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ABSTRACT 
In this paper, we propose SocioPhone, a novel initiative to build a 
mobile platform for face-to-face interaction monitoring. Face-to-
face interaction, especially conversation, is a fundamental part of 
everyday life. Interaction-aware applications aimed at facilitating 
group conversations have been proposed, but have not proliferated 
yet. Useful contexts to capture and support face-to-face interactions 
need to be explored more deeply. More important, recognizing 
delicate conversational contexts with commodity mobile devices 
requires solving a number of technical challenges. As a first step to 
address such challenges, we identify useful meta-linguistic contexts 
of conversation, such as turn-takings, prosodic features, a dominant 
participant, and pace. These serve as cornerstones for building a 
variety of interaction-aware applications. SocioPhone abstracts such 
useful meta-linguistic contexts as a set of intuitive APIs. Its runtime 
efficiently monitors registered contexts during in-progress 
conversations and notifies applications on-the-fly. Importantly, we 
have noticed that online turn monitoring is the basic building block 
for extracting diverse meta-linguistic contexts, and have devised a 
novel volume-topography-based method. We show the usefulness of 
SocioPhone with several interesting applications: SocioTherapist, 
SocioDigest, and Tug-of-War. Also, we show that our turn-
monitoring technique is highly accurate and energy-efficient under 
diverse real-life situations.  

Categories and Subject Descriptors 
K.8 [Personal Computing]: General; C.3 [Special-Purpose and 
Application-based Systems]: Real-time and embedded systems 

Keywords 
Interaction, Conversation, Social, Platform, Volume Topography 

1. INTRODUCTION 
Face-to-face social interaction is an integral part of human life; 
everyday, people dine with family, have meetings with colleagues, 
and spend time with friends. A promising new direction for mobile 
sensing lies in capturing and utilizing sophisticated social contexts 
during daily face-to-face interactions. Early interaction-aware 
applications have been emerging and show its potential usefulness 

[22][27]. For example, MeetingMediator [22] displays the skew of 
individuals’ verbal participations to promote group brainstorming. 
Another application helps a user remember the name of the person 
he is talking with, to help avoid the awkward experience of 
forgetting a name [27]. However, building interaction-aware 
applications involves severe challenges without system-level 
support. First of all, such applications are still in an early stage and 
most developers do not know which contexts to leverage during 
daily conversations. Furthermore, monitoring conversations requires 
implementing complicated inference logics, repetitive learning and 
testing to improve recognition accuracy, and significant 
optimization of battery use. 

In this paper, we propose SocioPhone, a mobile platform for face-
to-face interaction monitoring. Ideally, a full-fledged interaction 
monitoring platform would capture a variety of communicative cues 
expressed during face-to-face interaction such as verbal cues 
(spoken words and sentences), aural cues (tones, pitch), and visual 
cues (gesture, eye contact). As a first step, SocioPhone focuses on 
monitoring meta-linguistic contexts that provide useful information 
about conversations without requiring computation-intensive 
semantic inference on conversation contents. SocioPhone provides 
applications with a set of intuitive APIs to monitor rich meta-
linguistic contexts on the fly (See Section 2); applications can 
submit simple monitoring requests to obtain contexts of interests. 
The SocioPhone runtime monitors registered contexts in a highly-
efficient and precise manner, based on our new volume-topography-
based turn monitoring technique (See Section 4).  

In its core, SocioPhone monitors conversational turns, the basic unit 
of conversation; a turn is a continuous speech segment where a 
person starts and ends her speech [3][10]. We have noticed that 
monitoring turns is a first crucial step to deriving many interesting 
aspects of a conversion, e.g., how long and often one talks, how 
quickly she responds, who talks more or less, and how fast a 
conversation progresses. More interestingly, turn analysis enables 
high-level social inference, such as one’s role in a conversation and 
problematic situations [9][16][35]. Future mobile applications will 
be tightly interwoven with sophisticated interactions, e.g., dynamic 
conversational flows and relational behaviors, in-situ; this will 
enrich and broaden the set of potential applications, from interaction 
facilitations to collaborative decision making, and even to 
psychological care. In a broader view, monitoring turns can also 
serve as the prerequisite for speaker-specific vocal inference and 
content analysis in real-time, such as assessing a speaker's emotional 
state and performing deep semantic analysis.  

Online turn monitoring is a primitive building block, but it is 
challenging to implement it on everyday personal mobile devices. 
Existing voice recognition techniques such as speaker recognition 
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[7] and speaker diarization [2][4] rarely consider the challenges of 
mobile environments, e.g., unconstrained acoustic situations, real-
time monitoring, and battery limitations. A potential approach to 
turn monitoring would be to continuously execute crafted speaker 
recognition logic, as in SpeakerSense [27] (See Section 3.1). 
However, this has a number of shortcomings. First, short-lasting 
turns (1-2 seconds) are common in casual conversations [2], but 
cannot be detected reliably. Existing techniques mostly require long 
speech segments (e.g., 3-8 seconds.) for reliable recognition to 
ensure statistical confidence of the windowed voice samples with 
respect to the speaker-specific pre-constructed spectral model 
[27][40]. More challenging, daily conversations do not occur in an 
ideal setting; dynamic ambient noises inevitably distort one’s vocal 
signatures, leading to poor recognition accuracy. Furthermore, 
running speaker recognition on smartphones consumes significant 
power, (> 400 mW) for high-rate sound sensing and heavy 
computation [27][31]. 

To address the challenges for online turn monitoring, we propose an 
on-the-spot multi-phone sensor fusion approach; multiple 
smartphones work together to detect turn changes and associated 
speakers, along with a short in-situ training. Naturally placed 
phones belonging to conversation group members simultaneously 
sense a speaker’s voice signals, but capture the signals with different 
strengths depending on their positions. Such relative sensory 
readings can be fused in realtime to form a volume topography, i.e., 
a signature vector of volume values sensed over different phones. 
Our key observation is that such a topography is unique to each 
speaker, showing enough discrimination power to identify turns and 
associated speakers. With a short training period, e.g., 30-60 
seconds at the beginning of a conversation, frequent turn-taking of 
speakers can be very quickly and precisely traced through simple 
vector matching. 

Our volume-topography-based technique has important advantages 
for online turn monitoring. First, volume parameters can be instantly 
and reliably estimated, even with a very short sensing window, e.g., 
0.3 seconds; this allows us to monitor dynamic turn-taking behavior 
in a highly agile way. Second, volume-topography is less 
susceptible to diverse environmental noises as it is built in-situ to 
reflect the current noise characteristics. Third, our approach is 
computationally much lighter than existing techniques [7][27]; it 
does not require complex signal processing such as MFCC 
extraction and GMM matching. Finally, we note that the method 
works well even at very low sampling rates (as low as 500 Hz), 
which has the potential to reduce users’ privacy concerns.  

SocioPhone shows the potential to transform a personal mobile 
device into a social device that is aware of fine-grained face-to-face 
interaction contexts. So far, a number of mobile sensing systems 
have been proposed; yet, most of them focus on sensing personal 
status [25][28][29]. A few systems aim at capturing social contexts 
to facilitate interaction, but they provide only coarse-grained 
contexts such as encounters or presence of conversation [11][27].  

We now summarize the contribution of this paper. First, we propose 
SocioPhone, a novel mobile interaction monitoring platform; it 
provides useful APIs to monitor ‘turn’ and turn-derived meta-
linguistic contexts. Second, as a key building block, we propose a 
new online turn-monitoring technique based on the volume 
topography constructed on the spot by collaborative sound sensing. 
In addition, we adopt and craft other supporting components to 
build SocioPhone as a working platform. Third, we prototype three 
promising applications, SocioTherapist, SocioDigest, and Tug-of-
War on SocioPhone, and show their potential use. Finally, through 
extensive experiments, we show that our technique outperforms the 
state-of-the-art techniques in terms of accuracy, noise-resiliency, 
and resource usage. 

The rest of the paper is organized as follows. Section 2 motivates 
face-to-face interaction monitoring and introduces the SocioPhone 
API and our applications. Section 3 presents the technical 
challenges of daily conversation and online turn monitoring. Section 
4 describes the volume-topography-based technique in detail, and 
Section 5 presents the platform implementation. In Section 6, we 
show the effectiveness of our technique, and discuss potential issues 
in Section 7. We present related work in Section 8, and conclude the 
paper in Section 9. 

