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Abstract—Content distribution in vehicular networks, such as multimedia file sharing and software updates, poses a great challenge

due to network dynamics and high-speed mobility. In recent years, network coding has been shown to efficiently support distribution of

content in such dynamic environments, thereby considerably enhancing the performance. However, the related work in the literature

has mostly focused on theoretic or algorithmic aspects of network coding so far. In this paper, we provide an in-depth analysis on the

implementation issues of network coding in wireless networks. In particular, we study the impact of resource constraints (namely CPU,

disk, memory, and bandwidth) on the performance of network coding in the content distribution application. The contribution of this

paper is twofold. First, we develop an abstract model of a general network coding process and evaluate the validity of the model via

several experiments on real systems. This model enables us to find the key resource constraints that influence the network coding

strategy and thus to efficiently configure network coding parameters in wireless networks. Second, we propose schemes that

considerably improve the performance of network coding under resource constrained environments. We implement our overhead

model in the QualNet network simulator and evaluate these schemes in a large-scale vehicular network. Our results show that the

proposed schemes can significantly improve the network coding performance by reducing the coding overhead.

Index Terms—Network coding, content distribution, coding overhead analysis, VANETs

Ç

1 INTRODUCTION

INTERVEHICULAR communication has received a lot of
attention recently due to safety concerns for drivers.

Although the main focus of intervehicular communication
has clearly been to improve the safety on the road, both
industry and academia have also been seeking novel
applications, ranging from mobile Internet to entertain-
ment. In fact, the DSRC standard, a key enabling technology
of intervehicular communications, has allocated several of
its “service” channels specifically to nonsafety usage [14].

One of the key applications will be content distribution
among vehicles. We envision the distribution of shared
multimedia files to deliver road/traffic conditions, to patch
software installed in the vehicle (such as onboard satellite-
navigation systems), to advertise local establishments, and
so on. If the content originates from an Internet server,
vehicles passing by an open access point (AP) can
opportunistically download it whenever they can establish

a connection. Peer-to-peer (P2P) technologies can further
help disseminate the content, overcoming the constraint of
the very short AP-vehicle contact time at highway speeds.
Internet P2P content distribution schemes, however, cannot
be directly applied to mobile ad hoc networks (MANETs)
because of rapid changing network topology, and this has
been a challenging issue of designing efficient MANET file
swarming protocols [19], [7], [31].

Gkantsidis and Rodriguez [12] proposed Avalanche, a
content distribution protocol built on top of BitTorrent in
the wired Internet. In Avalanche, the original file is encoded
using random linear network coding at the source, and
coded “pieces” are exchanged and randomly mixed by
intermediate peers. The original file can be recovered when
a peer collects enough linearly independent coded pieces.
Even with only a local knowledge of the network, network
coding improves the performance of content distribution,
because it increases the chance for a peer to pull the last
missing piece [12], [5].

Content distribution based on network coding-based
content distribution has been also introduced also in
wireless networks [23], [34], [15], [4], [24]. The major
difference of this scenario compared to P2P Internet file
sharing is that in wireless networks, nodes naturally
communicate using multicast exploiting the broadcast
nature of the wireless medium; while the Internet does
not support network level multicast. Network coding in
MANETs not only enables peers to fully utilize the
broadcast capacity [1]; with proper redundancy, it also
can effectively handle mobility, interference, and unreliable
channel characteristics—all attributes common in VANETs
[23], [34], [15], [24].
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While the benefits of network coding have been exten-
sively demonstrated in theory [1], [25] and for a number of
applications (though at a rather abstract level of protocol
operations) [6], [12], [23], [34], [4], [24], the practical issues
of configuring, simulating, and deploying network coding
for content distribution in MANETs have not been well
established. In this paper, we develop models that account
for nodal resource constraints such as CPU consumption,
memory limit, and disk access. These factors are critical
since network coding introduces significant processing
overhead at the intermediate nodes. In our scenario, we
assume that multiple applications can run on each
“embedded” mobile system (e.g., onboard safety/naviga-
tion system, data access/entertainment systems, etc.); thus,
the file sharing application is resource limited. This may
create problems when users try to download large size data
such as high resolution maps. The most critical resource in
conventional file swarming is the communication capacity
(i.e., the upload/download bandwidth). However, when
network coding is used, other resources (i.e., CPU, memory,
and disk) also play an important role in the encoding/
decoding at intermediate peers.

The goal of this paper is to model and evaluate network
coding resource consumption in content distribution appli-
cations. To this end, we abstract the overall behavior of the
application, develop models for computation and disk
access for a given network coding configuration, and
integrate these models into an off-the-shelf discrete time
network simulator. This allows us to better understand the
impact of limited resources in large scale VANET scenarios.
This paper extends our earlier work in this area [22] and
makes the following contributions:

. Overhead models that can accurately estimate at each
node the latency incurred by network coding. The
models clearly reflect the relationship between the
computation power and the coding rate. This is a
major departure from previous results mainly fo-
cused on reducing network coding computation
overhead [28], [27] or showing network coding
feasibility via experiments [11], [27], [42], [39], [41].
Also, our disk access model takes the storage access
pattern into account, thus, precisely modeling the case
when all the necessary pieces have to be loaded back
into main memory before encoding. We validate the
accuracy of our models via extensive experiments in
various platforms (e.g., servers, laptops, and Internet
tablets). The model gives us a better insight into
analyzing the goodput of content pulling applica-
tions. It helps identify the constraints that influence
the choice of the best network coding configuration.

. Methods for improving the performance of network
coding using the extended simulation environment.
More specifically, 1) we propose a novel “remote
buffer aware” data pulling method that minimizes
the disk access overhead for local computation; and
2) we experiment with several computationally
efficient network coding methods applicable for
MANETs [27], [28]. We perform extensive simula-
tions to show the impact of overheads and the
effectiveness of these enhancements. These proper-
ties are difficult to validate experimentally as they

would require large scale testbeds. Our results show
that network coding configuration has a great impact
on the overall performance, thus resource constraints
must be carefully considered to achieve the config-
uration that yields the best performance. For given
resource constraints, we show that our proposed
method significantly improves the performance.

The following items summarize the key distinctions from
our earlier work [22]:

. Section 2.2: We include a brief survey of resource
constraints of embedded systems for vehicles. Also,
we report that a computing/memory resource gap
will continue to exist between embedded mobile
systems and regular desktop machines in the
foreseeable future.

. Section 5: Compared to the earlier work, we perform
extensive testbed experiments (e.g., disk I/O and
computation overhead measurements). Further, we
additionally evaluate the proposed models using
Nokia N800, a portable smart device. The experi-
ment results are now presented in a separate section.

. Section 7: We present a complete set of simulation
results; compared to the earlier work, we additionally
include the simulation results of Nokia N800 model,
various buffer sizes (100, 75, 50 percent), disk I/O
operations, and chunked coding. Further, we discuss
other remaining issues such as decoding operations.

. Section 8: We perform an extensive survey of recent
articles to validate the relevance of our work. We
show that the proposed models can be extended to
consider the recent performance enhancement tech-
niques. Further, our models are not limited to
content distribution scenarios, but they are applic-
able to the other related areas such as an opportu-
nistic routing protocol with network coding [4] and
network coding-based message dissemination in
delay tolerant networks [43].

