Wireless Pers Commun (2015) 80:1449-1473
DOI 10.1007/s11277-014-2093-4

Secure Personal Content Networking Over Untrusted
Devices

Uichin Lee - Joshua Joy - YoungTae Noh

Published online: 14 October 2014
© Springer Science+Business Media New York 2014

Abstract Securely sharing and managing personal content is a challenging task in multi-
device environments. In this paper, we design and implement a new platform called per-
sonal content networking (PCN). Our work is inspired by content-centric networking (CCN)
because we aim to enable access to personal content using its name instead of its location. The
unique challenge of PCN is to support secure file operations such as replication, updates, and
access control over distributed untrusted devices. The primary contribution of this work is
the design and implementation of a secure content management platform that supports secure
updates, replications, and fine-grained content-centric access control of files. Furthermore,
we demonstrate its feasibility through a prototype implementation on the CCNx skeleton.

Keywords Content-centric networking - Personal content sharing - Content-centric access
control

1 Introduction

Today, people carry various consumer electronic devices such as digital cameras, smart-
phones, and laptops. These Internet-enabled smart devices enable both consumers of pub-
lished content and producers of user-generated content. Content creation has become very
easy because anyone can post content using Web 2.0 tools, e.g. YouTube, Flickr, Twitter, etc.
As a result, personal content is exploding: content is shared and stored in multiple places
ranging from personal devices to cloud storage. A recent report estimated that by 2015, ter-
abytes of data will be in a person’s pocket and petabytes of data in a person’s home [37].
Under these circumstances, it is very important to have a system that seamlessly enables
networking of personal content such that users can manage personal content across multiple
devices (including cloud storage) and selectively share content with intended groups (e.g.
family members, friends, and colleagues).

U. Lee - J. Joy - Y. Noh (X))
UCLA, Los Angeles, CA, USA
e-mail: ytnoh@cs.ucla.edu

@ Springer

1450 U. Lee et al.

The first step toward this goal is to introduce single persistent naming over personal
content across multiple devices. Because the current generation of personal devices maintains
individual namespaces in each device, content is closely tied to a device (i.e. it is location
dependent). As the amount of content increases, content management becomes more difficult
because users tend to lose track of what files are located where. A unified view with persistent
naming will allow users to make location-independent (or content-centric) queries where
there is no need to specify which device has the requested content. For example, Alice can
access her favorite songs via a name: Alice/Music/My Favorites. Similarly, she can share the
collection to Bob by simply telling him the location name.

This content centric approach is considered to be a key feature of the future Internet
through content-centric networking (CCN), which replaces the conventional host-to-host
conversations with name-based communications and provides secure binding between the
name and data in order to thwart security attacks. The name-based routing of CCN enables
content retrieval over a fully distributed network without specifying where the content is
located because any nodes that have the requested data locally answer the request [21].
While CCN was originally designed for large-scale content dissemination (or potentially
replacing the existing IP network), its key principles (i.e. name-based routing and secure
binding) are also applicable in the realization of secure personal content networking. How-
ever, due to scalability and performance reasons, CCN transfers data and also caches data on
untrusted devices that forward/store data properly and yet do not necessarily keep the data
confidential. In addition, CCN lacks the essential component of personal content networking
of secure content management, such as content updates and access control over untrusted
nodes.

While secure content management is an active area of research in the field of distributed file
systems, existing work has primarily focused on host-centric trusted file systems; a trusted file
server handles user authentication and access control authorization, and then provides data
confidentiality through securing the communication channel (e.g. SFS [27]). When managing
untrusted storage, the files must be encrypted in order to assure data confidentiality, e.g.
Cryptographic File System (CFS) [4] and Plutus [24]. However, such cryptographic storage
systems cannot generally provide fine-grained expressive access control; for example, in
Plutus, a file can only be encrypted using a single key. If a user wants to share the file with
more than two groups, it is not clear which key should be used for the encryption. A simple
solution is to use a common key for file encryption and to encrypt this key using each user’s
public key as in SiRiUS [19]. However, this approach is limited because the metadata size
linearly scales with the number of users, and supporting more expressive access control is
difficult because it only uses a single file encryption key. Moreover, the existing cryptographic
systems do not support secure binding between the name and data and, as a result, the channel
must be secured in order to prevent man-in-the-middle attacks.

In this paper, we propose the personal content networking (PCN) platform and it provides
a secure content management mechanism over CCN, which enables secure replication and
updates, as well as fine-grained content-centric access control. We extend CCN to build
a framework for distributed content management with replication and updates. Then, we
propose and implement a secure content-centric access control mechanism using the recently
proposed cryptography tool called attribute-based encryption (ABE), which permits secure
sharing of content within a group over untrusted devices [3]. ABE supports fine-grained
expressive access policies called attribute-based access control (ABAC). An owner can define
a set of attributes (e.g. college friends, CS219 team, family members, etc.) and then they issue
a secret key for the assigned attributes to an individual. Each file is encrypted based on the
access policy over the attributes using the owner’s public key. For a given encrypted file

@ Springer

Secure Personal Content Networking 1451

and access policy, any user can decrypt the file as long as they have the secret key with the
attributes that satisfy the given policy.

While ABE was designed and has been used for selective read-only content sharing over
untrusted storage [49,50], this is the first attempt to build a fully distributed personal storage
system that supports ABE-based fine-grained access control with read-write operations over
untrusted devices and secure-binding between the name and data. The primary contribution
of this paper is twofold.

— We design the PCN platform through significantly extending CCN in order to realize a
secure content management mechanism that supports secure replication and updates, as
well as fine-grained content-centric access control.

— We build a PCN prototype through integrating the whole system using FUSE [16], which
is a user level file system, and we demonstrate that a user can seamlessly access and
manage content using PCN.

The remainder of this paper is organized as follows. We present the design goals of PCN
(Sect. 2). We provide PCN’s basic framework (Sect. 3) and secure content management
methods (Sect. 4). Then, we present the prototype implementation (§5) and the preliminary
evaluation results (Sect. 5.2). Next, we discuss some of the remaining issues (Sect. 5.3). After
reviewing the related work (Sect. 6), we conclude the paper (Sect. 7).

2 Target Scenario and Design Goals

We use the following example to motivate the needs of personal content networking. Bob has
anumber of smart devices (see Fig. 1): Internet TV, desktop computer, iPhone, WiFi-enabled
digital camera, Internet fridge, and network attached storage (NAS). He has other devices at
school (e.g. desktop computer, laptop) and also maintains a few cloud servers (e.g. Amazon
EC2). His personal content is currently stored across these places, and Bob had a difficult

Overlay
Network

w i E - /Alice/My Music

Alice

/Bob/My Music

/Bob/My Music
/Bob/My Doc/CS101

Fig. 1 Personal content networking scenario: Alice and Bob manage their personal content over multiple
devices using single, hierarchical, persistent naming. Bob can share the content with Alice by simply passing
the link (say, /Bob/My Doc/CS101)

@ Springer

1452 U. Lee et al.

time tracking all these files. For example, his friend Alice asks him to send the lecture material
of the course that they took last year. He only remembers that it is located in a document
directory, but he forgets which device he put it on. He searches through his devices one by
one: laptop, servers, desktop computer, and NAS, and finds that it is stored in his NAS at
home. After locating the lecture material, Bob feels a bit frustrated because the size is over
1 GB (even after compression) and he cannot send it via email. He calls Alice saying he will
give the files to Alice using a USB stick.