2. SOCIOPHONE API And APPLICATIONS 
2.1 Meta-Linguistic Interaction Monitoring 
Developing a mobile platform to monitor everyday face-to-face 
interaction opens a broad spectrum of design considerations. First of 
all, it is important to identify core system requirements for 
interaction monitoring and abstract them as common interfaces. In 
addition, we need to devise techniques to support diverse real-life 
interaction situations that are often disorderly, noisy, and dynamic. 
Unconstrained mobile environments make it difficult to simply 
adopt existing technologies that were mostly developed for rather 
orderly and lab-like environments. Finally, the issues of 
computation- and energy-efficiency are further intensified in mobile 
environments.  

In this paper, we take a first step toward an online conversation 
monitoring platform; it supports diverse applications with meta-
linguistic conversational contexts in unconstrained mobile 
environments. While there has been much work on conversation 
analysis from various angles [3][10][17][35], it is important to note 
that they focus on offline analysis of collected records. The 
challenges of online monitoring have not been thoroughly explored 
yet. Figure 1 shows the high-level process of meta-linguistic 
conversation monitoring composed of two layers: online turn 
segmentation and meta-linguistic context inference. 

Online turn segmentation: Online turn segmentation forms a 
common basis for any conversation-monitoring system. As the core 
technical effort, we focus on executing online turn segmentation 
using smartphones. As a conversation progresses, it identifies turns 
continually; each turn is annotated with a triple, (speaking person, 
start time, end time). 

…
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Interactivity Dominance Leadership

…

Turn features Prosodic featuresMeta-linguistic 
Feature 

Extraction

• Pitch
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• Formants …

Online Turn
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• Individual: turn duration, # of turns, …
• Relational: turn-taking orders, …
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…
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Figure 1. Online turn segmentation and meta-linguistic 
conversation monitoring 
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Meta-linguistic conversation monitoring: Based on the online 
turn segmentation, we also develop a light-weight meta-linguistic 
interaction monitor that tracks non-verbal elements during 
conversations such as voice tone and speaking style. Such elements 
are combined with turn information to infer behavioral and 
relational characteristics of the conversation participants. 

To be more specific, the monitor extracts a number of useful turn 
features from identified turns and complementarily prosodic 
features from sound samples to infer high-level interaction contexts. 
First, turn features are largely classified as those describing 
individual participants (e.g., speaking length, number of turns, 
duration statistics), relations among participants (e.g., turn taking 
orders, pair-wise turn-taking frequencies), and the whole interaction 
session (e.g., duration of speaking and non-speaking turns). 
Prosodic features are also useful indicators of social behavior [38] 
and complement the turn features. Example features are pitch, 
energy, loudness, rhythm, as well as spectral features like formants, 
bandwidths, spectrum intensity.   

When these simple features are combined, high-level interaction 
contexts can be further inferred, which are essential for delivering 
rich interaction-aware applications. For example, a fast-paced 
conversation can be identified from turn durations. Also, the 
sparseness of a conversation could be measured from the length and 
the distribution of the non-speaking turns, which an application may 
correlate with the progress or troublesome status of the on-going 
interaction. More complicated inference can be performed using the 
features. For example, one can understand the most (or the least) 
dominant person, the roles of participants, their role-playing patterns, 
and emergent leaders (See Section 5). 

2.2 SocioPhone API 
Table 1 shows the key SocioPhone APIs to facilitate monitoring 
rich meta-linguistic information in daily face-to-face interactions.  

Monitoring sessions and turns: The two key primitives are 
registerSessionStartListener() and registerTurnChangeListener(), 
with which applications can trace conversational sessions and turns 
on-the-fly. Once the former is registered, SocioPhone notifies 
applications of the Session structure upon the start/end of a 
conversation and join/leave of a participant. See Table 2 for the 
Session structure. Applications may designate people or places of 
interest with the “CONDITION” clause. Upon notification of a 
session start, applications can further request turn monitoring with 
registerTurnChangeListener(). Then, SocioPhone provides the Turn 
information (Table 3) continuously upon each turn-taking event, i.e., 
alternation of a speaker or occurrence of pause. 

Monitoring meta-linguistic interactions: Applications also can 
retrieve rich prosodic features associated with each turn using 
enableProsodicFeatures(); such features are provided only with 
explicit requests to save resources. The API currently provides 
volume, energy, and pitch features with their means and variances. 
SocioPhone also provides a set of convenient APIs for informative 
turn features and their patterns. For example, getSparsity() returns 
how far the speaking turns are separated by non-speaking turns. 
registerDominanceListener() encapsulates complex social inference 
to find someone with dominance over the conversation. Note that 
applications can replace the built-in inference engine with custom 
implementations. 

Querying interaction history: In addition to real-time monitoring, 
SocioPhone supports querying the interaction history of a user. 
Applications can use getOnGoingSessionHistory() to query the on-
going session, and getPastInteractionHistory() to query completed 
sessions. Example queries are “How many turns has John taken 
within last 10 minutes” and “Which three friends has John spoken to 
the most this week?” SocioPhone provides a conventional SQL 
interface to support flexible and easy querying of stored Session and 
Turn information.  

2.3 Example Applications on SocioPhone 
To demonstrate the usefulness of SocioPhone and its APIs, we 
designed and prototyped three interaction-aware applications.  

SocioTherapist: Nonverbal social interaction and turn-taking 
deficits are a specific characteristic of young autistic children [32]. 
In speech therapy sessions for autistic children, the therapist often 
employs a stimulus, e.g., a toy, to evoke verbal turn-takings from a 
child. Upon a successful response, the child is reinforced with small 
rewards such as verbal encouragement or a snack [24].  

SocioTherapist is a smartphone application for children with a mild 
degree of autism, and is designed to mimic stimuli and 
reinforcements in-situ during daily social interactions. The 
motivation and design have been largely advised by a local 
kindergarten in collaboration with us [18]. The symptoms of those 
mildly autistic children are not so severe to require full-time 
treatment in a special education facility. Instead, they attend regular 
kindergartens as well as periodic dedicated sessions with a speech 
therapist. However, in daily interactions out of the clinic without the 
therapist’s guidance, they often experience difficulties with turn-
taking when chatting or playing with other non-autistic children. 
Delayed or failed turn-taking may discontinue their interactions, or 
even result in eventual social isolation.  

Table 1. Key APIs of SocioPhone 

Monitoring conversation sessions and turns 

registerSessionStartListener (callback(Session), conditions) 
registerTurnChangeListener (callback(Turn)) 
* conditions = TARGET_PERSON | TARGET_PLACE 
class Session{ /* seeTable 2 */}; class Turn{ /* see Table 3 */};

Monitoring prosodic features & interaction characteristics

enableProsodicFeature (session_id, /* features to enable */) 
* Feature ={energy_avg, energy_var, pitch_avg, energy_var, …} 

getSparsity (window_time | window_turns) 
getInteractivity (window_time | window_turns) 
getAsymmetry (window_time | window_turns) 
registerDominanceListener (callback(Interactant), Inferrer) 
registerLeadershipListener (callback(Interactant), Inferrer)

Querying interaction history 

getOnGoingSessionHistory(“SQL_Query_Statement”); 
getPastInteractionHistory(“SQL_Query_Statement”); 

Table 2. Session table 
sID Interactants start_time end_time place … 
1 Sheldon, Leonard Nov-6 19:20 Nov-6 21:05 Office … 
2 Wife Nov-6 22:50 Nov-6 23:08 Home … 
… … … … … … 

Table 3. Turn table 
sID tID speaker start_time end_time prosodic_ptr … 
1 1 Sheldon 19:20:35 19:20:39 pointers to 

Prosodic 
table entries

… 
1 2 Myself 19:20:39 19:21:04 … 
1 3 NOBODY 19:21:04 19:21:11 … 
… … … … … … … 
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We prototyped SocioTherapist on top of SocioPhone APIs; a 
callback is triggered for every turn-taking event, i.e., when the 
speaker has been switched. Through the Turn instance, 
SocioTherapist easily obtains the properties for the newly started 
turn, e.g., its speaker, the timestamp it started, etc.  