The rest of the paper is organized as follows: In Section 2.1,
we review network coding-based content distribution in
VANETs. In Section 3, we formulate the network coding
configuration and discuss the importance of general re-
source constraints on the performance of network coding
applications. In Section 4, we propose disk access and
computation overhead models, and analyze the goodput
of the overall content pulling procedure. In Section 5, we
validate our models via experiments. In Section 6, we
investigate performance enhancement features. In Section
7, we conduct simulations to show the impact of resource
constraints and the effectiveness of enhancement features
and discuss some of the remaining issues. In Section 8, we
review the related literature on network coding experimen-
tation and performance enhancement techniques. Finally,
we conclude the paper in Section 9.

2 BACKGROUND

2.1 Content Distribution Using Network Coding in
VANETs

This section reviews CodeTorrent in VANETs [23]. In
this paper, we extend the existing protocol to support
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“multigeneration” based network coding for large-size
content distribution.

We assume that a file can be uniquely identified with an
ID. The original file is divided into N generations. Each
generation i has G pieces (which represents the generation
size) and the piece size is fixed to B KB: i.e., pi ¼ ½pi;1;
pi;2; . . . ;pi;G�T for i ¼ 1; . . . ; N (see Fig. 1). When distribut-
ing a file using network coding, intermediate nodes
exchange coded pieces instead of original pieces. For the
sake of consistency, we assume that each original piece ‘
has a unit vector e‘ in the header which is called the
encoding vector. The original piece ‘ of ith generation is then
represented as ~pi;‘ ¼ ½e‘ pi;‘� (i.e., coefficients and coded
block). For each generation i, the server creates a coded
piece ~xi via weighted random linear combination of all the
pieces:

PG
k¼1 ck~pi;k. Each coefficient ck is randomly drawn

over a finite field, e.g., Galois Field (GF), where the entire
operation takes place. We use an 8-bit field, GF(256). Each
piece contains a unit vector at the source, and thus, the
resulting encoding vector is the same as [c1 . . . cG]. Each
intermediate node checks the received coded pieces for
linear dependencies and only keeps linearly independent
pieces, which it proceeds to combine into a new coded
piece. If a received piece is linearly independent of other
pieces, we call the piece helpful or innovative and similarly,
the originator of the piece is considered helpful as well. The
total number of linearly independent coded pieces is called
rank. Note that each coded piece is marked with the
generation number. Only pieces belonging to the same
generation are used for encoding. For a given generation
i, after collecting G coded pieces (~xi;k) that are linearly
independent of each other, a node can recover the original
data by solving a set of linear equations. These G coded
pieces have a G�G matrix Ci for encoding coefficients and
a G�B matrix xi for coded data. The original pieces pi can
be recovered as: pi ¼ Ci

�1xi. This process repeats until the
node collects all N generations. The list of symbols is
summarized in Table 1.

Each node periodically broadcasts or gossips its resource
availability to its 1-hop neighbors. One of the simplest ways
of representing the availability is to send an encoding vector
of each generation (i.e., as a result of random linear
combination of all the encoding vectors of the coded pieces
in the buffer). Given this, the receiver can realize whether
the originator has at least one linearly independent coded
piece. This method is, however, impractical since the size of

a gossip message increases with the file size. For instance,
with 100 generations each containing 100 pieces, the size of
a gossip message as large as 10 KB. To reduce the overhead,
we use a bit vector to represent the availability of each
generation. If a node inquires about a specific generation,
the receiver returns the corresponding encoding vector.
This allows the requester to determine whether the
responding node would be helpful. If so, the requester
starts pulling data without further negotiation. For genera-
tion selection, a node uses the local rarest generation first
policy similar to the rarest piece first download policy in
BitTorrent: a node chooses the least available generation
measured in terms of the number of nodes having the
generation (i.e., at least one piece).

For some mobile systems, it is possible that a peer is given
a limited buffer (memory) space and the buffer size is smaller
than the file size. If the system supports application-controlled
file caching where the kernel allocates physical pages to an
application, the applications can manage the pages using its
own buffer replacement policy [3]. As shown later, the disk
access pattern is per-generation basis, and thus, we assume
that the buffer replacement unit is a generation. The
application replaces the generation that is least recently
used (LRU). A small fraction of space is reserved for keeping
all the encoding vectors (to check the linear dependence of
a request or coded piece) and receiving pieces from others
(as receive buffer). If application-controlled file caching is
not supported, we use the memory mapping for file access.
Since we cannot control the buffer management policy of an
operating system (OS), we use the standard advisory
function madvise() to give OS hints about access patterns
such that it can choose appropriate read-ahead (reading
expected pages ahead based on prediction) and caching
techniques [26]. For instance, we use SEQUENTIAL when
expecting page references in sequential order, WILLNEED
when expecting page access in the near future—both
SEQUENTIOAL and WILLNEED can be useful for disk
read-ahead; and DONTNEED when we do not access pages
in the near future and allow OS to free the cached pages. The
application keeps track of the popularity of each generation
which is then used to enforce the LRU policy. For instance,
the application can evict part of mapped pages with an
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Fig. 1. An illustration of network coding: A file has six B KB pieces and
has configured for coding with the number of generations N ¼ 2 (i.e., the
generation size G ¼ 3). When GF(256) is used, the size of an encoding
vector is 3 bytes (i.e., G dimension vector). The bottom figure shows
how an encoded piece is created from the first generation.

TABLE 1
Description of Symbols
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option DONTNEED. Yet, the overall memory reclamation
depends on the OS’s reclamation policy. Thus, the LRU
policy will be loosely enforced.

We assume that every transmission is MAC/link layer
broadcasting, and a small random amount of wait time
before each transmission called broadcast jitter is enforced
to reduce collisions. Every node promiscuously listens to
packets; i.e., a node receives a specific packet even if it is not
the designated receiver, or the requester. If an overheard
coded piece is linearly independent of the coded pieces in
its local memory, then the node stores it. Our protocol can
be configured to pull content from neighbors at most k-hops
away. The resource advertisement is extended to k-hop. For
data pulling, we can either use existing routing protocols
(e.g., AODV, OLSR, etc.) or implement a customized
routing protocol at the application layer as in ORION [19]
where k-hop limited controlled flooding of resource
availability can be used as a route discovery request and a
data pull request as a route reply.

Our protocol is a pull-based approach as in existing
content distribution protocols in the Internet (e.g., BitTorrent,
Avalanche). An alternative approach is to use a push-based
approach as in multimedia streaming where received pieces
are automatically pushed (or broadcast) to neighboring
nodes [34], [24]. While a push-based approach works well
when disseminating highly popular content or emergency
messages, a pull-based approach is more preferable particu-
larly when multiple files are distributed over the network,
and each node may want to download a different set of files.