This example clearly illustrates the needs of personal content networking (PCN) such
that users can manage personal content stored across multiple devices and selectively share
content with intended groups. The design goals of PCN can be summarized as follows:

— Single persistent hierarchical namespace Single persistent naming of personal content
will guide users to have a unified view of their personal content stored across multiple
devices. A hierarchical namespace is essential because it has been reported that hierarchi-
cal naming significantly lessens the cognitive overhead of locating files [10,20,23,26].

— Social networking Users often want to share content with their friends. PCN should
leverage social networking aspects through establishing and managing trust relationships
among friends and through building an overlay network based on these trust relationships
for content sharing.

— Fine-grained access control PCN must provide fine-grained expressive access control to
enable secure content management over distributed untrusted servers that store/transfer
data properly and yet do not necessarily keep the data confidential.

— Disrupted operations Because devices can go offline at any time, users should be able to
replicate files and files must be automatically synchronized whenever the devices come
online again as in existing distributed file systems [33,38,42].

— Security guarantee Because PCN manages distributed untrusted devices connected over
the Internet, it must be resilient to well-known security attacks such as a denial of service
attacks and false data injection attacks.

In the above scenario, PCN will allow Bob to easily locate the material (e.g. /Bob/My
Doc/CS101) and to pass this link to Alice. Bob does not need to examine each device,
but simply needs to browse his namespace on any machine. Alice can download the content
using the link provided. In the following, we review CCN, which is a building block of PCN
(Sect. 3) and demonstrate how PCN’s basic framework can be built over CCN (Sect. 4).

3 Basic PCN Framework With CCN

In this section, we review the core components of CCN: (1) naming, (2) content reachability,
(3) content retrieval, and (4) content-centric security, which are the basic building blocks
of PCN’s underlying content retrieval. We discuss how PCN builds a web of trust and an
overlay network based on social relationships, because the key functions of personal content
networking is to share content among friends.

3.1 Background: CCN Review
3.1.1 Naming

CCN names a file with a user friendly, structured, effectively location-independent name.
Each file is divided into multiple segments. Consider the following example name:

@ Springer

Secure Personal Content Networking 1453

/parc.com/music/abc.mp3/v3/s0. Here, parc.com is a globally routable name (called a pre-
fix), /music/abc.mp3 is a local name in parc.com, v3 is a version name (represented using a
timestamp), and sO denotes the segment number.

3.1.2 Content Reachability

In CCN, a prefix owner announces their prefix to the entire network. For example, Alice
from parc.com announces her files as /parc.com/Alice/ from her laptop. Each node in the
network broadcasts the incoming prefix to its neighboring nodes. Whenever a node receives
the prefix, it establishes a backward pointer to the sender in its forwarding information base
(FIB) for that prefix. Content is reachable to the prefix announcer as any content request can
be routed by following the backward pointer in the FIB.

3.1.3 Content Retrieval

Content retrieval is pull-based as in HTTP (i.e. get and response). A user sends a request
(via an Interest packet), and any node that has the requested content in its local storage (or
cache) can respond to the request. For a given prefix, the Interest packet is forwarded along
the reverse path toward each data source through following the backward pointer in the FIB.
Whenever a node receives an Interest packet, the breadcrumb information (i.e. the backward
pointer to the previous forwarder) is stored in the pending interest table (PIT). Then, the
corresponding data packet will be delivered according to the reverse path in the PIT.

When forwarding an Interest packet, CCN uses the longest prefix matching algorithm; i.e.
in the FIB, a node finds the longest prefix entry that has the largest number of leading letters
matching those of the content name in the Interest packet. For example, Alice’s desktop
has /Alice/my music/pepper/, and Alice’s laptop has /Alice/my music/. When Bob accesses
/Alice/my music/pepper/abc.mp3, it matches the prefix entry of /Alice/my music/pepper/ and
the Interest packet will be delivered to Alice’s desktop.

3.1.4 Content-Centric Security

CCN supports secure binding between the name and content (called content-based security)
where protection and trust travel with the content itself [21]. To this end, CCN uses asymmet-
ric cryptography: the content is authenticated with digital signatures, and private content is
protected with encryption. Each data packet contains the owner’s signature P, Signp (N, C),
which covers the name (N) and content (C). This content-based security is critical because
content can be cached in untrusted intermediate nodes. For key management, CCN can use
a traditional certificate-based public key infrastructure (PKI) or a Web of Trust (e.g. PGP).

3.2 Naming in PCN

The current generation of personal devices use rigid and weak naming of the form “host-
name:path”. The key problem is that content is tied to a host, which makes personal content
management non-trivial, particularly when a user interacts with a number of devices (e.g.
laptop, desktop computer, smartphone) including cloud-based storage services (e.g. Drop-
box). A user must track what files are located in which devices/services and decide how to
migrate/replicate/update the content.

In PCN, we define a single persistent hierarchical namespace for each person. It is known
that global namespaces are politically and technically difficult to implement (e.g. X.509 [47],

@ Springer

1454 U. Lee et al.

PEM [36]). Thus, we use the local decentralized namespaces of SPKI/SDSI [8]. Each person
has a public-private key pair to verify the identity of the sender (sign/verify) and to ensure
privacy (encrypt/decrypt). The relationships among users in PCN are considered to be flat,
and it is sufficient to use the public key as an identity. Nonetheless, there are cases where
hierarchical naming is useful, e.g. a group of users has a set of sub-groups. In SPKI/SDSI, a
user can define a local namespace as follows: a user’s key K followed by a single identifier
(which is distinct within the local namespace). For example, Alice has a key K, and makes
her own name as “K, Alice”. A study group with key K, can name its sub-groups as “K,
subl” and “K, sub2”. If a sub-group has multiple smaller groups inside, that group can name
those groups similarly; for example, sub1’s two internal groups (ssgl and ssg2) can be named
as “Kg subl ssgl” and “K; subl ssg2”. Note that a local name is globally unique because the
name contains the public key of the user. Moreover, each user can make signed statements
of these local names, which allows anyone to certify a key via a web of trust [8].

Given this, the data name has the form N = P : L, where P is the user name (or its
cryptographic hash), and L is the label representing the location of data in the hierarchy, e.g.
Alice’s music can be denoted as /K, Alice/music/. PCN’s naming can be used in CCN with
minimal modification as CCN uses hierarchical naming (e.g. /parc.com/test.txt). As in CCN,
each device advertises the content reachability information through broadcasting the name
prefix of the content that is stored in the device. For example, Bob’s laptop will advertise K},
Bob/my doc/, and his iPad will advertise /K;, Bob/my music/Beatles/. For the sake of brevity,
hereafter we will use abbreviated names without a public key, e.g. /Bob/my music/.

3.3 Trust Management in PCN

Each PCN user has a private-public key pair that is used to define their name. When a new
device is purchased, this information must be securely installed in order to initialize the PCN
service. Moreover, for content sharing with others, a user must establish a trust relationship
through securely exchanging public keys (e.g. how does Bob make sure that the key belongs
to Alice?). Nonetheless, trust relationships do not necessarily guarantee data confidentiality.
For both device initialization and trust establishment problems, secure key distribution is the
critical issue. Users can use USB sticks or local/wide area networks for key exchanges. The
latter is less secure than the former, because it is vulnerable to man-in-the-middle attacks.!

A simple method of avoiding the attack is to use another secure channel. Alice can show (or
read) her public key to Bob (e.g. via physical presence, SMS, email, voice communications,
etc.). She can ask Bob to verify whether his key matches the received key. Given that verifying
a large number is laborious and can be erroneous, Ellison et al. [11] proposed an approach
where the keys are represented in color bars so that users can more easily verify the key. In
Unmanaged Internet Architecture (UIA), multiple choice questions are used to reduce the
user’s burden [15]. For example, Alice sends her multiple choice question to Bob, and Bob
sends his question to Alice. After solving each other’s question, they exchange the hashed
values of their answers (and both keys), hoping that the attacker cannot solve the questions
and thus fail to control the conversation.

