully aware of the move-
ment patterns of others. To simulate this behavior, we con-
figured the agents to move along the predetermined path
that includes the populated streets (as shown in Fig. 4).
When the static awareness of other agents’ movements is
feasible, PPF represents a good agent movement strategy,
which ensures the coverage of most popular streets in
our scenario. In this case, the agents are equally spaced
on the route so that there will be no conflicts among them
(recall that agent speed is fixed to 10 m/s).

Finally, DTF implements our proposed scheme for meta-
data harvesting coordination. Unless otherwise mentioned,
we use the following settings for DTF. An agent explores a
region while in the Lévy Jump mode. To estimate meta-
data density per road segment, the agent uses the window
size of T = 500 s. An agent switches its mode to the CW
mode if it finds an area where the aggregated density is
above dh ¼ 2. After moving to an information patch, an
agent stays there for 300s (in CW mode). An agent per-
forms short jumps within a CW region, where the radius
of the CW region is set to 600 m. When a conflict is de-
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Fig. 5. Density Distribut
tected, the agent performs a long jump, where the maxi-
mum jump range is set to 900 m. The number of agents
used in the simulation varies from 1 to 4 nodes for 7 � 7
grids and 1 to 6 nodes for 14 � 14 grids.

The starting positions of the agents are the same for all
foraging schemes. The meta-data advertisement period of
regular nodes and the harvesting request period are kept
constant and equal to 3 s through all the simulations. A
new meta-data is generated with the Poisson rate
k ¼ 1=10, i.e., every 10 s on average. We measure the per-
formance in terms of the total number of harvested
meta-data packets. If multiple agents are used, we calcu-
late both per-agent and aggregate harvesting rates. When
calculating the harvesting rate, we only count the number
of distinct meta-data that have been harvested. Unless
otherwise specified, we report the average values out of
30 runs, each of which is 1500 s (25 min).

6.2. Simulation results

We first show the density distribution perceived by
agents for different foraging schemes. As described in Sec-
tion 5, agents collect the density sample points from har-
vested meta-data. Fig. 5 shows the actual density
distribution (from offline computation) and the inferred
one (from agent estimation) for the 7 � 7 grids. More spe-
cifically, Fig. 5a shows the distribution computed from the
mobility scenario file. Fig. 5b and 5c report the density dis-
tribution estimated by a single agent in the RWF and DTF
modes, respectively. In both cases, there are two agents
in the area, and there are 100 regular nodes with the max-
imum speed of 10 m/s. In general, popular streets show
higher density than the other streets in Fig. 5a. We observe
that the density at the four corners is particularly high; this
 0 500 1000 1500 2000

 0
 500

 1000
 1500

 2000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

D
e
n
s
i
t
y
 
E
s
t
i
m
a
t
e
 

P
e
r
 
R
o
a
d
 
S
e
g
m
e
n
t

X Coord. Y Coord.

     0.3
    0.25
     0.2
    0.15

(b) RWF mode

 0 0
 500

 1000
 1500

 2000

Y Coord.

     0.6
     0.4
     0.2

mode

ion (7 � 7 girds).



U. Lee et al. / Ad Hoc Networks 7 (2009) 725–741 735
is due to the artifact that when nodes reach the boundary
they bounce back to the simulated region. With RWF forag-
ing, agents collect the density samples quite uniformly
over the simulated region and, thus, the density distribu-
tion estimate is quite uniform as well. However, in DTF,
two agents effectively divide their regions of interest, for
instance one around Street 2 and the other around Street
6. Therefore, from a single agent perspective, the agent
sees much more opportunity along one of the two popular
regions. Fig. 5c corroborates the above observation by
reporting the estimate for one of the agents, which stayed
mostly on Street 6 because of high perceived information
density along that line. In general, this estimate provides
more balanced and stable data harvesting behavior among
multi-agents in DTF.

Here, we report the DTF efficiency compared with all
the other introduced foraging schemes (RWF, BRWF, and
PPF). We first show the impact of the number of foraging
agents on harvesting performance. We simulate 100 and
200 nodes with the maximum speed of 20 m/s. We vary
the number of harvesting agents in the region from one
to four. Fig. 6 shows the number of harvested meta-data
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Fig. 7. Aggregated number of harve
per agent. In general, the graph shows that the value de-
creases as the number of agents increases because we only
count unique (non duplicated) collected meta-data. We
note that BRWF shows only a slight improvement over
RWF. This results from the fact that once the agents in
BRWF deviate from the popular streets, it takes a long time
for them to return to productive areas. The performance of
DTF is consistently better than RWF and BRWF, and is quite
close to PPF. Recall that PPF represents a very good forag-
ing strategy in our simulation given the deployment envi-
ronments and the meta-data density distribution. Thus, we
find that our DTF algorithm is efficient, without requiring
any static knowledge about the movements of other col-
laborating agents. Fig. 7 shows the total number of distinct
meta-data harvested by all the agents. Also in this plot, we
find that the aggregate harvesting ratio of DTF is much bet-
ter than both RWF and BRWF, and very close to PPF.