2.2 Resource Constraints of Embedded Systems in
Vehicles

We now briefly review the system configuration of mobile
embedded systems in vehicles such as satellite navigation
(SatNav). Most mobile embedded systems use NAND
flash memory to store operating systems and map data
[17]. They typically use shadowing technique such that
during system booting time, the entire code image of an
OS and applications is copied from flash memory to
DRAM for execution. This means that large portion of
DRAM is typically used by an OS (and optionally, the
integrated video card); thus, applications have limited
availability of memory. SatNav systems are typically
equipped with 128-MB DRAM and support various size
of internal/external NAND flash memory. For instance,
Clarion NX501 has 128-MB DRAM and supports up to 16-
GB NAND external flash memory; TomTom GO 1015 LIVE
has 128-MB DRAM and supports up to 8-GB NAND flash
memory. Besides, mobile embedded systems typically use
low-power and -cost CPUs such as ARM and xScale whose
clock speed is around 1 Ghz, or low-power/cost multi-
media processors such as Texas Instruments OMAP 2/3
and RMI Alchemy Au series. Those processors are
significantly inferior to existing desktop CPUs; e.g., the
performance of Intel Atom Silverthorne 1.6/8 Ghz, is
comparable with Intel Celeron M 900 Mhz [40].

Recently, vendors released the second generation
SatNav systems that support video displays; e.g., plugging
in a USB memory stick to watch a movie. Thinkware iNavi
K2 has a Texas Instrument OMAP 2 multimedia processor
(ARM 1136, <528 Mhz) [2], 256-MB DRAM, 8 GB of NAND

flash memory, which even provides 3D map navigation.
Clarion NAX980HD also has a similar configuration, but it
has a 40-GB HDD. Further, recent high-end smart devices
(e.g., smartphones and tablets) are equipped with larger
memory (up to 1 GB). Yet, the size of DRAM is one of the
key limiting constraints; DRAM is power hungry as each
refresh cycle dissipates a few milliwatts per MB [17].
Unlike dedicated devices (e.g., SatNav, multimedia play),
these smart devices are designed to support general
purpose applications and their workload demand would
be much higher, thus requiring larger memory and
computing power [10]. Due to power constraints, device
manufacturers use low-power DRAM and multiple cores
(e.g., 1.2-Ghz dual-core ARM CPU in Galaxy Nexus) [21].

To summarize, we observe that SatNav and embedded
systems are limited in terms of DRAM and CPU power, by
an order of magnitude, compared to standard desktop
machines or servers. The recent trend suggests that such a
computing/memory resource gap will continue to exist
between embedded mobile systems and regular desktop
machines in the foreseeable future.

3 PROBLEM DEFINITION: NETWORK CODING

CONFIGURATION

The benefits of network coding-based content distribution
in VANETs can be attributed to the following: 1) network
coding exploits the broadcast nature of the wireless medium;
2) network coding mitigates the peer and piece selection
problem [5], which is extremely difficult to address in
dynamic VANETs; and 3) network coding can effectively
handle the random losses due to mobility and interference,
which is common in VANETs [34], [23]. One of the most
important performance factors in network coding is the
“generation size” (i.e., the number of pieces per generation).
Real-time applications such as P2P streaming have a delay
constraint and before the data can be played an entire
generation must be received [34], [6]. Thus, the generation
size must be small enough to comply with such a constraint.
However, content distribution applications in general do
not have a strict delay constraint, and this case, we can have
a larger generation size.

We first show that one must reduce the number of
generations (meaning increasing the generation size) to
improve the network coding performance. Assuming that
the bandwidth is equally shared by M neighboring nodes
over a long time, a node can use a 1=M fraction of the channel
for sending a request for a piece that it wants to download.
As the number of neighbors increases, a node will spend more
time overhearing the channel than requesting for the pieces that are
needed. Assuming that the piece size is constant and a file has
total N pieces, we can consider two extreme scenarios: one
that uses a single generation and the other that uses N
generations (no coding). In the first scenario, an overheard
piece is useful if it is linearly independent of already received
pieces. On the other hand, in the N generation scenario the
probability that an overheard packet is useful depends on
the number of generations that a node has collected thus far.
When a node has collected k generations, the probability is
given as 1� k=N , i.e., the probability decreases as we collect
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more generations (the coupon collection problem). Given
that an overheard piece is useful with high probability [9],
the single generation scenario will take �ðNÞ steps to
complete downloading. In contrast, the N generation
scenario will take �ðN logNÞ steps. For a network coding
configuration with a number of generations between 1 and
N , the number of steps will fall somewhere in the range
of ½�ðNÞ;�ðN logNÞ�. In this respect, we should choose a
small number of generations to mitigate the coupon
collection problem.

For illustration, we simulated the above scenario as
follows: For a given file whose number of pieces is
212 ¼ 4;096, we vary the number of generations N from 1
to 212. Here, N ¼ 2k means that there are 2k generations,
each of which has 212�k pieces. We assume that a piece can
be fit into a single packet. For network coding, we assume
that the field size is large enough such that a randomly
generated piece for a given generation is helpful with high
probability. The overall process is similar to a bin/ball
problem where there are 2k bins, each of which has the
capacity of 212�k balls, and a ball is thrown to a random
bin. For each configuration, we measure the number of
packet transmissions (balls thrown) to download the whole
file (fill all bins) for 1,024 times and report the distribution
using the box-and-whisker plot in Fig. 2.1 The results show
that as the number of generations increases, the distribu-
tion of the number of transmissions is dispersed with a
larger median value. If the number of generations is small,
the total number of transmissions is close to 212 ¼ 4;096. In
particular, we observe that the number of transmissions for
the case of N ¼ 212 is approximately logN factor greater
than that for the case of N ¼ 1. The above results clearly
show that we should choose a small number of generations
for better performance. However, it is not always possible
to have a few large generations because they adversely
impact the delay for downloads due to network coding
processing overhead.

We investigate practical issues of content distribution
using network coding; namely we consider the impact of
communication, computation, and disk access overheads.

Communication overhead. It is the ideal scenario when the
size of a piece is the same as the size of a packet since a
packet loss (due to collision or channel errors) can be
effectively masked via network coding. However, packet-
level network coding becomes less efficient as the file size
increases because it increases the communication overhead.
Recall that each packet must contain a global encoding
vector. For instance, when distributing 100 KB and 1,000 KB
files using 1 KB blocks, we generate 100 and 1,000 blocks,
respectively. Assuming that GF (256) is used (i.e., 8 bit), the
overhead is 100B (�10% ) and 1000B (�100% ). In order to
reduce overhead, we need to limit the number of blocks per
generation. If the number of blocks is small (i.e., the number
of generations is large), we will suffer from the coupon
collection problem. To mitigate this problem, the size of an
individual piece needs to scale proportionally to the file
size, while considering various link-level statistics [37].

Computation overhead. Random linear network coding
heavily relies on finite-field operations. The computation
overhead is roughly proportional to the number of pieces
per generation, i.e., the generation size. Thus, using a
small number of large generations (to avoid the coupon
collection problem) may result in severe computational
overhead that may outweigh the savings in communica-
tion. In this case, the encoding process may take more time
than data transmission.

Disk access overhead. Since the main memory will be
shared by a number of applications and the OS, the memory
space that can be used for network coding may be limited.
This will causes disk access overhead, especially when
mobile users want to download large size data, e.g.,
multimedia files. For network coding, it may be necessary
to read all the pieces belonging to the same generation from
the storage device to generate a coded piece. If the memory
is full, some pieces may have to be evicted to make room for
the requested generation.