However, this approach is also vulnerable to man-in-the-middle attacks because a mali-
cious user can perform a dictionary attack. The attacker knows both keys and the multiple
choice questions. They can easily find the answer through computing a hashed value for
each answer choice and comparing this value with the received answer. Like UIA, we use

1" An attacker can eavesdrop on the channel and make independent connections with the victims and then relay
messages between the victims making the victims believe that they are talking directly to each other over a
private connection, when in fact the entire conversation is controlled by the attacker.

@ Springer

Secure Personal Content Networking 1455

multiple choice questions, and yet we solve the man-in-the-middle attack using Ellison’s
approach [13], which is based on Pedersen’s interlock protocol [34]. Given that the secret
(i.e. the answer of a multiple choice question) is a, one chooses a random value u# and then
computes x = g*h* mod p, where p is prime, and g and & are generators of the group mod
p. Alice and Bob generate their own numbers and exchange these values, i.e. Alice generates
x4 = g%h"4 mod p, and Bob generates xp = g*6h*8 mod p. The attacker cannot infer
the value of # and must use a random value to finish the transaction, which thus effectively
thwarts the dictionary attack.

3.4 CCN Overlay Construction

Trust management among friends can be used to form a social network. This social relation-
ship is used to create an overlay network for content-centric networking (CCN). Whenever an
identity introduction occurs, the corresponding personal devices also exchange IP addresses
and join the overlay network. Each device maintains a peer list that contains the IP addresses
and port numbers of other devices. For a given user, the list includes the user’s own devices
and direct friends’ devices. For example, Alice’s laptop has a list of all her devices and a list
of Bob’s devices. These devices periodically check the availability of neighboring devices in
order to maintain the overlay network. This is further discussed on a device hidden behind a
NAT in (Sect. 5.3).

4 Secure Content Management

In this section, we first illustrate file replication and synchronization, and we justify the need
for prefix protection in replication. Then, we present details about content-centric access
control, followed by an illustration of remote content management and a discussion of key
revocation.

4.1 Replication

PCN supports both file- and directory-level replication services. Replication is straightfor-
ward because a user simply needs to republish the fetched content into the local CCN client’s
repository. Then, the prefix of the file is announced so that the other nodes can also fetch
the file. For example, Alice has her favorite song in her laptop and it is located at /Alice/my
music/pepper/abc.mp3. She simply downloads the file from her desktop computer and asks
the local CCN client in her laptop to replicate the file. Now, both her laptop and desktop com-
puters announce the prefix /Alice/my music/pepper/. However, directory replication requires
more attention because it contains a set of entries each of which associates a name with a
pointer to a file or subdirectory. If directory replication is requested, the local client recur-
sively fetches all associated files/subdirectories to the local repository. For example, if Alice
replicates /Alice/my music/ in her laptop, the local client downloads all files from her remote
desktop computer and then announces the prefix /Alice/my music/.

Note that in PCN, applications can access files without replicating them. Recall that a
CCN node has a two-tier data hierarchy: a local cache (in memory) and a local repository
(on a disk) [21]. If a requested file is not present in the local cache, its local repository is
examined. If that fails, an Interest packet will be issued and the file will be fetched from
a remote node. The fetched file will be temporarily stored in its local cache from which
applications can access it. Through doing this, locality can improve the accessibility. Note

@ Springer

1456 U. Lee et al.

also that a user should be able to navigate the namespace (e.g. the UNIX Is command). By
treating a directory as a special file, PCN collects the directory entries from the devices using
a procedure similar to that of finding the latest version of a file in CCN.

4.2 Synchronization

PCN provides “eventual consistency” in that all replicas eventually converge to the same
version given sufficient messages exchanged among the participating devices (i.e. a file with
the freshest timestamp) [33,38]. Eventual consistency is a widely used consistency model in
disruption-prone mobile environments.

Whenever a replicated file is updated, a new version is created thereafter (timestamp).
Each replicated file has an associated version vector that tracks its update history [32,38]. In
order to create an alert for this event, the node that makes the update will re-announce the
corresponding prefix with a modification mark, which is a special type of prefix announcement
that is used for the update notification. The prefix announcement also contains detailed
information of the updated file, including its name, the current version, and the version vector.
For synchronization, the local client compares the version vector of the local replica with that
of the updated file. If the updated file is strictly newer than the local one, its version vector will
dominate; the local client fetches the updated file and replaces the local file in the repository.
If two version vectors are not equal and neither one dominates, an update/update conflict
occurs. If automatic merging fails, PCN notifies the user that a conflict has been detected.
The user will be presented with a revision history including authors, dates, and versioned
content. It is left to the user’s discretion to resolve the conflicts and mark the content as
merged. Note that whenever intermediate nodes hear the modification announcements, their
local caches are examined in order to determine whether there are matching files, and the
matched files (or data packets) in the caches are invalidated.

Synchronization of a replicated directory needs a special care. Although the modification
operations are limited to adding new entries or deleting/changing existing entries, a direc-
tory replica can be modified from multiple places, which causes several well-known syn-
chronization issues such as insert/delete ambiguity, remove/update conflicts, and name con-
flicts [2,32]. In PCN, we adopted the existing solutions used in the Ficus file system [32,38].

When a node re-joins the PCN network after a disruption, it first checks its neighbors
to find any missing prefix announcements. As will be seen, a PCN user has a reserved
namespace for devices, namely /dev, and devices are accessible through this name, e.g.
Alice’s iPod is named /Alice/dev/iPod. For prefix announcement synchronization, each
device stores the received prefix announcements in a designated place, e.g. Alice’s iPod has
/Alice/dev/iPod/received_prefix. This allows the node to search for the updates of the files
located in its local storage. If the node finds a prefix with a modification mark, it performs
file synchronization as described earlier.

Note that in PCN, nodes fetch the updated file for synchronization. If the size of a file
is large and only a small part of the file is updated, fetching the entire file will waste the
bandwidth. A simple solution to this problem is that a node generates/publishes a delta file
(e.g. using a diff file) and includes a link to the delta file in the prefix announcement.

4.3 Prefix Protection
Thus far, we have assumed that any node can replicate the content and announce the name

prefix. After replicating the content, however, malicious users can launch an attack through
inundating the network with fake update announcements. PCN nodes could waste consider-

@ Springer

Secure Personal Content Networking 1457

able resources managing these fake updates. Given that CCN does not manage updates, this
problem is unique to PCN. In order to manage this, we impose a restriction that the prefix
announcement must be signed by the prefix owner. This technique is a reasonable approach
because people typically want to have full control of their namespace and the locations of
files in a multi-device environment. A similar technique is used in a secure BGP where each
prefix is signed in order to prevent prefix hijacking where an attacker has partial or full control
of the named prefix [25].

In PCN, a prefix announcement is augmented to include a signature that certifies the
prefix ownership. Furthermore, we implement the ownership delegation such that an owner
certifies that a named user is allowed to announce the named prefix through issuing a prefix
certificate. For example, Alice can issue a certificate to Bob that he can announce the prefix
/Alice/my doc/proj/. Intermediate nodes can verify that the certificate is valid and that the
prefix announcement originates from Bob (similar to data packet validation). Bob can update
his local replica of Alice’s file, and the update will be automatically propagated. Note that it
is possible for the attackers to perform a replay attack where a CCN speaker replays a prefix
that it has previously heard. This problem can be mitigated through adding an expiration
timer as in S-BGP [25].