To implement a few basic criteria for desirable turn-taking 
behaviors, we consulted a speech therapist for autistic children. 
Accordingly, our initial prototype of SocioTherapist looks for 
initiations, long-lasting turns, and rapid responses. An initiation is a 
newly begun turn breaking a long silence. A long-lasting turn 
indicates a completed turn which lasted for a sufficient duration of 
time, ruling out short utterances like “Wow!” or “I got it.” A rapid 
response is a newly begun turn immediately after another person’s 
turn. When such turn-takings occur, SocioTherapist displays small 
rewards on the phones, i.e., well-known robotic characters for 
children gradually upgraded upon desirable turn-takings.  

Our pilot deployment was encouraging. A group of three children 
played together for 15 minutes with SocioTherapist, including one 
with a mild degree of autism. The deployment was entirely 
supervised by a child education professional, who acknowledged 
clearly noticeable increases of utterances from the autistic child in 
both frequency and duration of turns.  

SocioDigest: The ubiquity of mobile sensing allows us to digitally 
capture and archive what we see and what we do everyday. This is 
also known as life-logging [36]. As highly social beings, we believe 
that it is a natural expansion of life-logging to archive our fine-
grained interactions around our daily social circles.  

In this light, we have been developing SocioDigest, an application 
providing daily report on a user’s 24/7 face-to-face conversations. 
Figure 2(a) shows a daily report for a PhD student, illustrating 
relative times he talked to his colleagues and family. SocioDigest 
further reports the detailed anatomy of each conversation session. 
Figure 2(b) shows the relative total time durations for which each 
participating person talked in a conversation session. Based on the 
report, SocioDigest gives the user a small suggestion as well. 
SocioDigest is implemented with SocioPhone APIs and easily 
retrieves the turn-wise durations from the timestamp attributes of the 
Turn instances. Figure 2(c) reports even more details, the turn-
taking graph. Each vertex denotes a participant of the conversation, 
and the edge thickness denotes the numbers of turns exchanged 
between the pair. A thick edge implies that this person would be the 
most respondent to me, or I was to him/her as well.  

We conducted a mini-deployment study of a preliminary version of 
SocioDigest; Section 6.4 discusses the settings and lessons. 

Tug-of-War: In group meetings or brainstorming, the level of 
participation of each individual may vary greatly; there might be 
someone who mostly remains silent, whereas a few might talk 
excessively, unwantedly giving others few chances to talk. It was 
reported that encouraging balanced participations from all 
individuals yields better outcomes in brainstorming [22].  

Tug-of-War is a smartphone application that monitors turn-takings 
of participants and provides in-situ graphical feedback of how long 
each has talked so far. It is inspired by SensibleOrb [33], which 
employed dedicated wearable sensors called Sociometric Badges to 
monitor individuals’ utterances. While we do not claim that its 
design is novel, the objective is to provide the key features of 
SensibleOrb on commodity mobile devices in everyday group-
meeting setting. Using SocioPhone APIs and the participants’ own 
smartphones enables convenient, rapid, and low-cost development 
of the monitoring functionalities of SensibleOrb. The lines of code 
of our prototype is only 75 (without counting those for GUI), 
demonstrating the effectiveness of SocioPhone to facilitate the 
development of interaction-aware applications. 

3. CHALLENGES IN DAILY 
CONVERSATION MONITORING 
We studied characteristics of daily conversations in real-life settings 
to understand the key requirements for our platform. To this end, we 
collected real-life conversation data using a custom smartphone 
logger that continuously recorded sound and performed off-line 
extraction of conversation through a voice-activity detection tool 
[37]. We deployed the software to five university students and 
collected data for ten days (total 753 user-hours). Although our 
dataset is limited in size and population, analyzing such real-life 
data gives us valuable insights into the challenges of daily-
interaction monitoring.   

Interaction patterns: The following observations strongly 
influenced the design of SocioPhone. First, we found that 
participants spend 4.5 hours a day, on average, in face-to-face 
conversations. This shows that new mobile applications to support 
our daily interactions have the potential to appeal to many 
developers and users. Also, we can see that conversation monitoring 
should be performed in an energy-efficient way to support such long 
interaction times. Second, conversations consist of many short 
speaking turns. Figure 3 illustrates a turn-taking history of speakers 
in a sample conversation that we collected using throat microphones 

(a)                               (b)                              (c) 

Figure 2. Daily report by SocioDigest. (a) Cumulative conversation 
time within the user’s social circle (b) Relative per-person talking times in a 

session (c) Relative number of turns exchanged in a session 

Figure 3. Turn-taking patterns in a sample conversation case
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(see Section 6.1). In the figure, we find that short, spontaneous turns 
dominate the conversation. Thus, daily-conversation monitoring 
must capture such short turn-takings. Third, Figure 4 shows that 
more than 50% of conversations last more than 5 minutes. 
Moreover, conversations lasting longer than 5 minutes account for 
83% of the total conversation time, and conversations longer than 
10 minutes do for 70% of the total time. Separating the short, active 
learning phase and the long, energy-efficient monitoring phase is a 
key aspect of our design. We will describe this in Section 4.2. 

Environmental characteristics: Real-life acoustic environments 
are largely different from ideal lab environments, especially in terms 
of noise, making everyday conversation monitoring challenging. To 
understand these noise characteristics, we initially analyzed Signal-
to-Noise Ratios (SNRs) during conversations; we measure the SNR 
values by applying the WADA-SNR library [21] to the conversation 
periods. Figure 5 shows the broad range of SNR values in real-life 
situations, mostly from -5 dB to 45 dB. The quality of recorded 
sound could vary greatly according to place (e.g., a silent meeting 
room, a noisy coffee shop), phone positions (e.g., on a table, in a 
pocket), and performance of microphones. This implies that 
conversation monitoring should be robust enough to handle noisy 
real-life environments.  

3.1 Limitations of Existing Techniques 
As a baseline approach, we can consider a representative speaker-
recognition method [7][27] that has been well-established over 
several decades. Figure 6 shows its processing pipeline. It first splits 
continuous sound data into fixed frames, extracts cepstral features 
(MFCC) from each frame, and matches them with pre-built 

Gaussian mixture models (GMM) of MFCCs, containing unique 
vocal features of speakers. We now summarize key limitations of 
this approach for daily conversation monitoring. 

Slow, inaccurate speaking turn detection: The baseline speaker-
recognition pipeline hardly detects the highly-interactive turn-
takings of daily conversations. This is because it generally requires 
3-8-sec windows for reliable recognition, while turn-taking events 
often occur within smaller windows; note that a study reports two 
seconds of average turn length [2].  Figure 7 shows that as the 
window size increases, a window is more likely to contain multiple 
people's speech, degrading the accuracy of speaker recognition. (see 
Section 6 for the definition of accuracy) One may consider reducing 
the window size, but the accuracy drops significantly when a 
window size is too short. As the pipeline relies on the spectral 
signature of a person’s speech, it must listen long enough to obtain 
statistically representative spectrum from the speaker and thereby 
identify who he is reliably. Instantaneous spectrum largely varies 
even for a single speaker, depending on his intonation and which 
consonants he pronounces [40]. With a short window, such so-
called "atypical" sounds easily dominate the overall spectrum, 
making model matching difficult.  

Vulnerability to real-life acoustic environments: The accuracy of 
a speaker-recognition pipeline can be easily compromised by 
background noises and phone positions in real-life situations. Figure 
8 shows the effect of noise in different places, i.e., a quiet classroom, 
a noisy café, and a living room with TV sound, as well as different 
phone positions, i.e., on the desk, in the pocket, and in the bag (see 
Figure 5 for SNR of each place); we used a 4-second window, 
which provides the highest overall accuracy. The results are mainly 
attributed to several factors, namely poor SNR, noise-vulnerability 
of MFCC [5], and GMM-mismatch in real, distorted data. While 
there are solutions to handle these problems such as noise 
cancellation, in-situ model building, and collaborative sensing 
[4][31], their improvements are known to be limited.  