The delay incurred for network coding processing (i.e.,
computation and disk access) is huge, and it is significant in
VANETs because vehicles may make only short contacts
with APs and other vehicles. For example, given a radio
range of 250 m, vehicles driving in opposite lanes with
50 miles/hour have only 11 s to communicate with each
other. If we assume that the size of a generation is 40 MB.
The nominal data transfer rate of hard disks or flash
memory-based solid state disks is about 40 MB/s. If a miss
happens (i.e., the requested generation is not in the
memory), it will take one second to make the application
ready for encoding. Moreover, if the number of pieces per
generation is large, it may take a long time to create a new
coded piece, say several 100 ms. In this case, due to disk
access and computation overheads, one cannot fully utilize
one’s wireless bandwidth for data transfer. We conclude
that network coding processing overheads have a signifi-
cant impact on the performance of network coding-based
file swarming. In this paper, we model the overheads
incurred by disk access and computation for content
encoding to determine the main constraints of the network
coding performance. Given that our goal is to maximize the
generation size, we use such models to find the maximum
generation size that can fully utilize the bandwidth share.
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1. A boxplot depicts groups of numerical data through their five-number
summaries: the smallest observation (sample minimum), lower quartile
(Q1), median (Q2), upper quartile (Q3), and largest observation (sample
maximum).

Fig. 2. Impact of the number of generations (N). For a file of size 212

pieces, N ¼ 2k means that there are 2k generations, each of which has
212�k pieces.
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4 DISK ACCESS AND COMPUTATION OVERHEAD

MODELS

We present the request processing procedure of a serving
peer and model both disk access and computation overhead
and analyze the throughput of the procedure. We then
perform experiments to measure the model parameters.

4.1 Request Service Procedure

If a node receives a request, it first checks its memory
buffer. If the node has the data of the requested generation
in the buffer, it can start an encoding process. Otherwise,
the node must first read the generation from the disk
before encoding. After the data has been properly encoded,
the node sends the resulting coded piece to the requester.
The overall procedure is composed of reading a generation
(R), encoding the data (E), and sending the coded piece (S).
Note that access to memory by disks and network interface
cards are typically done via direct memory access (DMA);
the interference would be minimal. Thus, we can exploit
thread-level parallelism to speed up the overall process.
Fig. 3 shows three possible types of parallelism.

In Fig. 4, we consider an example with R/E/S pipeline
when the generation size G ¼ 3 and the piece size
B ¼ 2 KB. To generate an ith coded symbol, only three
symbols (from each piece k denoted as pki ) are used (i.e.,P3

k¼1 ckp
k
i ); symbols with different index i are independent

of each other. Assuming that the unit of data transfer is
1 KB, the communication thread sends the newly encoded
packet as soon as a coded packet is ready. Note that if a
piece size is B KB, one has to send a 1 KB coded packet B
times. The server first checks its buffer to see whether a
requested generation is present in the working set. If so, the
encoding thread starts an encoding process (ENCODE);
otherwise, the disk access thread reads the necessary parts
of the generation from the disk (READ), then signals the
encoding thread. After the encoding is finished, the
communication thread sends the newly generated encoded
packet out to the requesting peer (SEND). In the case of E/S
pipeline shown in Fig. 3b, all the pieces for a given
generation are read at once, and then only E/S steps are
pipelined. In the case of no pipeline shown in Fig. 3c, all
operations take place sequentially. We assume that a unit of
data transfer is 1 KB, but to minimize the overhead of
system calls (or context switching time) and efficient file
access (e.g., the access unit is a page of size 4 KB in Linux),
we can have a larger transfer unit.

4.2 Overhead Models

We now present our disk access and computation overhead
models, and analyze the goodput of the request handling
procedure.

4.2.1 Disk Access Overhead Model

Disk access involves mechanical motions and is inherently
slow by orders of magnitude compared to reading data from
memory. Disk access delay consists of three factors: seek
time, rotational latency, and transfer time. Seek time is the
time to move disk heads to the disk cylinder to be accessed.
Rotational latency is the time to get to a specific disk block in
a cylinder. Transfer time is the time to actually read disk
blocks. The total average latency for modern hard disks is in
the range of 10-15 ms and it varies from vendor to vendor.
Disks are typically optimized for sequential access, and they
can transfer large data files at an aggregate of 40 MB/s
(for desktop-grade disks) or 80 MB/s (for enterprise server
level disks). Recently, flash-based solid state drives (SSDs)
are becoming popular. The main difference is that SSDs
have much lower seek time and no rotational latency
compared to the conventional disks. The transfer rate is still
about the same as conventional disks. For instance,
Transcend TS32GSSD25-M has 0.1 ms of seek time and the
read/write rates are 40 MB/s and 32 MB/s, respectively.

Assuming that each generation is stored sequentially, we
can safely ignore the rotation latency of disks. Thus, we can
use the same model for mechanical disks and SSDs. To
generate a C-KB coded packet, we need to read all the
corresponding C-KB data per piece as in Fig. 4. We call this
“chunk-based reading” where the size of a chunk is
denoted as C. The access pattern will be a sequence of
seek/read pairs. For a given chuck size C, let �C denote the
average latency to perform a pair of seek/read operation.
The overall time to read all the relevant data takes
TdðCÞ ¼ �C �G. Thus, the disk access rate (KB/s) is given as

RdðCÞ ¼
C

Td
¼ C

�CG
: ð1Þ

The seek latency may be quite prohibitive in the case of
mechanical disks compared to SSDs, because the latency is
proportional to the generation size. As an alternative, a
node can sequentially read the entire piece at once at the
sequential data transfer rate as in E/S pipeline; i.e., Rd ¼
Rd seq where Rd seq the sequential data transfer access rate.
In this case, the disk access latency is given as GB

Rd seq
where B

is the piece size.

4.2.2 Computation Overhead Model

For a given generation g, let p0g;k denote the kth code symbol
in a coded piece, and pg;i;k denote the kth symbol of the ith
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Fig. 3. Possible parallelism scenarios with piece size B ¼ 2 KB.

Fig. 4. Chunk-based reading example: C ¼ 1 KB (chunk size), G ¼ 3
(generation size), B ¼ 2 KB (piece size). A coded piece is composed of
two independent 1-KB coded packet. Each piece has a header
composed of an encoding vector, generation number, and so on.
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piece in the buffer. Let ci for i ¼ 1; . . . ; G denote the ith

encoding coefficient, which is randomly chosen over a
Galois Field of size 256 once at the beginning of the entire
procedure (i.e., symbol size is 8 bit). Each code symbol p0g;k is
generated as follows:

p0g;k ¼ c1 � pg;1;k þ c2 � pg;2;k þ � � � þ cG � pg;G;k: ð2Þ

For each symbol (pg;i;k) it requires a pair of multiplication
(i.e., ci � pg;i;k) and addition (p0g;k þ ¼ ci � pg;i;k). The per-
symbol encoding time is proportional to the generation
size G, i.e., Te ¼ G � � where � is the time of executing the
pair of operations. Let Re denote the per-symbol encoding
rate (byte/sec). Then, the rate is given as follows:

Re ¼
1

Te
¼ 1

�
� 1

G
: ð3Þ

Equation (3) shows that the encoding rate is the function of
� and G. The value � is purely dependent on the Galois field
operation implementation and the processing power.

4.3 Goodput Analysis

In wireless networks, the bandwidth is shared by multiple
nodes. When there are M nodes in a region, we assume that
the bandwidth is fairly shared by the M nodes. Let Rb

denote the bandwidth share. In the following, we show that
the goodput is mainly determined by the bandwidth share
Rb and the encoding rate Re. From the analysis, we show
that for given resource constraints, we can find the
maximum allowable generation size.