4.4 Content Centric Access Control

Access control in personal devices is primarily host-centric. In identity-based access control
(IBAC) [41], a user first logs into the system (authentication) and then accesses files based on
the permissions in the access matrix (authorization). SPKI/SDSI supports Role-Based Access
Control (RBAC) where permissions in the access matrix are tied to roles [8]. SPKI/SDSI is
also host-centric because it assumes trusted servers and insecure channels, i.e. an individual
must first set up a secure channel (using SSL) to prevent man-in-the-middle attacks, and the
server verifies whether a requester’s key is on the role-based ACL [5]. However, in PCN,
host-centric access control is not suitable because the channel is not secured but the data
itself is secured.

In PCN, we need content-centric access control, i.e. the access control of content is self-
contained and is not tied to a host. A simple solution is to encrypt the content using the
receiver’s public key and to define a specific name for the encrypted data that is meaningful
to the receiver. The encrypted content can be placed on untrusted servers because others
cannot decrypt the content. If a file needs to be shared with multiple people, a common key
is used for the file encryption, and this key is encrypted using each user’s public key [19].
Then, the encrypted keys are included in the metadata of an encrypted file, and the entire con-
tent (metadata + encrypted file) is published. However, this approach has several limitations.
Supporting expressive access control is difficult because it only uses a single file encryp-
tion key. If multiple keys are used, the metadata size linearly increases with the number of
users/groups. More importantly, once the content is published, the owner cannot give access
to other users; that is, the owner must republish the original file and include additional users.

In PCN, we solve this problem using ciphertext-policy attribute based encryption (CP-
ABE), which permits secure sharing of content within a group across multiple untrusted
servers [3]. ABE is the key enabler for attribute-based access control (ABAC) where access
decisions are based on the attributes associated with individuals. First, each user generates an
ABE public key (PK) and an ABE master key (MK). A user can define a set of attributes (e.g.
college friends, CS219 team, family members, etc.) and an access policy using Boolean for-
mula for the attributes. This allows a user to perform fine-grained, expressive access control.
The user assigns a set of attributes to each user and then issues a secret key corresponding to

@ Springer

1458 U. Lee et al.

Fig. 2 PCN’s file data structure]]]
for secure content centric access (1) Read-access Policy (2) Write-access Policy

control

ENCABE wareaccess pocr

(3) Write-Verify Key (4) (Write-Sign Key)

(5) ENCABEgeso-access Poucv(Data)

(6) S ig nWR\TE'SIGN KEV(S H A- 1(E n CA B ER(AD'ACC(SS POUCV(Data)))

the attribute set, i.e. Secret Key (SK) Generation(MK, S), where M K is the master key and
S is a set of attributes assigned to the user. A file can be encrypted using the public key and
access policy, i.e. Encrypt(PK, M, A), where P K is the public key, M is a message, and A is
an access policy. Here, any user can encrypt the file using the public key. Furthermore, any
user who has a secret key with attributes that satisfy the policy can decrypt the content, i.e.
Decrypt(PK,CT, SK), where PK is the public key, CT is the ciphertext, and SK is the secret
key [3]. In ABE, the metadata size does not linearly increase with the number of users/groups
because its metadata only contains the access policy information whose size scales with the
number of attributes. Moreover, the owner can still issue attribute keys for published content
without republishing the content.

Assume that Alice would like to selectively share her music collection, /Alice/my
music/rock. This content is digitally signed using Alice’s publisher key and is published under
that namespace. For access control, Red Hot Chili Peppers is encrypted with the attribute
college friends. Incubus is encrypted with both college friends and CS219 team attributes
because Alice discussed Incubus with her teammates and wants to share the songs with them
only. Bob is Alice’s college friend, and Alice issues a secret key for the attribute college
friends; Cathy is Alice’s CS219 team mate, and Alice issues secret keys for the attributes of
college friends and CS219 team. Bob can decrypt Red Hot Chili Peppers, while Cathy can
decrypt both Red Hot Chili Peppers and Incubus.

In PCN, an owner of a file can set access permissions of read and write using separate
access policies (as used in ABE). The resulting access modes in PCN are read-only and read-
write; the write-only mode is not suitable for personal content networking. Access modes
can be also used with directory files in order to limit access of a directory listing. As shown in
Fig. 2, the PCN payload contains the following fields: (1) read-access policy, (2) write-access
policy, (3) write-verify key (public key), (4) write-sign key encrypted using ABE with write-
access policy, (5) actual data encrypted using ABE with read-access policy, and (6) write
signature (optional). For write access control, a file owner issues a private-public key pair that
is located in fields (3) and (4). The write-sign key is only accessible to those who have write
permission because the write-sign key is encrypted using ABE with the write-access policy.
Whenever a file is updated, the file is encrypted using ABE with the read-access policy. This
legitimate modifier then reads the write-sign key through which it generates the signature of
the updated content, which is placed in field (6). Then, this update event is notified to all nodes
that replicate the content via a prefix announcement with a modification mark. The replica
nodes will then fetch the updated content and verify whether it is modified by legitimate
users who satisfy the write-access policy. Note that in our prototype implementation, we use
symmetric encryption in order to reduce the overhead of encrypting/decrypting the content,
i.e. the content is encrypted using AES, and ABE is used to encrypt the AES key.

@ Springer

Secure Personal Content Networking 1459

4.5 Replica Management

A user may want to know what files are stored where and wish to replicate files to remote
devices. Regular content browsing such as the UNIX command /s does not tell users in
which device the files are located. For replica management, PCN reserves a special directory
for devices, namely the /dev directory through which a user can freely name their personal
devices. For example, Alice’s iPad can be named /Alice/dev/iPad. Furthermore, each device
announces its device name prefix in device-to-device communications over the CCN.

Similar to the device communications through files in UNIX, the user can write a repli-
cation command to a reserved device file, e.g. /Alice/dev/iPad/.cmd. After updating the file,
its prefix will be announced to the network, and the target device is notified of the update.
Then, the device will synchronize the file by fetching the most up-to-date .cmd file. The
device finally executes the replication command as specified in the file. Note that for security
purposes, PCN restricts this function so that only the prefix owner can update the device files,
and the files should be signed using the owner’s private key. Multiple concurrent requests
can be managed using serialized updates based on timestamps. Delayed execution is not
permitted and requests expire after a threshold period of time.

4.6 Key Revocation

PCN primarily uses the following keys: a personal public—private key pair, group public—
private key pairs, and ABE keys. Secure key distribution can be assured because PCN uses
the secure identity exchange mechanism and relies on an SPKI/SDSI-style web of trust.
Any intermediate nodes will be able to correctly acquire public keys that are then used to
validate the secure binding between the name and data. While we can leverage CCN for
secure key distribution, we must be able to appropriately handle key revocation scenarios for
a public—private key pair and an ABE attribute secret key.

If a user’s public—private key pair is compromised, the existing key pair can be revoked
through the prefix announcement with a revocation mark that is similar to a suicide note
in PGP [39]. Recall that in CCN, we added two additional prefix types of modification
(for update notifications) and revocation (for revocation notifications). Then, the user will
generate a new key pair and distribute the public key via the secure identity introduction
process, which guarantees that attackers cannot impersonate potential victims. Note that the
same procedure can be used to manage the case where a group’s public—private key pair is
compromised.