High energy consumption: The baseline pipeline consumes a 
significant power. As shown in Table 4, the overall recognition 
process consumes 437 mW on a Galaxy Nexus phone; its 1750 
mAh battery will drain in about 14 hours to only perform the 
recognition. In particular, MFCC extraction and GMM matching 
require 54 mW and 204 mW, respectively. A system could filter out 
non-voice parts to avoid frequent execution of resource-demanding 
recognition logic [27][29]. However, the logic still needs to examine 
entire conversations, which are long enough (e.g., 4.5 hours a day) 
to significantly impact the battery life.   

Limitation of existing collaborative sensing approaches: Recent 
work exploits collaboration opportunities with nearby phones for 
effective context monitoring [26][31]. These approaches can be 
applied for conversation monitoring. One may execute the 
recognition pipeline on co-located phones and aggregate their 
inference results for better accuracy [31]. Alternatively, for resource 
saving, only one phone may run the pipeline and share the results 
with the others [26]. However, since these systems still use a 
conventional approach to speaker recognition, they suffer from low 
accuracy when detecting frequent, short turn-takings.  
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Figure 6. Typical speaker recognition pipeline 
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Avg. power (mW) 13.5 160.9 4.0 54.2 204.2 437
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4. IN-SITU TURN MONITORING 
To address aforementioned challenges, we devised a novel turn 
monitoring technique. In this section, we present the details of our 
turn-detection algorithm and practical implementation issues.  

4.1 Overview 
Consider a group conversation scenario with three people as in 
Figure 9. When a person speaks, multiple phones acting as wireless 
receivers can capture the sound signals that the person (or 
transmitter) generates. Each phone measures a speaker’s voice 
signal strength (or volume in µPa). When a speaker’s phone is 
placed right next to the speaker (mostly true in practice), this phone 
is likely to measure the strongest signal strength among all the 
neighboring phones. A simple approach to speaker recognition is 
then to select a phone (and its owner) that has the strongest signal 
strength; this naïve method is called a Volume-peak-based algorithm. 
In real-life situations, however, this approach has the following 
limitations: (1) location and placement of phones are not 
controllable (e.g., a phone may be placed in a pocket), (2) some of 
the phones may not be available (e.g., due to limited resources or 
poor recording quality), and (3) peak detection is susceptible to 
background noise.  

To handle such limitations, we devise a Volume topography-based 
method that leverages the relative difference of recorded signal 
strengths over multiple phones. As in Figure 9, speaker A’s voice 
has been recorded over three phones with different volumes 
(represented as a volume vector). Due to relative position 
differences, each speaker will have a unique volume signature (or 
topography) over three phones. These phones can collaboratively 
build a topography database a priori (say during a learning phase), 
and we can identify the speaker by matching a newly measured 
volume vector with the topography database.  

Our method is advantageous in several ways. First, it is much lighter 
than existing speaker recognition systems like [27], since we limit 
complex signal processing only in the learning phase. Second, 
volume vectors can be reliably obtained even with a very short 
sensing window, e.g., 300 ms, and thus enable turn-taking 
monitoring in a highly agile way; a turn is simply extracted by 
aggregating consecutive results. Third, the volume topography is 
less vulnerable in noisy acoustic environments; the background 
noises easily distort the users’ voice spectra, but the topography 
itself is mostly consistent as long as the spatial placements of the 
phones and the speakers are consistent. In addition, the volume 
topography can be quickly re-trained in-situ to update phone 
positions and noise characteristics. Such in-situ topography also 
enables our method to work even when some phones may not be 
available (i.e., number of monitoring phones < number of users). 

4.2 Volume Topography-based Algorithm 
Training data collection: During the learning phase, each phone 
samples the incoming sound at the rate of 8 kHz. The sampled audio 
stream is segmented into 300 ms-frames (i.e., 2,400 samples). For a 
given time t, each phone i calculates p(t,i), the power of the frame 
from phone i at time t, i.e., the average of the square of the audio 
signals. Thus, we have a feature vector, P(t) = (p(t,1), p(t,2), …, 
p(t,np)), where np is the number of monitoring phones; note that np 
may not be equal to the group size. For adequate learning, phones 
collect the feature vectors for L seconds, where L is a system 
parameter for a learning period. We use L=60 seconds in three-user 
experiments, obtaining 200 vectors in total.  

Feature vector transformation: One of the key challenges is to 
define the feature vector so that it has discrimination power. Our 
initial approach was to simply use P(t) itself. Figure 10(a) plots P(t) 
for a three-user group as in Figure 16(a). In this case, we were able 
to differentiate three users, but we found that this approach performs 
poorly in discriminating non-speech turns (or silent turns). Our 
alternative was to normalize the vector as P(t) = P(t) / E(t), where 
E(t) is an average of a vector P(t). Figure 10(b) plots P(t) for the 
same situation. This approach distinguishes human speech from 
non-speech well. However, we find that discrimination is weak 
when the number of phones is less than the group size due to loss of 
degrees of freedom (i.e., the sum of P(t) is always 1). Figure 10(c) 
shows P(t) with one fewer phone. 

To overcome this, we define the feature vector as the product of 
P(t) and the decibel measured on phone i, i.e., P(t) = {D(t,1) × 
p(t,1) / E(t), …, D(t,np) × p(t,np)  / E(t)}, where D(t,i) is defined as 
follows 

, 
where pref is the standard reference sound pressure level, i.e., 20 μPa. 
In addition to the second approach, it discriminates better even with 
fewer phones. Figure 10(d) and (e) show P(t) using three and two 
phones, respectively. 

Topography generation: From the training dataset, we build a set 
of audio-signal signatures, i.e., volume topographies, for each group 
member plus the non-speech case (the moment when no member 
speaks). For an n-member group, we use k-means clustering where k 
is set to n+1.  

Classifier training and classification: The input dataset collected 
during the learning phase is used, namely feature vectors labeled 
with a cluster-ID. We select a multi-class SVM classifier, known as 
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Figure 9. Illustration of online turn monitoring 
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one of the best performing classifiers [1]. After training has 
completed, SocioPhone segments turns online by simply mapping 
incoming frames into cluster-IDs using this classifier. According to 
our experiences, training duration is short (around one minute), and 
turn monitoring can start shortly after a conversation starts. 

Turn recognition: A turn is detected if two consecutive frames 
belong to different clusters. We do not consider non-speech turns in 
a user’s speech of less than 300ms; they are regarded as small 
pauses and often ignored [2]. 

Mapping audio signatures (cluster-IDs) to group members 
(member-IDs): In the learning phase, we also build a mapping table 
that converts cluster-IDs to member-IDs. We use a conventional 
speaker recognition technique [27]. Each phone trains the 
recognition algorithm for its owner a priori by building a reference 
speech model. At the end of learning phase, each phone uses all 
original frames that belong to each audio signature to generate 
MFCC and compute GMM likelihood. The cluster head collects the 
GMM likelihoods from its members and determines the mappings 
of cluster-IDs onto member-IDs.  

4.3 Other Practical Issues 
Energy-efficient conversation detection: The first step of turn 
monitoring is to detect whether a group conversation has started. 
Given that a conversation starts when people talk with one another, 
SocioPhone periodically monitors ambient sound to detect voice 
activity (e.g., analyzing about 2-sec-long audio signals in every 30 
seconds). To be precise, the incoming sound wave is sampled at the 
rate of 8 kHz and the samples are segmented into frames. The 
duration of a frame is 2,048 ms (i.e., 16,384 samples per frame). For 
a given frame, we calculate two metrics, root mean square (RMS) 
and zero-crossing rate (ZCR). Then, we decide whether the sound is 
human speech using an offline-trained decision tree, which is 
commonly used in human-speech detection [27]. 

Group formation and head selection: Upon the detection of voice 
activity, SocioPhone discovers nearby friends by performing 
Bluetooth scanning. It retains MAC addresses of a user’s friends; 
the list can be collected using conventional peer introduction 
mechanisms (only once per friend) [13]. If it finds any registered 
friends, a group network is formed. In a group, one phone is selected 
as a head and coordinates the collaborative turn detection; it collects 
volume features from other phones, matches them to the topography, 
and shares the results. The head is randomly selected; the difference 
of resource consumption between a head and a member is marginal 
(See Section 6.3).  