Let us consider the goodput of the E/S pipeline. Goodput
is the application level throughput, i.e., the number of useful
bits per unit of time forwarded by the network from a
certain source address to a certain destination, excluding
protocol overhead. Assume that there are total Nr requests
of a specific generation from one’s neighboring nodes.
Recall that G is the generation size, B is the piece size, Re

is encoding rate, and Rd ¼ Rd seq is data transfer rate. If
we have Re � Rb, the latency is mainly dominated by the
wireless bandwidth share (see Fig. 5a). The time to generate
the first coded piece is B=Re seconds. It takes B=Rb seconds
for data transfer, during which the next coded packet can be
generated. Thus, coded packets are sent one after another.
The latency to transfer Nr pieces is simply GB=Rd þB=Re þ
NrB=Rb. The goodput is given as

Nr

G=Rd þ 1=Re þNr=Rb
:

For large Nr, the goodput can be approximated to the
effective bandwidth Rb. Similarly, when we have Re < Rb,

the total amount of time is GB=Rd þNrB=Re þB=Rb (see
Fig. 5b). Thus, the goodput is given as

Nr

G=Rd þNr=Re þ 1=Rb
:

In this case, for large Nr, the goodput is approximated to the
encoding rate Re.

Our goodput analysis shows that to fully utilize the
wireless bandwidth share, the encoding rate Re must be
greater than or equal to the bandwidth shareRb, i.e.,Re � Rb.
By replacing Re with 1

�G , we have the following inequality:

G � 1

�Rb
:

Thus, we can find the maximum generation size that
satisfies the condition. The above equations also show that
the effect of disk access disappears, as the number of
requests per generation increases. In Section 6, we propose
a simple technique to increase the number of requests per
generation. Note that the goodput of R/E/S pipeline is
approximately the same as E/S pipeline when the number
of requests per generation is large.

5 MODEL VALIDATION VIA EXPERIMENTS

In this section, we validate our models via experiments
using a few representative systems.

5.1 Disk Access Overhead Measurement

We investigate the impact of the pairwise access patterns
(seek/read pairs) by measuring � in real systems. We use
two sets of scenarios: 1) Maxtor 6Y120P0 ATA disk (120 GB,
7,200 rpm, 8 MB cache), Pentium 4 2.2 Ghz, 1G DRAM
2) Samsung OneNAND Flash SSD (256 MB, 0:12 �s), TI
OMAP 2420, 128-MB DRAM (Nokia N800). The measured
average sequential data access rate Rd seq of a disk and an
SSD is 55.73 MB/s (max data rate in spec: 133 MB/s) and
14.69 MB/s (max data rate in spec: 27 MB/s), respectively.

We consider generating a C-KB coded packet by selec-
tively reading all the corresponding C-KB data per piece, as
shown in Fig. 4 (i.e., a sequence of seek/read pairs). Since the
unit of file access is a page whose size is 4 KB in typical
operating systems such as Linux, C is a multiple of 4. We
measure the access latency of reading all the necessary pieces
to generate a C-KB coded piece with various C and piece
sizes of 20 KB and 40 KB. Our measurement program scans a
100-MB file and records the access time. For each run, we
invalidate Linux file buffer cache that keeps a set of pages of
a file recently accessed [20]. We report the average of 30 runs.

Fig. 6 shows the average latency of reading C-KB chunk
from each piece. The results of a disk show that the average
latency of a 20-KB scenario is much smaller than that of a
40-KB scenario. The latter has higher latency in terms of
data reading and seek time, because the larger the piece
size, the longer is the read latency and the physical distance
between pieces in the disk (larger seek time). When the
chunk size is small (say, 4 KB), the latency is dominated by
the seek latency. As we increase the chunk size, more data
must be read from the disk and the latency linearly
increases. Unlike a mechanical disk, flash memory has a
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Fig. 5. Latency of the E/S pipeline with Nr ¼ 2.
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negligible seek time. Since the impact of piece size on the
latency is minimal, we see that the latency linearly increases
with the chunk size.

Note that the access pattern of the chunk-based reading
is not completely random. A disk can get the benefit of pre-
fetching (or read-ahead) that reads adjacent pages of data of
a regular file in advance before they are actually requested,
thus minimizing the access latency [44]. To validate this, we
turn off the prefetching option in our measurement
program using the file access advise interface, posix_fadvise()
with POSIX_FADV_RANDOM option on. The Linux kernel
will not perform prefetching when this option is on. Fig. 6
(with label “No-Pf”) shows the difference between the cases
with and without prefetching. It clearly shows that the
partial sequential access can exploit aggressive prefetching
to achieve better performance. When the chunk size is the
same as piece size, its performance is close to the case with
sequential access.

In our model, the total reading latency is �C �G where G
is the generation size. For instance, when the chunk size is
4 KB, the overall latency of a disk and an SSD with G ¼ 100
and piece size of 20 KB is given as 13.4 ms (Rd ¼ 298 KB=s)
and 47.8 ms (Rd ¼ 84 KB=s), respectively. In contrast,
reading all the necessary pieces into the memory (full
sequential access) at the speed of Rd seq will take 35 ms and
136 ms, respectively. If this rate is much faster than other
processes (encoding or sending), we need to consider using
the chunk-based reading. In general, we can decide which
disk access method and parameters to be used depending
on the generation size and disk type.

5.2 Computation Overhead Measurement

We measure the per symbol encoding time (�) in three
different systems: a server (Intel Xeon Dual Core 5000
3.2 GHz), representing a high-speed machine, a laptop
(Intel Pentium 4 M 1.73 GHz), representing a relatively
powerful mobile device, and a small mobile device (Nokia
N800, 330 MHz TI OMAP 2420). We implement the Galois
field operations based on a table lookup with the optimiza-
tion techniques proposed in [13].2 We ignore the effect of
cache misses since the lookup table fits in the internal cache
and the memory access pattern of network coding operation

is sequential. We use a Galois field of size 256, and a 12-MB
file for this measurement. We increase the generation size G
from 10 to 50 in the step of 10 blocks. We report the average
of 1,000 runs for each configuration.

Fig. 7 presents the per-symbol encoding latency. The
figure shows that the encoding latency increases linearly as
shown in (3). In fact, the plots fit well with the lines with
slope � ¼ 5:97 ns; � ¼ 10:42 ns; and � ¼ 135 ns for Xeon (ser-
ver), P4 (laptop), and TI (mobile), respectively. Thus, the
encoding rate equations are given as 166:9

G MB=s, 95:9
G MB=s,

and 7:77
G MB=s, respectively. For a small generation size, e.g.,

G ¼ 10, the server machine could generate code packets at
the rate of 16.7 MB/s, the laptop machine generates them at
the rate of 9.6 MB/s, and the mobile machine generates
them at the rate of 777 KB/s. For a relative large generation
size, say G ¼ 100, these rates drop to 1.67 MB/s, 960 KB/s,
and 77.7 KB/s respectively. For laptop and mobile
machines, we see that the computation overhead can
become the bottleneck compared to the network band-
width, e.g., 11 Mbps 802.11b versus 7.68 Mbps (¼960 KB/s)
encoding rate.