Fig. 8 shows the impact of speed on harvesting rate. For
the sake of simplicity, we restrict the analysis to DTF and
RWF (from our experience we can note that the behavior
of PPF is quite similar to DTF and likewise RWF has a sim-
ilar trend to BRWF). The reported graph shows that the
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performance is only minimally affected by the typical
range of vehicle speeds. In general, the higher the mobility,
the faster the data dissemination. At the same time, this
shortens the lifetime of a node because we treat a node
as departed when it reaches the boundary. The tradeoff be-
tween speed and harvesting efficiency is different for each
foraging scheme. Yet the performance difference is small.
For instance, DTF shows a slightly better performance as
speed decreases when the number of nodes is 100. In gen-
eral, the overall harvesting efficiency is scarcely sensitive
to the speed of vehicles for both the cases.

To further analyze the behavior of foraging schemes, we
examine the per-agent harvesting rate over time. Each
agent is programmed to print out the number of harvested
meta-data when leaving its current road segment, and we
collect the number over the period of 1500 s. Agent speed
is 10 m/s and there are 100 regular nodes with maximum
speed equal to 20 m/s. Fig. 9 shows the results for a single
agent case (Fig. 9a) and a four agent case (Fig. 9b). From the
graphs, we note that the harvesting rates of DTF fluctuate
less than that of the other meta-data harvesting strategies.
This result stems from the fact that DTF agents tend to re-
main in high density areas once they find them. On the
contrary, we notice that PPF shows drastic changes since
PPF agents periodically travel from a highly dense area to
a less dense area on the rectangular path.

To evaluate the scalability of the proposed algorithm,
we ran simulations with a larger scale network: 300 regu-
lar nodes move in 14 � 14 grids at the maximum speed of
20 m/s, with up to 6 meta-data harvesting agents. In
Fig. 10, we report the average per-agent number and the
aggregated number of harvested meta-data. The figure
shows that the overall performance trend with respect to
the number of agents does not change compared with
the 7 � 7 grid scenario. DTF persistently outperforms
RWF and BRWF, and DTF is comparable to PPF. The number
of harvested meta-data rather gradually decreases com-
pared to the 7 � 7 grid scenario. Since the area size forag-
ing is quadrupled, the inter-conflict time among agents is
longer enough for regular nodes to fill their local meta-data
storage. In general, the impact of conflicts for a given forag-
ing pattern is mainly determined by its conflict frequency.
For instance, BRWF experiences more conflicts than RWF
since agents tend to stay in populated streets; and each
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Fig. 10. Meta-data harvesting with larger area size (14 � 14 grids, N = 300).

3 We note that we can draw the same conclusion with Tcw ¼ 200;400s.
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agent in DTF is likely to stay in one of the populated
streets. Conflicts are also influenced by meta-data genera-
tion rate and speed of meta-data diffusion, but these fac-
tors are invariant with respect to the choice of the
foraging strategy.

Finally, we investigate the sensitivity of DTF perfor-
mance to two parameters: CW duration ðTcwÞ and CW re-
gion radius ðRÞ. We use Tcw ¼ 200;300;400 s and
R ¼ 600;900;1200 m. We note that when Tcw is too small,
the agents tend to hop around the region frequently and,
on the opposite, when Tcw is too long, it may hinder the
agents from exploring other potentially fruitful areas.
Fig. 11 shows that DTF well behaves with little dependency
on the choice of Tcw. Thus, it shows that our algorithm is
relatively robust to the Tcw parameter selection. The CW
radius (R) determines the range of exploitation of agents
when they found an information patch. In particular, we
consider a range of R from R ¼ 600 m, which corresponds
to 4 � 4 grids in our simulation, to R ¼ 1200 m, which cor-
responds to 8 � 8 grids. Fig. 12 shows the performance of
DTF with respect to different R values with Tcw ¼ 300 s.
From the figure, we find that it is relatively insensitive to
the choice of R.3 The key is that an agent can effectively
identify dense road segments, as shown in Fig. 5c. For large
R, an agent will be able to effectively explore the populated
streets; for small R, periodic short jumps after Tcw seconds
help to explore other parts of the populated streets. In any
case, DTF effectively enables agents to follow the gradient
of information density. From these results, we conclude that
the proposed meta-data harvesting algorithm is robust and
scarcely sensitive to a particular choice of parameter values,
thus fitting well different deployment environments and
application requirements, without the need of a careful,
manual, and fine tuning of its configuration settings.