If an ABE attribute secret key is compromised or the owner wants to revoke a specific
attribute, the owner must revoke both the master key and public key because CP-ABE does
not provide a mechanism for revoking an individual attribute. While CP-ABE has a single
attribute revocation through the addition of a timer attribute for each attribute, this approach
is less practical because it complicates the overall system: (1) the owner must periodically
issue keys and all files must be re-encrypted with new attribute sets, and (2) a tamper-proof
clock is required to ensure the security guarantee.

Whenever the master key and public key are revoked, the owner must re-encrypt all files.
However, this process is very expensive. In order to reduce the overhead, we employ the lazy
revocation scheme proposed by Kallahalla et al. [24]. Unlike the compromise of a public-
private key pair, that of an ABE attribute secret key is less serious, as long as the revoked
user (or attacker) only has read-only access rights: the revoked user cannot remove or update
files. In this scenario, it can generally be assumed that the revoked user has read and copied

@ Springer

1460 U. Lee et al.

all files, and it is still acceptable for the user to read unmodified or cached files. However,
the lazy revocation ensures that the revoked users are not able to read updated files; that is,
the updated files will be re-encrypted with the new ABE public key.

Note that it is also possible for users to immediately revoke all keys and re-encrypt all
files. In this case, the user must undergo a series of steps: (1) re-generate a new ABE key set,
(2) invalidate all cached files via prefix announcement, (3) remove the replicas from multiple
devices, and (4) re-encrypt all files and re-distribute the replicas.

5 Related Work
5.1 Distributed Peer-to-Peer File Systems

Research on distributed file systems for mobile environments has been primarily directed
toward extending the existing client/server-based file systems to manage node mobility and
network disruption [33,38,43]. A common technique is to use optimistic file replication
and eventual consistency. BlueFS [31] extends the client/server-based file system through
focusing on power management to save energy in mobile devices. Compared with coda
(i.e. a distributed file system), BlueFS substantially reduces the file system energy usage
and provides up to three times faster access to data replicated on portable storage. Ensem-
Blue [35] builds upon BlueFS and provides a consistent view of all files located across
multiple devices with heterogeneous device capabilities in a self-organized manner. Ensem-
Blue supports namespace diversity through translating between its distributed namespace and
the local namespaces of consumer electronic devices. It further supports extensibility through
persistent queries, which is a robust event notification mechanism that leverages the under-
lying cache consistency protocols of the file system. Ficus [38] uses a flexible peer-to-peer
(P2P) model for optimistic replication where all replicas are equal and can propagate updates
to all other replicas. It has also been reported that Ficus reliably detects all possible conflicts.
Bayou [45] is a P2P weakly consistent storage system where clients are able to connect to any
available server to perform reads and writes. In order to support automatic conflict detection
and resolutions, it uses anti-entropy for consistent management and supports a database lan-
guage for data retrieval. Ivy extend a multi-user read/write P2P file system [30]. A detailed
survey of P2P file sharing has been presented in this survey paper [7].

Several systems have been designed for multi-device environments. unmanaged internet
architecture (UIA) provides zero-configuration connectivity among mobile devices through
personal names [15]. Unlike the existing work, UIA assumes that each device has its own
persistent namespace, and a user must track all files located across multiple devices. In
contrast, Eyo [44] offers a device transparency model in which users view and manage
their entire data collection of all devices through periodically flooding metadata everywhere.
PersonalRAID [43] supports optimistic replication at a volume level, and a mobile storage
device is used to provide the abstraction of a single coherent storage name space that is
available everywhere, and it ensures reliability through maintaining data redundancy on a
number of storage devices. Footloose [33] is a user-centered data store that can share data and
reconcile conflicts across diverse devices. Footloose supports application-specific optimistic
replication with eventual consistency (e.g. address books), and yet it uses a persistent flat
namespace (called ObjectID).

@ Springer

Secure Personal Content Networking 1461

5.2 Wide Area P2P Storage Systems

Wide area P2P storage can be classified based on the overlay structure: (1) a structured
system (e.g. PAST [12], CFS, Ivy) forms a structured overlay network using a distributed
hash table (DHT), and (2) a structure-less scheme (e.g. Gnutella and eDonkey) forms a
structure-less overlay network where the overlay links are arbitrarily established. Unlike
unstructured P2P networks, DHTs provide better performance for searching for items
over a large number of distributed nodes, and they have been widely adopted to imple-
ment wide area P2P storage. Most P2P storage systems assume wired Internet scenar-
ios and support strong consistency, which is less suitable for personal content network-
ing. As a recent work, Plethora focuses on semi-static peers with strong network con-
nectivity and a partially persistent network state. In a semi-static P2P network, peers are
likely to remain participants in the network over long periods of time (e.g., compute
servers), and are capable of providing reasonably high availability and response-time guar-
antees [14].

5.3 Decentralized Access Control

The following concepts are closely related: user authentication, access control authoriza-
tion, and data confidentiality. Existing access control systems can be classified based
on their authentication method. When AUTH_SYS (UNIX’s default) and Kerberos are
used, systems mostly provide UNIX-style ACL (e.g. Network File System (NFS), Andrew
File System (AFS), xFS [48]). When public key cryptography is used, systems typi-
cally support either UNIX-style ACL (e.g. SFS [27]) or certificate authorization (e.g.
DisCFS [28]). These systems assume that file servers are trustworthy, but the net-
work is not secure; thus, data confidentiality is guaranteed through securing the chan-
nel (e.g. SSL). If the servers are not trustworthy, we can either rely on other semi-
trusted servers as in Cobalt [46] or use cryptographic encryption to preserve data confi-
dentiality as in Cryptographic File System (CFS) [4], Plutus [24], and SiRiUS [19]. A
detailed survey of recent decentralized access control has been presented in this survey
paper [29].

In the CFS approach, authentication is typically undertaken using public key cryptography
where a user’s public key is used as an ID, and a digital certificate is used for authentication.
CFS uses a single key for encryption (coarse-grained, e.g. directory/volume) and is dependent
on the underlying file system for write authorization [4]. Later variants use a lockbox to
protect the keys (with more fine-grained access control) and introduce several mechanisms
for verifying the write operations without depending on the underlying file system [19,24].
In particular, SiRiUS [19] assumes that the network storage is untrusted and provides its own
read-write cryptographic access control for file-level sharing. It permits a file to be shared by
multiple individuals or groups using a common file encryption key that is encrypted again
using each user/group’s public key.

Given that attribute-based encryption (ABE) is designed to provide fine-grained, expres-
sive access control, several existing works have used ABE for read-only content sharing over
untrusted storage [1,49,50]. In particular, Yu et al. [50] used a key policy ABE (KP-ABE) to
provide privacy-aware content sharing over untrusted cloud storage and Proxy Re-Encryption
(PRE) to delegate the task of re-encryption on cloud servers. While PCN is considered to be
a cryptographic file system, unlike existing systems, PCN provides fine-grained expressive
access control using CP-ABE in a fully distributed environment with untrusted nodes and it
allows file owners to set up expressive read and write access policies based on attributes (e.g.

@ Springer

1462 U. Lee et al.

Fig. 3 PCN architecture PCN CCN
—>
Tools Overlay

Legacy CéN ¢

Apps Repo <«» CCND <>
A

pcn-fuse
B Y S

A4 A4

VFS FUSE

Kernel

college friends, family members, etc.). Furthermore, none of the aforementioned systems
provide secure binding between the name and data; thus, the channel must be secured in
order to prevent man-in-the-middle attacks.