5.3 Goodput Measurement

We now show the impact of the wireless bandwidth on the
performance of network coding. Since the bandwidth share
is mainly determined by the total number of nodes sharing
the bandwidth (within their radio range), we vary the
number of nodes (NS ¼ 1� 3) and measure the goodput of
network coding with different generation sizes (G ¼ 10, 50,
100). We setup a server that receives all the blocks
generated by other nodes. For each experiment, a client
node continues to generate/send coded blocks to the server
until it transfers 60 MB of data. We run each configuration
30 times and report the average goodput (i.e., application
level throughput) with the 95 percent confidence interval.
Readers can find the definition of goodput in Section 4.3.
Data transfers of clients are initiated by the server via
parallel SSH. We perform the experiment in the early
morning (2-6 a.m.) to exclude other WiFi interferences. We
use the following experiment environments:

. IBM Thinkpad R52 Laptop. Each laptop has Intel
Pentium 4 M 1.73 GHz and 512-MB memory, and
runs Fedora Core 5 with Linux Kernel v2.6.19. We
use ORiNOCO 11b/g PC Cards (8471-WD) and the
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Fig. 6. Average latency of reading C-KB chunk from each piece.
Fig. 7. Per symbol coding latency as a function of generation size G.

2. Shojania and Li [38] showed that the Galois field operations can be
further improved by using hardware acceleration techniques such as SSE2
and AltiVec SIMD vector instructions on x86 and PowerPC processors,
respectively.
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MadWifi v0.9.3.3 Linux Kernel device driver for the
Atheros chipset to support wireless networking in
Linux. 802.11g is configured as follows: ad hoc
mode, no RTS threshold, and 54 Mbps (fixed).

. Nokia N800 Internet Tablet. Each tablet has a TI
OMAP 2420 processor with 128-MB DRAM, and
runs OS 2007 with Linux Kernel v2.6.18. Nokia N800
has Conexant’s CX3110X 802.11b/g chipset. Prism54
softmac driver is used for wireless networking in
Linux. In our tested environments, however, 802.11g
is not supported; thus we use 802.11b for the
measurements. 802.11b is configured as follows: ad
hoc mode, no RTS threshold, and 11 Mbps (fixed).

The measured goodput is reported in Fig. 8. The figure
clearly shows that if the generation size is too large
(NS ¼ 1; G ¼ 50=100), a node cannot fully utilize its band-
width. The figure also shows that as the number of nodes
increases, per node bandwidth share decreases accordingly.
Interestingly, this allows a node to sustain a larger genera-
tion size; e.g., for a laptop, a node can support G ¼ 50 in the
two node scenario and G ¼ 100 in the three node scenario.

When the generation size G is large (i.e., the number of
generations N is small), the measured goodput is quite close
to the estimated coding rate. For instance, the measured
goodput of laptop and tablet with G ¼ 100 is 7.2 Mbps and
550 kbps respectively. The results are comparable to our
model estimates for laptop, 7:68 Mbpsð¼ 95:9

G¼100 MB=s ¼
959 KB=s) and tablet, 621 kbps ð¼ 7:77

G¼100 MB=s ¼ 77 KB=s).
However, the measured goodput deviates as the generation
size increases. For instance, the estimated goodput of Nokia
N800 with G ¼ 10 is 6.21 Mbps, whereas the measured
goodput is about 3 Mbps. This results from the fact that
although packet transmission and coding processes can be
parallelized, a piece must be processed in the networking
stack in the kernel. One of the main causes is the MAC
protocol overhead, because most 802.11 adapters implement
part of the 802.11 MAC protocol in the kernel to reduce the
cost [33].

6 PERFORMANCE ENHANCEMENT FEATURES

In this section, we propose a novel algorithm called remote
buffer generation aware pulling (RBGAP) to reduce disk
access frequency and present the techniques that reduce
computation overheads.

6.1 Remote Buffer Generation Aware Pulling

When a node uses a rarest generation first strategy, it chooses
the least available generation measured in terms of the
number of nodes. If the requested generation is in the
buffer, it can start generating a coded piece; otherwise,
the node has to read it from the disk. Many different nodes
could send requests, each of which is likely to ask for a
different generation because the topology keeps changing
due to high mobility. The problem is that these requests are
competing for the limited buffer space which may result in
significant disk access. Given the fact that the overhead is
proportional to the generation size, to circumvent this
situation the serving peer should have enough buffer space
to handle all requests (i.e., the buffer size should be larger
than the working set size): i.e., NR �G < Sb where NR is the
expected number of distinct generations requested, G is the
generation size, and Sb is the buffer size. The relationship
shows that the generation size should be limited to a certain
threshold to avoid disk access.

We now propose the remote buffer generation aware pulling
mechanism where a requester considers the buffer status of
a remote node (i.e., which generations are present in the
buffer). The scheme mitigates the disk access by reducing
the expected number of independent requests (a set of
different generations). To realize this, given N generations
we represent the buffer status of a node using an N-bit
vector.3 The buffer status of a node can be included in
periodic “gossip” messages. Using the buffer status
information of the neighbors, a node can search for the
generation with the lowest rank among all the generations
that are in the remote nodes’ buffers. If none of the
generations that are useful is present, the node simply
sends a request for the rarest generation, which will in turn
cause a disk access at a remote node.

6.2 Fast Network Coding

Sparse coding. Since the computation overhead is propor-
tional to the generation size one can reduce the overhead by
decreasing the number of pieces used for coding. Sparse
random linear coding [8] has been proposed to achieve this:
each piece is selected with probability p � ðlog2 Gþ dÞ=G
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Fig. 8. Goodput with different generation sizes and interfering nodes. The baseline goodput without network coding is denoted as “N/A.”

3. As discussed in Section 2.1, an application may not have a complete
control of memory management. In this case, it can still keep track of
generation usage statistics such as popularity of a generation. This
information can be gossiped to the neighbors.
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where G is the generation size and d is a nonnegative
constant [8], [27]. This probabilistic approach, however,
does not consider the computation capacity of a node,
which can be measured by the maximum number of pieces
that can be encoded without degrading the performance
(denoted by �). Since the number of pieces used for coding
follows a binomial distribution, the average number of
pieces used for coding is Gp, which is proportional to the
generation size. Even with this, if the generation size is too
large, there is a chance that the number of pieces may be
greater than �. To deal with this problem, we approximate
the behavior of this probabilistic scheme by equating � with
the mean of the distribution. As a result, we have the
following condition: � � log2 Gþ d. This means that one
has to control the generation size based on this condition,
i.e., if G is too large, we need to create more generations.
One caveat is that data dissemination occurs in a distributed
fashion and the high mobility in VANETs creates cycles
of dissemination, and thus it is hard to guarantee that
encoded pieces from different peers are linearly indepen-
dent [23], [27].

Chunked code. The computation overhead can be
reduced by decreasing the generation size, yet this will
result in a large number of generations, leading to the
coupon collection problem. Maymounkov et al. [28]
propose chunked code where they keep the generation
size small to make the network coding computationally
efficient and use erasure coding at the generation level to
circumvent the coupon collection problem. As shown in
Fig. 9, erasure codes encode N original generations into N

coded generations ðN > NÞ, so that the original data
message can be reconstructed after receiving a subset of
encoded generations, namely ð1þ �ÞN where � is a positive
constant [29]. Network coding is performed within an
encoded generation.