Duration of a learning phase: Each user should speak at least once 
in a learning phase. To determine the proper duration, Figure 11 
shows the accuracy while varying group sizes and learning 

durations. For the group sizes of three or four, accuracy tapers off 
around the 60 seconds, whereas it tapers off around the 90 seconds 
for group sizes of five. Reasonably assuming that the learning 
duration is proportional to the group size, we set the duration to the 
group size n × 20 seconds; our experiment shows 95% of speaking 
turns are shorter than 20 seconds (see the details in Section 6.2). 
During the learning phase, the topography-based turn monitoring 
will not be available on-the-fly. SocioPhone can apply the volume-
peak-based algorithm in parallel, which does not require any 
training a priori. Also, it is worth noting that many daily 
conversations last quite long as discussed in Section 3.  

Sampling rate selection: Figure 12 shows that SocioPhone 
achieves highly stable accuracy at sampling rates as low as 500 Hz 
(see Section 6 for configurations). Using low sampling rates has two 
major benefits: energy saving by reduced computation and privacy 
preserving even if the sampled speech is temporally stored. We 
elaborate the latter one. By the Nyquist sampling theorem, with the 
speech signal sampled at 500 Hz, we can reconstruct only the 
signals whose frequencies are no higher than 250 Hz, i.e., half the 
sampling frequency. Then, we refer to the articulation index (AI), a 
value quantifying the intelligibility of a given speech signal [14], 
where AI = 1 for most intelligible, zero for completely unintelligible. 
For example, AI is 0.9 for a low-passed speech signal cut off at 
5000 Hz, 0.1 at 500 Hz and zero at 250 Hz or lower. Therefore, the 
speech that SocioPhone samples is largely unintelligible, which 
potentially preserves users’ privacy. 

Time synchronization: To align feature vectors at the same time, 
we synchronize the phone clocks by well-known means (e.g., GPS 
or NTP). Note that phones may be out of sync by 1-2 seconds in 
WCDMA network. To investigate the required level, we performed 
an experiment with a 3-user group by deliberately making 
synchronization errors in one of the phones. Figure 13 shows that 
our algorithm tolerates about 100ms of errors. SocioPhone 
periodically checks the availability of GPS (once a day when a user 
is outdoors) and fixes the time from the GPS receiver whose time is 
accurate to 200 nanoseconds. 

4.4 Discussion on Potential Improvements 
Detection of a conversation group: In our current design, 
SocioPhone simply identifies conversation group members by an 
initial Bluetooth scan. We assume a single-group interaction among 
collocated friends. This assumption holds in many daily life 
situations, but sometimes groups may be partitioned into subgroups. 
We admit that further study is required to enable robust and 
practical detection of conversation groups, especially to deal with 
such multiple sub-group situations. One possible way would be to 
dynamically divide the sub-groups by analyzing overlapping speech 
patterns [6]; note that overlapping speech is limited within a single 
conversation group as people often speak once at a time whereas 
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overlapping frequently occurs among different conversation groups 
within a place. 

Selection of monitoring phones: In real situations, participation 
from all available phones does not always guarantee the best 
accuracy; excluding a phone may achieve higher accuracy if that 
phone shows poor recording quality. However, it is challenging to 
estimate the expected accuracy in advance. One possible approach 
is to check if the signal-to-noise ratio (SNR) is above a certain 
threshold, but reliable SNR calculation is difficult and also 
consumes much power. Another alternative approach is to leverage 
phone placements. For example, from our empirical studies, we 
observe that turns are monitored more accurately by excluding 
phones in bags. To apply this method, we need to incorporate 
phone-placement detection, such as [30]. Besides accuracy, we can 
further consider the available power of phones to select the 
monitoring phones. For example, SocioPhone can exclude phones 
with little battery remaining, e.g., < 10%, if the number of phones is 
greater than three and most are qualified.  

Noise reduction: Our technique is resilient to some forms of noise 
such as ambient noise that may persist or fluctuate but uniformly 
applies to all participating phones. An example is the background 
human utterances in a restaurant where people at the surrounding 
tables are chatting in similar tones. However, volume-topography 
may be vulnerable to nearby point-sourced noise; for example, an 
announcement from a nearby loud speaker or a cup rattling next to a 
specific phone. Given such a point-sourced noise, the large variance 
of phone-to-source proximity significantly distorts the volume 
topography. To improve robustness against such point-sourced 
noises, pre-filtering of non-human vocal spectrum at the recording 
stage would narrow down the vulnerable bandwidth. Techniques 
like spectral subtraction and Wiener filtering [8] could be leveraged 
for this purpose.  

Handling dynamic situations: Our technique properly operates 
when the relative positions of users and their phones are mostly 
fixed. However, diverse events may dynamically occur during a 
conversation, e.g., join and leave of a new member, moving phones, 
turning on a TV, which potentially compromises the monitoring 
accuracy.  First, if the topography is successfully built in the 
learning phase but such dynamic events appear during the 
monitoring phase, we believe that the probability estimates of the 
SVM classifier can be used to handle the events. Figure 14 shows 
empirical behaviors of the probability estimates in the case of a 
group conversation with three users. The value mostly remains 
above 0.8 without any dynamic event (Figure 14(a)). When a fourth 
person joined the group and started speaking (at the 60 second 
mark), the values dropped to around 0.6 for about 10-20 seconds, as 
shown in Figure 14(b). For such a sudden drop within a predefined 
duration, the topography can be retrained in the background (during 
which the old ones are still used). Second, the topography training 
and associated classification can be spoiled when dynamic events 

occur during the learning phase. In such a case, the clues suggesting 
a retraining may be found from multiple sources, e.g., erratic turn-
taking patterns which are unlikely in normal conversations, 
considerably low probability estimates, etc. 

Detection of overlapping speeches: As our technique classifies 
each speech frame into a single speaker, it fails to detect 
overlapping turns in which the multiple speakers talk at the same 
time. However, the portion of such overlapping speeches is not 
significant in our daily conversation. From our experiment with 
three people in a café (Figure 17 (c)), the total time of overlapping 
speech is under 10% of the total conversation time; a study also 
reports the overlapping ratio from 6% to 14% [39]. Also, most 
overlapping speeches are short, less than 2 seconds. Accordingly, 
meta-linguistic features can be extracted properly regardless of the 
overlap. For some applications, however, overlap detection can be 
useful; for example, the successful interruptions are considered to 
infer the leadership in the group discussion [35]. Note that even in 
field of speech diarization, identifying overlapping speech and the 
associated speakers remains an on-going challenge. 

5. PLATFORM IMPLEMENTATION 
We have implemented a SocioPhone prototype in Java using 
Android SDK 4.0. It runs as a middleware and fully supports the 
SocioPhone APIs. Figure 15 shows the system architecture of the 
prototype. We implemented Turn Detector and Conversation Group 
Detector using the techniques introduced in Section 4. Here, we 
briefly explain the role of other system components. 

Monitoring Planner decides how to perform turn monitoring. Its 
key role is to determine the feasibility of collaborative turn detection. 
Source Selector first figures out how many phones participate; it 
checks if the phone has sufficient battery power and if its sound 
signals are clear enough for discriminative volume topography. If 
there are sufficiently many sources available, Execution Planner 
performs turn monitoring with the volume-topography-based 
method. Otherwise, it performs conventional speaker recognition. 
Note that SocioPhone may ask users to place their phones in a better 
position when the collaborative method is not possible.  

(a) w/o dynamic event           (b) w/ dynamic event 

Figure 14. SVM probability estimates over time 
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Meta-linguistic Information Processor computes rich meta-
linguistic contexts, based on the turns computed by Turn Detector. 
Additionally, Feature Extractor processes prosodic features such as 
volume, pitch, and their variation over segmented sound signals. 
Pattern Analyzer infers a number of meaningful social contexts by 
combining turn information and prosodic features. In the current 
prototype, it supports the following contexts: dominance and 
leadership in a conversation group, conversation asymmetry, 
interactivity, and sparseness. To infer the dominance and leadership, 
Pattern Analyzer applies a supervised SVM over the turn and 
prosodic features [3][17]. It also identifies interactivity, sparseness, 
and skewness, applying heuristic metrics as follows: 

 Level of interactivity: # of speaking turns per minute 
 Level of sparseness: # of non-speaking turns over three seconds 

per minute 
 Level of skewness: standard deviation of # of speaking turns for 

all participants  

Besides the above examples, Pattern Analyzer can flexibly 
incorporate other algorithms to infer diverse contexts. For example, 
emergent leaders in a conversation group can be further inferred 
using the method in [35]. Another method can infer expressiveness 
from volume and pitch [38]. We leave detailed evaluation of these 
derived contexts as a future work. 