7. Related work

In this section, we review VANETs, vehicular sensor net-
works, and bio-inspired networking systems. We then
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present how our multi-agent collaboration is related to the
field of multi-agent robotics.

VANET: VANETs have recently stimulated promising re-
search by envisioning a large number of applications rang-
ing from safe cooperative driving [71] to entertainment
support [48,49,40] and distributed data collection [14,60].
So far, however, most VANET research has focused on the
crucial primary issue of routing. On one hand, broadcast
delivery to all nodes located within a certain area has
proved to be crucial for safe driving applications
[63,71,37]. On the other hand, packet delivery issues in
areas with sparse vehicles have encouraged the investiga-
tion of carry-and-forward strategies [73,12].

Urban sensing: A few relevant research activities have
addressed the provisioning of wide-scale applications on
VANETs and, in particular, urban monitoring services,
exploiting the concept of embedding sensors in vehicles.
In MIT’s CarTel [18,33] vehicles receive queries about
sensed data and return replies, by locally running an inter-
mittently connected database that exploits the opportunis-
tic connectivity provided by open access points in their
vicinity. Besides VANETs, Dartmouth’s MetroSense
[47,24] proposed an architecture including both stationary
Sensor Access Points (SAP) and Mobile Sensors (MS) car-
ried by users; MS opportunistically delegate tasks to each
other, and ‘‘mule” [57] data to SAP. CENS recently started
the Urban Sensing project [64,13], a multi-disciplinary pro-
ject addressing ‘‘participatory” sensing, where urban mon-
itoring applications receive data from mobile sensors
operated by people. BIONETS project [7,17] considered
two-tier network architecture for pervasive environment
sensing where low-end sensor nodes (T nodes) monitor
environments and high-end mobile nodes (U nodes) access
information from the sensor nodes. Mobile nodes can ac-
cess information via a service-oriented communication
system; i.e., U nodes use epidemic information dissemina-
tion and for scalability, packets are filtered based on the
age. To the best of our knowledge, MobEyes is the only sys-
tem exploiting bio-inspired ‘‘behaviors” such as foraging
and stigmergy for meta-data harvesting.

Bio-inspired networking systems: Understanding key
ideas of how living organisms efficiently organize unreli-
able and dynamically changing resources and applying
these ideas to distribute computing has been an active area
of research for the past decade. Babaoglu et al. [1] summa-
rized this by proposing a conceptual framework that cap-
tures a few basic biological processes such as diffusion,
chemotaxis, and stigmergy. Readers can find the principles
of collective animal behavior in [62]. Benefits of bio-in-
spired technologies for network embedded systems are
well documented in [22]. In the following, we do not at-
tempt to provide a complete overview of the huge amount
of relevant work accomplished in this area; rather we sim-
ply try to sketch primary guidelines on how these bio-in-
spired ideas can be actually utilized in practice.

Several research activities, e.g., AntNet [15], have pro-
posed Ant Colony Optimization (ACO) for routing in pack-
et-switched networks. For ad hoc routing, a few proposals
have already emerged, such as ARA [46], PERA [35], and
AntHocNet [16]. ARA and PERA are quite similar to a reac-
tive ad hoc routing protocol, e.g., AODV. On the contrary,
AntHocNet is a hybrid (both proactive and reactive) mul-
ti-path ad hoc routing protocol and consists of two main
processes: stigmergic learning and diffusion. During stig-
mergic learning, nodes send out ant-like agents (similar
to RREQ control packets in AODV) which sample and rein-
force good paths to the destination. Routing information is
kept in an array of stigmergic variables, called pheromone
tables. ARA and PERA share the same concept, but in
AntHocNet, this mechanism is further supported by a dif-
fusion process that spreads this information to other
agents. Packets are routed under the probabilistic guidance
of the learned pheromone tables. Note that bio-inspired
technologies are also used for network security such as
virus propagation/immunization [29], intrusion detection
[21], fault-tolerance [8], attack modeling [36], etc.