However, chunked code has the following limitations.
Since a node pulls a random generation, there will be many
outstanding or partially filled coded generations waiting for
download completion. For instance, there are three incom-
plete coded generations in Fig. 19. The problem will be
more pronounced, when the source distributes much larger
number of coded generations. Moreover, as illustrated in
Section 3, it cannot fully utilize the benefit of broadcasting
in wireless networks, because the effectiveness of broad-
casting decreases, as the number of generation increases. In
the following section, we validate these observations via
extensive simulations.

7 EVALUATION

In this section, we first describe the implementation details
of the protocols that we consider for evaluation, and
simulation setup in QualNet [36]. We then present the
impact of disk access and computation overheads and then
evaluate the proposed performance enhancement schemes.

7.1 Simulation Setup

We use IEEE 802.11b PHY/MAC with 11-Mbps data rate
and real-track (RT) mobility model [32]. RT permits to
model vehicle mobility in an urban environment more
realistically than other simpler and more widely used
mobility models such as random waypoint (RWP), by
restricting the movement of the nodes. The road map input
to the RT model is shown in Fig. 10, a street map of
2;400 m� 2;400 m Westwood area in the vicinity of the
UCLA campus. A fraction of nodes (denoted as popularity)
in the network are interested in downloading the same file.
In the simulations, 200 nodes are populated, and 40 percent
of the nodes are interested in downloading the file (i.e., total
80 nodes). The speeds of nodes are randomly selected from
[0, 20] m/sec. There are special nodes called access points,
which possess the complete file at the beginning of the
simulation. Three static APs are randomly positioned on
the roadside in the area. To evaluate the impact of file size,
we use four different sizes of files, namely, 5 MB, 10 MB,
25 MB, and 50 MB. Although the file size is relatively small
compared to multimedia files, we believe that they are large
enough to evaluate the performance of various schemes.
The piece size is set to 20 KB. For the buffer replacement
scheme, least recently used is used to evict an entire
generation when the buffer is full. Buffer space size is
represented using the ratio of the memory buffer size to the
file size. A gossip message is sent to 1-hop neighbors in
every 2 s. The single hop pulling strategy is used to measure
the performance of content distribution while excluding the
impact of routing overheads.

We use the following hardware parameters to model
disk access and computation overheads: a nominal hard
disk of Rd ¼ 40 MB=s, and a mobile device CPU of Re ¼
48
G MB=s (50 percent computing power of Intel Pentium 4
M 1.7 Ghz). We implement the E/S pipeline scheme for
multithreading (see Fig. 3b): a missing generation is fully
loaded into the buffer and then encoding (E) and sending
(S) processes are pipelined. We also test the configuration
of Nokia N800 whose Re ¼ 7:77

G MB=s. For this, we use the
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Fig. 9. Illustration of chunked code with � ¼ 1=2.

Fig. 10. Westwood area map used for the RT model.
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R/E/S pipeline for multithreading due to its fast random
access capability of an SSD. We use two file sizes (5 MB
and 10 MB) for Nokia N800.

The disk and coding delays are scheduled based on the
disk access and computation models, respectively. When a
request comes in, a node calculates the delay for which
packet transmission is delayed in the network queue. We
define the “download delay” as the elapsed time for a node
to finish downloading a file. How fast the overall down-
loading process finishes measures the efficiency of a
scheme. For each configuration, we report the average
value of 30 runs with the 95 percent confidence interval.

7.2 Simulation Results

Effects of disk access and computation overhead. We consider
scenarios with various numbers of generations: N ¼
1; 5; 10; 50 and no coding. Here, no coding denotes the case
where network coding is not used; i.e., the number of
generations is the same as the total number of pieces for a
given file. For instance, for a 10 MB file that has 500 20 KB
pieces, if the number of generation is N ¼ 1 and N ¼ 5, the
number of pieces per generation is 500 and 100, respec-
tively, (see Fig. 11). The no coding case for a 10-MB file
happens when each generation has a single piece (N ¼ 500).
The overall configuration is summarized in Table 2. To
show the impact of overheads, we present the ideal case
where the overheads are not considered. We also vary the
availability of buffer space: 50, 75, and 100 percent. Note
that we can see the impact of “computational overhead” in
the case of 100 percent buffer space, because a node can
keep the entire file in the memory.

Fig. 12 shows the results of the ideal case. The figure
shows that as the number of generations increases, the
download delay also increases. This confirms that the
number of generations must be kept as small as possible to
achieve a good performance. In Fig. 13, we show the case of
buffer size ¼ 100 percent to show the impact of computa-
tion overhead. Unlike previous results, we notice that the
single generation scenarios perform worse than other
scenarios, especially when the file size is large (i.e., 50 M

and 25 M). Yet it is still better than the no coding scenario
where the generation size is 2,500 for a 50-MB file and 1,250
for a 25-MB file, and the corresponding encoding rates are
19.2 KB/s and 38.4 KB/s, respectively. This clearly shows
that the encoding rate is a bottleneck. As the number of
generations increases, the effect of computation overhead
reduces. However, if the number of generations is above a
certain threshold, the download latency begins to increase.
The figure shows a “U” shape delay curve for both 25 MB
and 50 MB files. For example, consider the plots of a 25 MB
file case; the delay decreases until N ¼ 10, and it increases
thereafter. The figure also shows that the processing
capability is important; i.e., for a given file, Nokia 800 per-
forms worse than Intel Pentium 4. For instance, for a 10-MB
file, it takes 1,133 s and 561 s for Nokia N800 and Intel
Pentium 4, respectively. As the number of generation
increases, the impact of network coding overheads dis-
appears, and thus, the delay difference between these
machines decreases.

Now consider the cases where the buffer size is smaller
than the file size (see Figs. 14 and 15). The impacts of disk
access can be clearly seen by comparing Figs. 14 and 15 with
Fig. 13. Contrary to our common belief that network coding
improves the file swarming performance [23], the download
delay can be even worse than the conventional file
swarming (i.e., the no coding scenario). The larger the
generation size, the higher the cost of loading a generation
into the buffer; thus, the impact of overheads decreases as
the number of generations increases, which is as expected.

Remote buffer generation-aware pulling. Figs. 16 and 17
show the download delay and the number of pieces read
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Fig. 11. Generation configuration example.

TABLE 2
Network Coding Configuration with

Various Numbers of Generations (N)

Fig. 12. Download delay without overhead (O/H).

Fig. 13. Download delay with overhead: Buffer 100 percent (10 MB:N
and 5 MB:N show the results of Nokia N800 configuration).
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from the disk with different buffer sizes, namely, 100, 75,
and 50 percent. Note that the disk access overhead is
proportional to the number of pieces per generation, and
the probability that the requested generation is not in the
buffer is mainly determined by the buffer size. Thus, the
impact of finite buffer decreases with the number of
generations. The figure shows that RBGAP can effectively
reduce unnecessary disk access, thereby reducing the total
downloading delay.

Sparse coding. To show the effectiveness of a sparse
random network coding, we vary the coding density
(i.e., the fraction of the number of pieces used for encoding)
with 25 percent increments. For instance, 25 and 50 percent
coding density on a 50-MB file with N ¼ 1 show that the
maximum number of pieces used for encoding is 625 and
1,250 out of total 2,500 pieces, respectively. We simulate the
following cases: a 50-MB file with N ¼ 1 (G ¼ 2;500) and a
25-MB file with N ¼ 1 (G ¼ 1;250). We use the buffer size of
100 percent (i.e., no buffer replacement overhead) to clearly
see the benefits of sparse coding. Fig. 18 presents the results.