Interaction History Manager supports SQL queries from 
applications. To support the queries, it stores ‘conversation session’ 
and ‘turn’ information in an internal database. For efficiency, 
SocioPhone holds the turn information for the on-going session in 
the memory, while flushing it to persistent storage when the 
conversation completes. Internally, it is implemented using SQLite, 
a light-weight database in Android.  

Network Interface: SocioPhone uses Bluetooth for peer discovery 
and communication. We considered using Wi-Fi Direct since it 
provides adequate features such as ad-hoc peer discovery and 
message broadcasting. However, it consumes too much power to 
use in everyday monitoring, as it is designed for short-term high-
bandwidth communication. According to our measurements, 
exchanging messages every second through Wi-Fi Direct requires 
about 413 mW of power. For the same, Bluetooth communication 
requires only 138 mW.  

6. EXPERIMENTS 
Our goal is to fully evaluate SocioPhone’s performance under a 
range of real-life situations. However, since real-life sound sensing 
is affected by a number of factors simultaneously, a direct, fully 
unorganized deployment would make isolating the root causes of 
performance changes extremely challenging. As an initial step, we 
carefully select representative real-life scenarios, and we identify 
independent parameters that may largely affect SocioPhone’s 
performance, as shown in Table 5. Then, we rehearse diverse 
variants of the scenarios by applying different combinations of the 
parameters to understand the causality of performance inclines or 
declines. Based on such understanding, we also describe our 

experiences and lessons learned from subsequent unorganized real-
world deployments of SocioPhone. 

6.1 Experimental Setup 
Scenarios and parameters. For performance evaluation of 
SocioPhone, we consider three conversation situations in different 
places, i.e., seminar room, home, and café (See Figure 16(a)-(c)). 
We vary the following parameters to reflect diverse real situations: 
the group size, the number of available phones, the phone positions, 
and the direction of microphones. By default, we assume a casual 
conversation with three participants. Each participant’s phone is 
placed on a table and the microphones are directed to their owners. 
Table 5 lists the default values and variations. Each conversation is 
15 minutes of unscripted, free talking. For all experiments, we use 
Galaxy Nexus phones. 

Alternative techniques we developed for comparisons: 
SinglePipe is a conventional speaker recognition system, as shown 
in Figure 6. Each phone runs its own recognition pipeline and uses 
the results separately. The performance is reported as the average 
value measured over all phones. 

CombinePipe is developed based on DarwinPhones [31]. It runs 
SinglePipe on every phone and makes the final inference by 
combining GMM likelihoods to improve accuracy.  

SharePipe applies the idea from CoMon [26]. Among multiple 
phones, only a single phone runs SinglePipe and shares the results 
with other phones to save energy. We omit the inference accuracy 
of SharePipe, since it is expected to be the same as SinglePipe. 

All the alternatives are built on conventional speaker recognition 
methods. We attempt to carefully select their parameters to show 
their best performance. First, from the previous lessons [31], we 
apply well-crafted speaker models for each situation and use only 
the models of the interactants participating in the conversation 
session. Also, as these methods generate results over a fixed-size 
sensing window, we apply a four-second window by default, which 
provides the best accuracy in our experiments.  

Evaluation metrics: We adopt two key evaluation metrics: 
accuracy and resource efficiency in terms of energy and CPU. We 
measure energy consumption using a Monsoon PowerMeter. 

Turn-monitoring accuracy: We adopt the duration-weighted 
accuracy used for speaker diarization [2]. It is the ratio of correctly 

Table 5. SocioPhone evaluation parameters 

Parameters Default values Other values used 
# of interactants 3 4, 5 

Place Seminar room Home, café 
# of avail. phones 3 2, 4, 5 

Phone Position On a table In a pocket / a bag 
Mic. Direction To the owner Reversed 

 
Figure 16. Experimental setup 
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inferred time to the total time of the conversation. A conversation 
session is segmented by the start and end times of the turns that are 
either annotated in ground truth or inferred by the evaluating 
technique. Each segment is labeled as true-positive (TP), false-
negative (FN), false-positive (FP), and true-negative (TN). If the 
speaker of a segment in ground truth is identical to the inferred one, 
it is labeled as TP; in the case of non-speech, TN is tagged. FN 
means a speaker in ground truth is not found or incorrectly inferred. 
FP means a speaker by the inference is not in the ground truth. 
Based on the label and the segment duration, we define three 
metrics as followings: 

 Accuracy = {D(TP) + D(TN)} / total time 
 Precision = D(TP) / {D(TP) + D(FP)} 
 Recall = D(TP) / {D(TP) + D(FN)} 
 where D(tag) is the total time of segments labeled as tag.  

Ground-truth annotation: Correct ground truth is a precondition for 
the integrity of monitoring accuracy. For accurate and fine-grained 
annotation, we use throat microphones (See Figure 16(d)). The 
throat microphone records only its wearer’s voice while suppressing 
external sound; it directly senses throat vibrations instead of 
vibrating air molecules. We also videotaped all conversations for 
post-hoc analysis. Note that manual tagging did not work properly 
due to the highly interactive nature of real-life conversations and 
difficulty of accurately tagging the start and end of a turn. Also, 
manual tagging was inconsistent across persons. 

6.2 Turn-Monitoring Accuracy 
We investigate turn-monitoring accuracy at the default setting. 
Table 6 summarizes the results. SocioPhone shows the highest 
accuracy, 92.9%; it accurately and quickly detects turn-takings by 
inspecting volume vectors every 0.3 seconds. The others show 

around 80%. They hardly segment the turns precisely due to their 
larger 4-second window for reliable inference. Note that 
CombinePipe slightly outperforms SinglePipe, since phones are in a 
similar situation and the combined inference benefit is marginal.  

To see the detailed differences, we plot partial results from 
SocioPhone and CombinePipe over the ground truth as in Figure 17. 
SocioPhone captures the overall turn-taking pattern well. 
CombinePipe also recognizes speakers well in long-speaking turns, 
but often misses short, interactive turns. Figure 18 plots the CDF of 
speaking-turn durations. 45% of turns are less than four seconds, 
which is the window size of SinglePipe-based pipelines. More than 
80% of speeches are less than 10 seconds, implying the importance 
of fine-grained turn segmentation for casual conversation. We find 
similar patterns in the 4- or 5-interactant conversations. Note that 
the topic or type of conversation could change the distribution, but 
the general trend would remain stable. 

We observe that the interactants’ speaking turns are sometimes 
overlapped. In our experiments, overlapped speech accounts for 
1%-10% of the whole session time; the average duration of 
overlapped turns is 0.8-1 second. Interestingly, all the techniques 
mostly choose one speaker among the actually speaking speakers.  

6.2.1 Effect of Number of Phones 
We investigate the effect of the group size and the number of 
available phones on the turn-monitoring accuracy. In addition to the 
default setting, we consider two more situations with four and five 
interactants. Figure 19 shows the results with different group sizes. 
SocioPhone outperforms the others regardless of the group size by 
12-19%.  Even with 5 interactants, it shows the accuracy of 83%, 
while the accuracies of other techniques are below 70%. 

We further examine the accuracy while varying the number of 
phones actually monitoring. We report the average accuracy over all 
possible combinations; e.g., in the case of three phones for five 
interactants, we calculate the average accuracy for all 10 
combinations. We exclude SinglePipe since it runs on one phone. 
As shown in Figure 20, SocioPhone outperforms CombinePipe 
except when only two phones are available. This shows that the 
volume topography-based method works well even if a small 
portion of phones is unavailable, e.g., 78% accuracy with only three 
phones and five interactants. When the number of available phones 
is much smaller than the group size, our method performs worse 
than CombinePipe, e.g., two available phones for a 5-interactant 
conversation. In these cases, SocioPhone had better use the 
conventional speaker recognition method. 