6 Prototype Implementation

We implemented a PCN prototype in the Linux and Android platforms, and further integrated
the prototype with FUSE, which is a user-level file system to support legacy applications in
Linux. As shown in Fig. 4, the PCN tools include pcn-init, pcn-intro, pcn-abe-enc, and
pcn-broswer. The ccn-overlay tool maintains the CCN overlay network. The pcn-fuse tool
implements the basic VFS file operations, which support legacy applications (Fig. 3).

As depicted in Fig. 4, a PCN user first initializes a personal namespace using the pcn-
init tool. This tool generates a private-public key pair and prompts the user to name their
namespace. The key pair must be securely disseminated to the other personal devices. The
tool runs a local area rendezvous tool to locate other devices on the local area network and
installs the key pair securely. The device information will be reported to the CCN over-
lay client that configures its local CCN daemon (CCND) [6]. Because the current CCNx
codebase only supports manually configured, static network topologies, we implemented an
overlay network client (called ccn-overlay) that builds and maintains an overlay network
based on social relationships. Whenever the network topology changes, an overlay client
uses external commands to reconfigure the local CCND. The prefix announcement is dis-
seminated through the overlay clients because the current CCNx codebase does not fully
support the prefix announcement feature. Each client periodically exchanges ping messages
to verify whether its neighboring nodes are alive. Recall that we have three types of prefix
announcements, i.e. regular prefix, modification, and key revocation announcements. Besides
the device initialization, users can establish a trust relationship using the pcn-intro tool, which
is based on UIA’s device management Ul tool [15].

In PCN, non-privileged users can mount a namespace into their local user directories, and
the legacy applications can seamlessly access the files in the PCN namespace. To this end,
we use FUSE, which is a loadable kernel module that allows non-privileged users to create
their own file systems without editing the kernel code by running file system operations in
the user space while the FUSE module provides a bridge to the actual kernel interfaces. We
implemented key virtual file system (VES) operations in the pcn-fuse tool: getattr, getdir,
mkdir, rename, open, release, read, and write. In particular, when an application reads a file,

@ Springer

Secure Personal Content Networking 1463

Fig. 4 Flowchart of topology
and trust relationship
establishment g8

initialize a personal namespace

generate private-public key pair and namespace

O

local area rendezvous and secure key pair dissemination

O

O

maintain topology
via ccn-overlay tool

establish a trust
relationship via pcn-intro

Send to Repo...

Namespace Browsing IDesktop‘Home v
7 |l fihoon = ¢ {8 jihoon -
? g dev 9 g dev
jus Laptop jus Laptop
o Android Android
o Desktop_Lal
Desktop Home Desktop Lab Laptop Android |
o Desktop_H: | |
. |
? My _Music
! i .
Musicl.mp3 — — —— —
T
[|
Music2.mp3 Music2.mp3
Pty | Pt
POP POP
s T [
o Classic Classic
> My_Photas L - My_Photos 3
? g My Documents
Documentl.doc -
Please expand folder names you would like to enumerats. You may also select test files to be dispia]
ved in this window. |>
< I [1»

Fig. 5 Content management tool (pcn-browser). The left panel is a namespace browser, and the right panel
is the replicated namespace at a specific device (Desktop_Home). By right clicking the file (Music2.mp3), a
user can see the replication status across different devices

our user-level module downloads chunks through CCN. When a file is modified, we restrict
the modification to being committed to its local repository (a new version is created) only
if the file is finally released. Then, the pcn-fuse tool sends the prefix announcement with a
modification mark via the ccn-overlay daemon.

For content management, we implemented pcn-broswer through significantly modify-
ing the ccnbrowser tool in the original CCNx codebase (see Fig. 5). The pcn-browser tool
allows users to browse any namespace and also displays the file locations. A user can eas-
ily issue a replica management command through selecting a file/directory and a target
device.

For ABE support, we used the CP-ABE toolkit [9]. A file published in the local repository
can be encrypted using pcn-abe-enc. This tool communicates with the local CCN repo dae-
mon, encrypts the named file, and re-publishes the file into the repository. The ABE keys are

@ Springer

1464 U. Lee et al.

Table 1 CP-ABE performance of laptop (L) and nexus one (M) in milliseconds: master key (MK) setup and
secret key (SK) generation with k£ number of attributes

MK setup SK: 5 SK: 10 SK: 15
Laptop 166 (£0.2) 531 (£0.4) 913 (£0.2) 1,343 (£1.9)
Mobile 354 (+£0.9) 2,068 (+0.5) 3,981 (£0.5) 5,947 (£0.3)

stored in a user’s local keystore (e.g. .ccnx at home). If a file is encrypted, the ccn-fuse tool
automatically decrypts the file and returns the plaintext to the reader. It accesses the user’s
local keystore for decryption. We ported the CP-ABE toolkit to the Android platform via
cross-compilation. Because the CCNx codebase supports the Android platform, we integrated
the basic PCN tools into the mobile platform.

7 Evaluation

We present our preliminary system evaluation that answers the following questions: (1) What
is the overhead of ABE? (2) What is the detailed performance of each component used in
PCN? (3) Given realistic user traces, what is the overhead of PCN (e.g. routing table size,
update overhead, etc.)?

In order to provide secure personal sharing, we designed our implementation to incur
minimal overhead to the existing CCNx codebase. While a complete evaluation of the CCNx
method traces is outside the scope of this paper, our experience demonstrates that the CCNx
performance improves with every release. We analyzed the performance of providing secu-
rity using ABE in the three major areas of (1) key setup and generation, (2) encrypting and
storing content, and (3) retrieving and decrypting content. In order to model user behavior, we
measured the performance using a mobile device (the Android Nexus One from Qualcomm
Snapdragon with 1 GHz CPU and 512 MB of RAM), a laptop (Dell Inspirion 9400 with Intel
dual core 2 GHz CPU, 2 GB of RAM, and Intel WiFi Link 5300 that runs Ubuntu 10.10
with Linux 2.6.35), and a desktop computer (Apple iMac with Intel i5-2500s, 2.7 GHz CPU,
and Broadcom Gigabit Ethernet that runs Ubuntu 10.10 with Linux 2.6.35). The measured
device-to-device TCP performance using Iperf is given as follows (over an average of 10
trials with a 95 % confidence interval): Nexus One to laptop over WiFi: 8.21 Mbps (£0.02),
laptop to Nexus One over WiFi: 8.00Mbps (£0.01), desktop computer (wired) to laptop
(WiFi): 10.34 Mbps (£0.02).

7.1 Overhead of ABE

Table 1 presents the master key setup delay and secret key generation delay as a function of
the number of attributes. The results demonstrate that the delay almost linearly increases with
the number of attributes. The master key setup is independent of the number of attributes,
and that of the laptop and Nexus One is given as 166 and 354 ms, respectively. Based on our
user experience, the key setup delay in the laptop was not noticeable, but that of the mobile
device was not ignorable. However, the key setups are not frequent events in PCN and these
can be undertaken prior to real time use. Considering the advancements in mobile hardware
technology, the key setup delay will be ignorable in the near future.