As the coding density decreases, the download delay also
tends to decrease. For instance, when we lower the coding
density to 75 percent, we observe a considerable delay
reduction: from 2,814 s to 2,599 s for a 50-MB file and from
1,349 s to 1,153 s for a 25-MB file. However, if the coding
density is too low, it is likely that a linearly dependent
coded piece is generated. As a result, a node may not be
able to fully utilize its bandwidth and thus, the download
delay increases.

Chunked code. The computation overhead can be reduced
by decreasing the generation size (i.e., increasing the
number of generations). However, our previous results of
the no coding scenario show that a large number of
generations causes significant performance degradation.
To show this impact more clearly, we evaluate the chunked
code as follows: We create N 0 ¼ bð1þ �=2ÞNc. Nodes can
recover the original content by collecting any subset of the
generations, ð1þ �=4ÞN . We set � ¼ 1. For example, when
an original file is divided into 50 generations, we need
62 out of 75 generations. Fig. 19 shows the results of 50 MB
and 25 MB files with the number of generations N ¼ 1;
5; 10; 50. The figure shows that chunked code increases the
average download delay, mainly because the effectiveness
of overhearing decreases with the number of generations.
Moreover, nodes tend to download more number of
generations than necessary, thus wasting valuable re-
sources. Hence, we conclude that the generation level
chunked code is less efficient in our scenario.

7.3 Discussion

In the paper, we mainly considered the encoding process
since our goal is to find the maximum generation size that
can fully utilize the bandwidth share—the overall delay for
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Fig. 14. Download delay with O/H: Buffer 75 percent.

Fig. 15. Download delay with O/H: Buffer 50 percent.

Fig. 16. Download delay with RBGAP (50-MB file).

Fig. 17. Total number of pieces read from the disk (50-MB file).

Fig. 18. Impact of sparse coding.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:12:21 UTC from IEEE Xplore.  Restrictions apply. 



downloading a file is dominated by the time for collecting
linearly independent packets which is a slow process due to
wireless resource limits and nodal mobility. Our approach
can be easily extended to model the decoding process.
Recall that the original pieces p can be recovered as p ¼
C�1x where C is a G�G matrix for encoding coefficients
and x is a G�B matrix for coded data. Decoding basically
uses Gaussian elimination that transforms a matrix to the
reduced row-echelon form using elementary row opera-
tions, requiring OðG�GBÞ of multiplication and addition
operations. To decode the entire file, i.e., GB�N symbols,
it takes up to G2BN � �. From this, we find that the per
symbol decoding rate is approximately equivalent to the
encoding rate, namely 1

�G . In our simulation settings, we
used the encoding rates of 48/G MB/s and 7.77/G MB/s
for ThinkPad and Nokia N800, respectively. The approx-
imate decoding delay for ThinkPad and Nokia N800 is
simply given as G � file size / 48 and G � file size / 7.7,
respectively; for instance, decoding a 10-MB file takes about
10 s (ThinkPad) and 64 s (Nokia N800), which are far
smaller than the overall download delay.

8 RELATED WORK

In recent years, researchers performed various feasibility
studies on network coding in real testbeds including
smartphones, demonstrating that the measured perfor-
mance actually varies widely depending on the system
configurations [11], [27], [42], [39], [41]. For instance,
Gkantsidis et al. [11] reported that their Avalanche scheme
incurs little overhead in terms of CPU and access using a
large scale testbed. On the other hand, it has been
empirically observed that the computation overhead de-
grades the performance, especially when the generation size
is large [42], [27].

Given that network coding overhead is a serious concern,
researchers mostly focused on devising performance en-
hancement strategies which can be broadly categorized as
hardware acceleration-based approaches [38], [35], [18] and
efficient coding-based approaches [8], [27], [28], [30].
Hardware acceleration approaches include the use of
special instruction sets and multiple cores. Shojania and Li
[38] proposed to use SSE2 (Intel) and AltiVec (PowerPC)
SIMD vector instructions and to parallelize coding opera-
tions over multiple CPU cores with multithreading. Given
that heterogeneous workload assignment leads to poor

performance, Park et al. [35] proposed balanced workload
partitioning algorithms for parallelized network coding.
Kim and Ro [18] demonstrated that hardware implementa-
tion of network coding using field programmable gate array
(FPGA) can bring a major performance improvement over
existing methods.

Also, researchers proposed various network coding
strategies for computationally efficient content distribution
[8], [27], [28], [30]. Cooper et al. proposed a sparse network
coding where each piece is selected for coding with a
certain probability, thus reducing the number of pieces
involved in the coding [8], [27]. Maymounkov et al. [28]
showed that one can decrease the generation size, yet can
still effectively handle the coupon collection problem by
using an erasure coding at the generation level. Møller et al.
proposed a systematic network coding method for content
broadcasting that consists of two phases [30]; for a given
generation, all pieces are first broadcast without coding and
then coded pieces are broadcast. For clustered scenarios
where users are mostly located within a single hop
transmission range, the use of noncoded pieces in the first
phase can significantly alleviate the coding overhead, but
this approach is less suitable for highly mobile vehicular
scenarios (i.e., only a small number of pieces can be
delivered within a short contact period).

The main departure from existing work is that we model
CPU and disk access overheads as a unified framework to
better understand their impact on the network coding
configuration, especially in the context of mobile wireless
networking scenarios. This work mainly focuses on
embedded devices that do not have special hardware for
acceleration, but our model can be easily extended to
consider hardware acceleration techniques. Note that
researchers showed that symbol level network coding
(as opposed to packet/piece level network coding) can
improve the performance of content distribution if adequate
wireless hardware/software capabilities are provided
(e.g., symbol level encoding/decoding or partial packet
recovery) [16], [45], [24], and our model can be easily
extended to consider this approach. We leave these
enhancements as a part of future work.

9 CONCLUSION

The main focus of this paper has been to investigate the
impact of practical resource constraints of mobile devices
(namely disk access, computation overhead, memory con-
straints, and wireless bandwidth) on the performance of
content distribution using network coding in a highly
dynamic wireless network environment such as VANETs.
We began our study by modeling the impact of these
resource constraints on the network coding process and
identified the key performance parameters that will mainly
determine the goodput of network coding. We then
validated our model by comparing them with the perfor-
mance numbers that we obtained from real systems,
including desktop machines, laptops, and handheld de-
vices. Based on the intuition that we gained from this
modeling and measurement exercise, we have designed a
novel data pulling strategy called, the remote buffer
generation aware pulling that can significantly reduce disk
access overhead at the remote node, thereby can reduce the
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Fig. 19. Performance of chunked code.
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overall delay of content distribution. To evaluate these ideas

in a large scale network, we have implemented our

overhead models and the data pulling scheme in the

QualNet wireless network simulator. From the simulation

study, we have obtained several new insights that will help

improve the performance of applications based on network

coding. They include:

1. resource constraints have a significant impact on the
performance of network coding;

2. data pulling that considers the resource constraints
of remote nodes can significantly improve the
performance;

3. the benefit of sparse random network coding is not
always obvious, and its parameter should be care-
fully chosen to perform well; and

4. generation level chunked code is not as efficient in a
highly dynamic environment as VANETs.
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