6.2.2 Effect of Phone Placement and Direction 
We then investigate the effect of phone placement and direction. To 
equalize external variables such as noises and conversation patterns, 
we simultaneously deploy multiple phones on each interactant 
(Figure 16(d)). In this section, we omit the results with 3 and 4 
interactants since their results are similar to a 5-interactant. 

Effect of phone placement: Figure 21(a) depicts the accuracy in 5-
interactanat conversation by increasing the number of phones in 
pockets. Except the case of (5,0) and (0,5), we report the average 
accuracy over all possible combinations. SocioPhone shows around 
75% of accuracy even with three phones placed in a pocket and two 
phones on a table. This is similar to the accuracy of CombinePipe 
with all five phones on the table. CombinePipe also outperforms 
SinglePipe since a few phones with better sound quality 
disproportionately contribute to the results. 

Table 6. Monitoring result in default situation 

System 
Monitoring accuracy (%) 

Accuracy Precision Recall 
SinglePipe 76.3 76.3 85.9 

CombinePipe 80.4 80.4 90.6 
SocioPhone 92.9 97.1 94.1 

 

(a) Ground truth
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Figure 17. Turns over time 
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We find an interesting result in the 3-interactant conversation (see 
Figure 23 for the setting). Figure 22 shows that the F1 score of each 
interactants depends on which phone is placed in a pocket. An F1 
score is the harmonic mean of precision and recall.  When a user B 
in Figure 23 puts his phone in his pocket, the accuracy is much 
higher and F1-score of interactants are more balanced, compared to 
other cases. From the video review, we find that the relative 
distances between interactants are different. The distance between A 
and C is much shorter than B. Interestingly, it is unexpected that 
uniformly distributed phones on the table will be more helpful. We 
speculate that an imbalance of recoding volume makes inference 
more difficult for users with relatively close positions such as A and 
C when C’s phone is in C’s pocket. This implies that the relative 
position of interactants as well as the phones will be a key to 
estimating the expected accuracy.  

Figure 21(b) shows the accuracy putting some phones in a bag. In 
some cases, CombinePipe outperforms SocioPhone, but the overall 
trend is similar to the previous experiment. The accuracy of all 
pipelines is much lower than the previous experiment due to lower 
quality audio. 

Effect of phone direction: We next measure the accuracy by 
varying phones’ direction. The direction hardly affects accuracy. 
This is because the length of the smartphone is much shorter than 
the relative distance among smartphones, and thus the volume level 
or frequency-domain features are well maintained.  

6.2.3 Effect of Places  
We next examine the effect of background noise on turn-monitoring 
in different places: seminar room, home and café. In a café, 
background music is played and other guests are chattering. For 
home, we experimented in a living room with a TV turned on. To 
quantify the sensed audio quality, we use the SNR, with the method 
presented in Section 3.  

Figure 24 depicts the average SNR in the three places. As expected, 
the SNR in the classroom, 40.7, is much higher than those in the 
home and café, 28.4, and 11.8, respectively. The SNR in home is 
also different from that in café. It might be due to the directivity of 
the microphone as well as the ambience of the noise. Café noise is 
spread out, whereas TV sound at home has more directivity. 

Due to the degradation in audio quality, the monitoring accuracy at 
home or in the café drops compared to the seminar room, for all 
techniques. However, even in the café, which is an uncontrolled, 
noisy situation, we could observe that SocioPhone performs 
effectively at about 80% accuracy, whereas SinglePipe and 
CombinePipe show accuracy under 60%. The reason why 
SocioPhone is more robust against background noise may result 
from the different characteristic of MFCC features and the volume 
topography. Due to the logarithms, MFCC is easily influenced by 
low energies from noise. However, even in a noisy situation, people 
tend to speak louder than the background noise. Thus, a phone can 
still record an interactant’s voice louder and thus, the volume 
topography will be maintained more stably. 

6.3 Resource Usage for Turn Monitoring 
6.3.1 Cost of Turn Monitoring 
We evaluate the system cost for turn monitoring in terms of power 
consumption and CPU utilization. Table 7 shows the results of 
SocioPhone and the other techniques with the default setting in 
Table 5. All techniques but SinglePipe operates in two modes, head 
and member. A head takes charge of the coordination and final 
inference. A member transmits the required information to the head. 
Overall, SocioPhone consumes much less power at higher accuracy 
in turn monitoring; it consumes about 280 mW, whereas others 
range from 436 to 512 mW; a 1750 mAh battery would last about 
23 hours with SocioPhone and 12-14 hours with others. The 
difference of power consumption between a head and a member on 
SocioPhone is marginal because of the light-weight matching. For 
SharePipe, a member consumes much less power, i.e., 89.3 mW 
since it performs no recognition-related processing. Interestingly, 
CombinePipe’s member consumes 35.3 mW more than the head, 
since Bluetooth consumes more power for transmission than for 
reception. SocioPhone also uses much fewer CPU cycles by 
avoiding complex speaker recognition. 
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6.3.2 Cost Breakdown of Turn Monitoring 
For turn monitoring, SocioPhone continuously performs three 
common operations: (1) sound recording, (2) feature computation, 
and (3) feature and result transmission. A head performs extra 
operations for learning and matching. 

Table 8 shows the power breakdown of SocioPhone. The top power 
consumer is sound recording, i.e., 57% of the entire power. The 
sound recording includes acquiring the wake lock in Android, about 
30 mW. Bluetooth communication consumes about 98.5 mW due to 
frequent messaging every 0.3 seconds. However, logging 
applications such as SocioDigest may not need instantaneous turn 
results, and messages can be buffered and bulk-transmitted. We 
measured that Bluetooth consumes only 58.7 mW when messaging 
every 10 seconds. We omit the CPU breakdown since the total CPU 
usage is less than 2%. 

We measure the training time of a head of SocioPhone. In the 
learning phase, a head performs the following three operations: (1) 
K-means clustering, (2) SVM model generation, and (3) speaker 
labeling using MFCC and GMM. Table 9 shows the CPU time for 
different group sizes. Since speaker labeling is executed on every 
phone for the same workload, we report the average value. 
Interestingly, (1) and (2) take only 160 ms even with 5-interactant 
data for 60 seconds. The bottleneck is (3), mapping the clusters onto 
speakers, which takes four seconds. Offloading such complex 
processing into the server might be useful to further optimize 
SocioPhone. 
 

6.4 Deployment Experience 
We conduct additional experiments to observe SocioPhone’s 
performance under more natural interaction situations. Here, we 
do not attempt to show general performance characteristics but 
present notable lessons on the performance and user experiences. 

6.4.1 Deployment in Natural Situations 
For experiments, we recruited four frequently-interacting graduate 
students (P1, P2, P3, and P4) who did not know about SocioPhone in 
advance, and installed SocioPhone on their own smartphones; all the 
subjects were males in their twenties. For a natural setting, we let 
them freely have conversation sessions at school for a weekday. For 

ground truth, we asked them to wear throat microphones upon the 
start of a conversation and also to video-record the conversation 
sessions by themselves using a tripod; each participant was 
compensated with KRW 50000 (about USD 45) to participate in the 
study.  

We first look at a case in which they go to a seminar room for 
brainstorming. We could see that P1 and P2 put their phones on the 
desk, P3 put his in his pant pocket, and P4 put his in his backpack; in 
the case of P2’s phone, the microphone was not facing towards him. 
In this natural brainstorming, the overall accuracy of SocioPhone is 
about 75%. This is 13% lower than the case of four phones on the 
desk as in Section 6.2.1 (88%). Table 10 shows the results per 
participant including non-speaking turns. Interestingly, while the 
precision for speaking turns is very high overall (> 96%), the recall 
is not as good, especially for P3 and P4 whose phones are not in 
open-air positions; SocioPhone often misses their speaking turns. In 
the case of P2, the recall is also quite low, 60%, even though his 
phone is on the desk; this is different than our previous observations, 
indicating that the direction of the microphone hardly affects the 
accuracy. From our video review, we strongly suspect that this is 
because P2 speaks in a calm tone so that his turn is often identified 
as non-speaking turns; interestingly, others asked him several times 
to speak again. 