@ Springer

1465

Secure Personal Content Networking

Quo snxau 0) 1ndwod dopysep z ‘Quo snxau 0y doyde| pyz7 ‘doyder 03 xoIndwod doyyseq 7za

QUOBD [00] AU} 1251 0 IOPIO UT UNI (OB
uoamIaq ANDD 2y Sunaejsar pue (0 =dvI ANDD) 0 01 9ZIS Ayoed NDD) Sumnas Aq uni sem [e11) YoeH "[eAISIUT 9JUIPYUOD 9, GG B YIIM S[BLI) 9A JO UBIW oY) ST J[NSAI OBy

(I'¥F) ¥ 100°1C (STHIILEE (€TF)1'L8€ (1'0F)0°8CI (F0F) 181 ToPre 1dA100p Jusyuo)
(€T1F)8SeY (19T 6Ty (To1F) 1°SEP (€LF)L 6Ty (I'LF) 961y (€ST) LTy 1dK103p Loy SHV
(ToP) ¥y (IoF) 81w (IroFP) reer (1oF) ecr (IoF)8'ser (IoF) ¥'Tes £ax-qnd ggv Aoway
(I'0F)9°6€ (I'0F)T6E (1'0F) 98¢ (I0F)9°LE (I'0F)T9¢ (1oF)s¢ Aoy-ud g4V 18007
(S8ITF)THTL96 (9°9TF) #'65T°01 (I'1F)T960°C (€0P)TovI‘l 90F)TrI6 (1I0F) +#'90L A1 XNDD [INzdl
(€ SPITerLoc (€TP6FITe (I'1F) 0°C0F (ToF oozl (€0F) 661 ToPr1e 1dA199p Jueuo)
(1I9F)9cey (€eF) sty (€T1P) 1Ly (8'0F) 1'ST¥ (€0F) 98Ty F0F) 8 STy 1dA1oap Loy SHV
(1'0F) 6¢¢ (1'0F) 8'8¢¢ (TOF)¥'9¢8 (ToF)TTES (ToF)gcs (S'0F) LTS £ox-qnd ggv joway
(I'0F) v'6¢ (009 6€ (I'0F)9°LE (00F)9°8¢ (I'0F)9°6¢ (I'0F)9°LE Koy-ud gV 180071
(OPSIF)9TSLI0] (S8IF)ISLOT (EYF)ITELTT (SOF)SLSI'T (6'0F)9°€L6 (S0F)8 8L aadInaI XNDD [INTT]
(8'0F) L'9v6'E (9'1F)T08¢ (ToF) 0S¢ (Trowce (To# o1 (To#ol 1d£109p JuRuo)
(S0P ILE (SCoPeLe (6'0F)8'9¢ '0F)8LE ToPLLE (€0F)8'LE 1dA1oap Koy sV
(TI0P) '8¢ ToP)ove (ToF)9sre (T0F) ore ToF)oere (1'0F) 8s¢ £oy-qnd gg v e10uway
(1'0F)991 (ToFoect (T0P)tT6 (0F)86 (IoF)To1 (IoFcs Kovy-ud gV 180071
(I'6€1F) 8°€65°08 (€91F)+'680°T1 (€TF)TT0IT (STHOIFT O1F)8sT'1 FoF)TSI'l aadImaI XNDD [Tedl
qIN 00T qN0T qan T 1001 101 Il

9y © JO (SPUODISI[IW UT) SWIT} [BASLIAI JO UMOPYealg T d[qeL

pringer

Qs

1466 U. Lee et al.

7.2 Detailed Performance of Each Component

We measured the performance of the remote content retrieval (single hop). Retriev-
ing/decrypting involves six steps: (1) FUSE open/read call (in laptops only), (2) CCN data
retrieval over a remote node, (3) ABE local repository key look-up, (4) ABE public key
retrieval from a remote node, (5) CP-ABE decryption of an AES key, and (6) content decryp-
tion with AES-256.

As shown in Table 2, the most time consuming operations are the CCN retrieval and
CP-ABE decryption, and they have a positive relationship with the file size. Unlike the CCN
retrieval and CP-ABE encryption, the ABE local repository key look-up, ABE private/public
key retrieval from a remote node, and CP-ABE decryption of an AES key increase linearly
with the file size. The cost of the FUSE operations took less than a few milliseconds, and we
did not report a delay in the table. Based on the results, the laptop to Nexus One (L2M) and
desktop computer to Nexus One (D2M) exhibited similar behaviors in the CCN retrieval and
CP-ABE decryption. However, the desktop computer to laptop (D2L) was 2-5 times faster
than L2M and D2M. These differences were caused by the lower computation power of the
Nexus One.

7.3 PCN Overhead

Given that there is no available realistic trace of personal content management, we collected
the recently accessed files from Windows PCs. We drew participants from researchers and
graduate students, and collected data from a total of 31 participants (25 male, 6 female). The
participants varied in age: 22 were between 21-30 years old; 14 were between 31 and 40 years
old; 1 was between 41 and 50 years old. Windows maintains a link to each file accessed in
a designated directory (e.g. Windows XP in the Recent directory). A symbolic link file is
automatically created when the target file is opened for the first time; also, whenever the target
file is accessed, the link’s modification time is automatically updated (refreshed). Although
this data set does not provide a real-time trace, it provides valuable information for system
evaluations (e.g. the average number of prefixes and content access/update patterns). Our
investigation demonstrates that the time span of recently accessed files typically ranges from
one to two months. There was only one participant who recently erased their access history,
and we excluded this participant from the analyses.

For each user, we plot the number of distinct files and the number of distinct directories
(Fig. 6). The number of distinct directories is similar to the number of prefixes that PCN needs
to announce (assuming that updates occur therein). The number of distinct files provides a
rough usage activity level: users 1 and 2 were less active, whereas users 29 and 30 were
more active than the regular users. It appears that most participants accessed 120-140 files
over the time span of one to two months; this number is conservative in that it only counts
the files that were accessed via file browsers. The figure also demonstrates that the number
of directories was typically <60. This number is closely related to the number of distinct
prefixes announced by the user (which can also be aggregated, e.g. /My Doc/).

For a given social network with a hop limit of &, the routing table size in an intermediate
node is proportional to the number of distinct prefixes. The following is a simple back-of-
the-envelope calculation. Assuming that there is an average branching factor of 100 and a
hop limit of k¥ = 1,k = 2, a node needs to keep the entries of a total of 100 and 10,000
people, respectively. If a user has 60 prefixes, each of which is 100 bytes, the total number
of entries is 6,000 and 600,000, respectively, and the total storage demand is 0.6 MB and 60
MB, respectively. The overhead of k = 2 can be reduced if we selectively include friends of

@ Springer

Secure Personal Content Networking 1467

180
Distinct files ——<&

160k Distinct directories ----H¢---- |

140

120

80

60

Number of items

40

20

Participant ID

Fig. 6 Recently accessed files and directories
450 —

400 H 1

350 H 1

300 H 1

250 H 1

200 H 1

150 1

100 H 1

Number of directories

50 H H

0 H’_"_"_‘!_\V_\r—\r—\r——‘ r—_n_\\’_‘

1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19>=20
Number of files

Fig. 7 Number of files accessed per directory

friends because the purpose of extending more than one hop is to limit the impact of network
address translation (NAT).

We also analyzed how many files are accessed per directory (Fig. 7). The figure demon-
strates that the number of distinct files accessed per directory is highly skewed, and only a
small number of files are accessed per directory. For example, in 41 % of directories, only
a single file was accessed, and the fraction of directories that had more than five distinct
files accessed was only 10.2 %. This result explains why participants have a high number of
directories as opposed to a distinct number of files.