Fiore et al., proposed Eureka, which identifies the re-
gions of a network where the required information is more
likely to be stored and steers the queries to those regions
[27]. The concept of ‘‘information density” is proposed to
estimate the amount of information cached by nodes in a
specific area. Given this metric, queries are forwarded
along density gradients, i.e., to nodes with higher density
than the forwarder. Each node maintains local density
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information by monitoring the multi-hop information pull-
ing. The measured local density is shared with the neigh-
bors to make a better estimate. The Datataxis scheme
shares the same density gradient idea; however, there
are key differences between them: (1) we deal with mas-
sive sensor data (specifically, spatio-temporal data
streams) and only a mere fraction of data is accessed; (2)
we approximate the information density with the physical
node density, because MobEyes uses controlled epidemic
dissemination of spatio-temporal data, which is driven by
physical density; and (3) we use a mechanical search
method in which the trajectory of agents is controlled
not only by the Datataxis density gradient direction, but
also by the bio-inspired Lévy walk concept.

Bio-inspired multi-agent robotic systems: Cooperative
multi-agent mobile robot design is based on a behavior-
based paradigm where a mobile robot control system is
decomposed based on task-achieving behaviors [11,2]. A fi-
nite state machine is typically used to describe these
behaviors. Each active behavior processor computes its
reaction to its perceptual stimuli from sensors, and percep-
tual triggers cause transitions between states. This para-
digm is useful for controlling mobile robots in dynamic
environments. In our system, the agent state transition
diagram is composed of three states: Lévy Jump, Biased
Jump, and Constrained Walk, and the state transition is
triggered when certain events happen such as conflicts.
Interested readers are referred to [23] for a taxonomy of
cooperative robotics and [52] for a brief introduction to
the current research topics in multi-robot systems.

The behavior-based paradigm is related to biological
systems and thus, many researchers have examined the so-
cial characteristics of insects and animals when designing
multi-robot systems. The simple local control rules of var-
ious biological societies such as ants, bees, and birds have
been used to demonstrate the ability of multi-robot teams
to flock, forage, etc [44,67]. Moreover, behaviors in higher
animals such as cooperation, competition, and selfishness
has been also studied in multi-robot control [45]. The
effectiveness of communications on the performance of a
multi-robot system has been also studied. Balch et al.
found that communication provides benefits for particular
types of tasks, and in many cases, minimal communication
of small amount of information can lead to great perfor-
mance improvement [2]. Our work is similar in concept
to the foraging and cooperation among robots. However,
the main difference is in that MobEyes agents are not
tightly-controlled as in the robotics case, and we incorpo-
rated novel ideas such as Lévy jumps to improve the search
efficiency and repulsive pheromone trails to coordinate
multiple agents’ movement.
8. Conclusion

In this paper, we presented a novel data harvesting
algorithm in an urban sensing environment. The proposed
algorithm has been designed based on biological inspira-
tions such as (a) foraging behavior of E. coli bacteria, (b)
stigmergy found in ants and other social insects, and (c)
Lévy flight found in foraging and social movement pat-
terns. The proposed algorithm called datataxis enables
the MobEyes agents to move to ‘‘information patches”
where new information concentration is high. This algo-
rithm is guided by a practical metric for information den-
sity estimate per road segment. In our data foraging
strategy, an agent performs a Lévy walk until it finds an
information patch; then it performs a constrained walk
to move toward a higher density region. When an agent
encounters some other agents in the same region it moves
to another regions using a conflict resolution algorithm
that has been inspired by Lévy jump, so that their work
is not duplicated.

We validated the performance of our proposed data
harvesting scheme via an extensive simulation study.
Using the Manhattan mobility model with linear informa-
tion patches, we compared the harvesting efficiency of our
datataxis foraging (DTF) with random walk foraging (RWF),
biased random walk foraging (BRWF), and an idealized
preset pattern foraging (PPF). From this study, we showed
that DTF effectively balances the movement of multiple
agents and distributes them. Also we showed that DTF al-
ways performs better than RWF and BRF, and close to PPF,
which is optimal. This trend was consistent regardless of
the number of agents, the speed of the regular vehicles,
and the number of regular vehicles. Finally, we analyzed
the sensitivity of DTF’s performance with respect to two
key parameters of DTF algorithm (namely, the constrained
walk duration and the constrained walk radius), and re-
ported that it is quite robust in a wide range of parameter
space.
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