We investigate another case of three of the participants going to a 
café to have a casual conversation. Unlike when brainstorming, all 
participants comfortably put their phones on the coffee table. 
Unfortunately, in this setting, the ground truth collected by throat 
microphones was not accurate as the participants did not wear them 
tight enough. Instead of investigating accuracy, from the video 
recordings and SocioPhone logs, we found several scenes that cause 
notable performance problems. In brief, very short, instantaneous 
noises often led to misclassification. First, after taking a sip of 
coffee, putting the cup on the table makes a loud noise, especially to 
the nearby phone. Second, P3 sometimes shakes his leg and his leg 
touches the table. In addition, we notice that when P2 uses his phone 
to check his Facebook (we asked him afterwards), his screen taps 
also create loud noises to the very phone, causing instant 
misclassification. We expect that the noise reduction techniques 
discussed in Section 4.4 can be further incorporated to filter out 
such instantaneous noises. 

6.4.2 Experiences with SocioDigest 
We conducted a mini-deployment of SocioPhone for three 
consecutive days, to encompass a broader set of our daily 
interactions and find lessons regarding further in-the-wild issues and 
user experiences. We recruited 15 users for SocioDigest introduced 
in Section 2.3, many of whom are within the same social circle, i.e., 
lab members.  

This mini-deployment enlightened us about future considerations 
for SocioPhone to work fully robustly in-the-wild. For example, 
SocioPhone did not perform well under some conditions, such as 
when everyone keeps their phones in their pants pockets. This often 

Table 7. Energy consumption and CPU utilization 

Pipeline Head Member 
Power(mW) CPU(%) Power CPU 

SinglePipe 436.8 15 N/A N/A 
SharePipe 481.9 17.3 89.3 < 2 

CombinePipe 476.8 19.2 512.1 18.3 
SocioPhone 282.1 < 2 278.6 < 2 

Table 8. Power breakdown 

Operation Power(mW) Ratio 
Idle 13.5 0.05 

Recording 160.9 0.57 
Feature computation 5.7 0.02 

Classification 3.5 0.01 
Communication 98.6 0.35 

Table 9. CPU time in the learning phase 

# of interactats 3 4 5 
(1) Clustering 3.4 ms 13.6 ms 15.2 ms 
(2) SVM training 89.0 ms 125.8 ms 147.2 ms 
(3) Speaker labeling 4624.8 ms 

Table 10. Precision and recall in a natural situation 

 Precision(%) Recall(%) Time(sec.) 

P1(on the desk) 96.4 89.0 244 
P2(on the desk’) 97.4 63.1 190 
P3(in the pocket) 98.0 54.0 98 

P4(in the bag) 98.5 76.4 199 
Non-speaking 19.2 88.8 48 

Total 97.4 74.1 779 
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occurred when participants make unplanned small talk while 
standing. To circumvent it, we distributed wind vests to the 
participants and recommended that they put their phones in its chest 
pocket instead of the pants one. Besides, SocioPhone needs to be 
further improved to isolate the true conversation groups in some 
situations such as multiple independent conversation groups talking 
at the same time very closely. 

On reviewing his daily conversation report, a user who is 31-year-
old Ph.D. student, was surprised that most of his daily talks are 
concentrated on a few people. An interesting observation is that, on 
the first day SocioDigest reported that his wife is not highly ranked 
in terms of conversation length. On the next day, the total length did 
not change much but his wife and he exchanged quite more turns; 
he said it was his small effort to make better use of his limited 
amount of time at home. 

7. DISCUSSION 
Privacy: Privacy is a primary concern when audio recording is 
involved. Our SocioPhone design addresses privacy issues as much 
as possible. As SocioPhone works on mobile devices only, it does 
not provide any raw audio recording or rich features like MFCC to 
the third-party servers from which original speech can be inferred. 
More importantly, SocioPhone limits its sample frequency to 500 
Hz and shares only simple volume features from which it is almost 
impossible to recover the original linguistic contents. Within a 
conversation group, partial exposure concerns still remain, such as 
the size of a conversation group or emotional tone of speech. We 
expect sharing of this kind of information would be reasonably 
acceptable among people in the same group.  

In addition, malicious applications running on SocioPhone have the 
potential to secretly report any private meta-linguistic contexts. 
SocioPhone provides users with an access control interface by 
which users can easily ensure that only trusted applications access 
SocioPhone. We also expect future mobile OSs would incorporate 
real-time information tracing facilities to monitor unexpected usage 
of private data, as proposed in TaintDroid [12]. Finally, regardless 
of its privacy-preserving techniques, we admit the inherent 
limitations that nearby people might perceive intrusive from being 
audio-recorded itself [23].  

Beyond meta-linguistic contexts: SocioPhone can incorporate 
existing speech recognition techniques to additionally provide 
semantic information like topics. For example, an application can 
recommend YouTube videos based on what a group has talked 
about so far. Supporting these advanced functions requires a better 
understanding of the resource requirements involved. The basic 
interaction awareness provided by SocioPhone can be an initial clue 
to determine when to selectively conduct heavy speech recognition 
given a device’s limited resources.  

We can further extend SocioPhone to capture visual cues such as 
gesture or eye contact. It is possible to adopt a gesture monitoring 
system like E-Gesture featuring energy-efficiency and resilience to 
activity-generated noises [34]. An interesting direction would be 
capturing eye contacts with new hardware like Google Glass.  

8. RELATED WORK 
Conversation analysis: Everyday social interaction has been a 
long-studied area in sociology. They studied formal models and 
methods to understand everyday interactions, such as video-taping a 
conversation and structuring a schematic by turns and their orders 
[15]. Our platform can provide a way to bring these research efforts 

and findings onto real-life services, enabling a variety of useful 
interaction-aware applications. 

Interaction-aware applications: Initial applications are emerging 
to leverage social contexts during face-to-face interactions. For 
example, Pentland et al. infers meaningful social relationships by 
analyzing large volumes of daily social interaction data collected by 
mobile devices (e.g., Bluetooth scanning). Also, they propose 
several applications such as Sensible Orb [33] and Meeting 
Mediator [22] for workplace meeting situations. As a mobile 
platform, SocioPhone facilitates such applications in real-time. 

Speaker recognition and diarization: In the fields of artificial 
intelligence, there have been significant efforts to infer diverse 
information from sound signals, including speaker, words, and 
emotions [2][4][7][8][17][39][40]. However, daily conversation 
monitoring on mobile devices imposes new requirements such as 
highly-interactive turns, dynamic acoustic situations, real-time 
processing, and the resource limitations of the mobile devices.  

We may also consider using speaker diarization techniques to 
extract fine-granule “who spoke when” information [2][4]; example 
applications include conversation-structure analysis for meeting 
records or automatic index building on media contents. However, it 
is difficult to directly apply these techniques in our environments. 
First, they are designed for post-conversation analysis; they hardly 
support real-time monitoring, which is the key to enable timely 
interaction-aware services as in Tug-of-War and SocioTherapist. For 
applications based on offline profiling such as SocioDigest, 
diarization techniques might be useful but requires careful 
consideration. It requires huge power and storage (2.5 GB per day at 
16-bit 16kHz PCM) to capture and store raw sound data. Also, the 
error rates of such techniques needs to be further investigated in 
daily-interaction situations, as most of the previous studies are based 
on highly quality-controlled sounds.  

Mobile context monitoring systems: Some previous works 
propose mobile platforms to facilitate monitoring of user contexts 
on-the-fly [19][20][25][28][29]. Most work focuses on efficiently 
monitoring personal contexts such as location, activity, and emotion. 
SocioPhone expands the scope of context-awareness toward daily 
face-to-face interactions.  

9. CONCLUSION 
In this paper, we propose the design and implementation of 
SocioPhone, a mobile interaction-monitoring platform. It provides a 
set of APIs to monitor turn and turn-derived meta-linguistic contexts 
during conversations in progress. In its core, it incorporates highly-
efficient online turn-monitoring techniques based on the volume 
topography collaboratively created by conversation participants' 
phones. We built several interesting applications on top of 
SocioPhone: SocioTherapist, SocioDigest, and Tug-of-War. 
Moreover, we showed that our turn monitoring technique offers 
significant advantages over comparative techniques in terms of both 
accuracy and battery usage. We believe SocioPhone is a first crucial 
step to build a full-fledged mobile platform for daily face-to-face 
interaction monitoring.  
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