Finally, in order to analyze how people interact with files, we measured the time difference
between the link creation and modification (i.e. access time span of a file) and plotted the
results in Fig. 8. Recall that a link is modified (refreshed) whenever the target file is accessed.
Interestingly, the figure demonstrates that the file access patterns of personal content is almost

@ Springer

1468 U. Lee et al.

2500
% ETC
IS0
Music
boo Web
2000} EE Code .
0] : Archive
3 Video
o Spreadsheet
“H 1500 Slideg i
w Graphic
o Document
)
1000 b
Q
=] 7
=4
500 B
O m EETTE pomwe mew———
o S \70 < 5 90 96\ u’o \9\5\ ¥ ¥ \5\0 6‘\5\ N

Time difference between creation
and last access (min)

Fig. 8 Distribution of access time span based on file types

bimodal; that is, quite a significant percentage of files are only accessed once and are read-
only (i.e. time difference is 0, 64.1 %), and another significant percent of files are repeatedly
accessed over the time span of longer than one hour (i.e. the time difference is greater than
60min, 28.6 %). The remainder of the files (7.3 %) has intermediate access and are likely be
repeatedly accessed over time. The files that are repeatedly accessed include both read-only
and read-write accesses. It is expected that the percentage of read-write accesses would be
significantly smaller than that of read-only accesses. This also indicates that the overhead
of maintaining consistency over personal content networking in practice would be minimal
(e.g. only a small number of files are updated over the course of a day) (Table 3).

8 Discussion
8.1 Security Attacks

PCN shares the security benefits of CCN because it is pull-based content retrieval and uses
secure binding, thereby effectively thwarting distributed denial of service attacks, request
flooding attacks, and man-in-the-middle attacks [21]. While PCN introduces new features
such as extra prefix announcements (modification and revocation) and content updates, PCN’s
explicit prefix protection provides a restriction that only authorized users can replicate a
named prefix. Moreover, PCN provides a limitation that replicated content can only be
updated by users with explicit write permissions. Thus, a user can neither request con-
tent replication nor inject updates without explicit permissions from the content owner, as
illegitimate requests are automatically discarded by the intermediate PCN nodes.

8.2 Semantic Versus Hierarchical Naming

PCN uses single persistent hierarchical naming. An alternative is semantic naming as in
semantic file systems where semantic information is added to file systems and semantic

@ Springer

Secure Personal Content Networking 1469

Table3 Feature comparison: delay tolerant networking (DTN), single persistent or device persistent (SP/DP),
flat/hierarchical (F/H), public-key cryptography (PKC)

Naming DTN Topology Replication Update Trust Access Secure
unit control binding
Ficus SP+H Yes P2P File/Dir Yes - ACL -
BlueFS/ SP+H Yes C/S File Yes - ACL -
EnsemBlue
UIA/Eyo DP+H Yes P2p - - - ACL -
Personal SP+H Yes P2pP Volume Yes - - -
RAID
Footloose SP—F Yes P2P File Yes - - -
DisCFS SP—H No C/S Volume Yes KeyNote Certs -
Bayou SQL Yes P2P Volume Yes PKI Certs -
Plutus/ SP—H No C/S - - PKI Certs/ -
SiRiUS Enc-PKC
PAST SP—F No P2P File Yes PKI Certs/ -
Enc-PKC
CCN SP—H Yes P2P File No PKI Certs/ Yes
Enc-PKC
PCN SP—H Yes P2pP File/Dir Yes SPKI Certs/ Yes
Enc-ABE

attribute queries are used to locate files [17,18,40]. An extreme case would be using a
single flat directory where each file has an arbitrary unique name, and a user can search for
any files using semantic queries; the user can maintain views across multiple devices [40].
However, extensive human subject studies in the personal information management field
have demonstrated that a majority of people want to search by browsing a hierarchical file
system (called “orienteering behavior”) and use semantic queries (e.g. desktop search tools)
as a last resort [22]. This results from browsing relying more on recognition and people use
browsing to reduce and distribute the amount that must be recalled [26]. Given that only a
handful of applications require semantic naming (e.g. music players), it is more efficient to
implement semantic data access as an application layer service over PCN.

8.3 Energy Efficiency

The PCN system includes battery powered personal devices. Battery limited devices need to
constantly listen to announcement messages, which prevents them from switching to a sleep
mode for power saving. Recall that whenever there are updates, PCN broadcasts the messages
to the k-hop neighbors in the overlay network. One solution to this problem is to introduce a
proxy server in an AC powered device (e.g. desktop computer, laptop, etc.). A mobile device
can re-configure the underlying overlay network topology such that messages always travel
through the local proxy server. The local proxy buffers all incoming announcements. Then,
the mobile client periodically wakes up and pulls the aggregated announcements.

8.4 Interest-Based Push for Synchronization
In our prototype implementation, we used prefix announcements to notify replica nodes of

content updates. An alternative to this approach s to use interest solicitation, as recommended
in the NDN proposal [51]. The node that updated the content sends an interest solicitation

@ Springer

1470 U. Lee et al.

packet to the replica nodes that are interested in receiving the updated content. Then, those
interested replica nodes will send an interest packet requesting the updated content. For
efficient synchronization, the interest solicitation packet includes detailed information about
the updated content because the prefix announcement was augmented in PCN.

8.5 Private PCN

For security reasons, a user could have two different namespaces: one for private access and
the other for shared access. The private PCN is not visible to other users; thus, a user can
simplify the access control, e.g. just setting a single attribute for content encryption. Given
that a large percentage of content is personal use only, it is expected that a private PCN
network could lower the burden of content management.

8.6 Offline Devices

If devices are offline, a user cannot browse the content stored in the devices. In order to
aid content retrieval from offline devices, PCN can take a similar approach to that used in
Eyo [44]. Each device periodically pulls the content lists of the other devices and stores them
in its local repository. Given this information, PCN nodes can tell which device has a file
and, thus, a user can access the file from offline devices.

8.7 Overlay Construction of the Devices Behind NATs

A device may be behind a NAT, and it cannot actively participate in the overlay network.
In this case, the device can be connected through a relay node that is not behind a NAT and
is sufficiently stable (e.g. the device is online 90 % of the time). The NAT can potentially
reduce the number of peering devices, thus lowering the connectivity among devices. We
can increase the connectivity through allowing devices to exchange IP addresses of k-hop
friends’ devices. For example, when k = 2, Alice can connect to Bob and also to Bob’s
friends. Furthermore, computing resources in cloud systems could be utilized to increase
connectivity, e.g. a personal account in Dropbox could serve as an intermediate node in PCN.

9 Conclusion

We designed and implemented the personal content networking (PCN) platform. We extended
the CCN to build a basic framework for distributed content management with replication and
updates, and then we implemented a secure content-centric access control mechanism using
the recently proposed cryptography tool called attribute-based encryption (ABE) that permits
selective content sharing over untrusted nodes. The primary departure from prior work is that
PCN supports ABE-based secure read-write operations over untrusted devices and secure-
binding between the name and data. We built a PCN prototype through integrating the whole
system using a user level file system, and we demonstrated its feasibility through performance
measurements and trace analysis.

Acknowledgments This work was partly supported by the ICT R&D program of MSIP/IITP [1391104004,
Development of Device Collaborative Giga-Level Smart Cloudlet Technology].

@ Springer

Secure Personal Content Networking 1471

References

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

31.

. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., & Starins, D. (2009). Persona: An online social

network with user-defined privacy. In SIGCOMM’09. Barcelona, Spain.

. Balasubramaniam, S., & Pierce, B. C. (1998). What is a file synchronizer? In MobiCom.
. Bethencourt, J., Sahai, A., & Waters, B. (2007). Ciphertext-policy attribute-based encryption. In SP’07.

Oakland, CA.

. Blaze, M. (1993). A cryptographic file system for unix. In CCS. Fairfax, VA.
. Burnside, M., Clarke, D., Devadas, S., Rivest, R. (2002). Distributed SPKI/SDSI-based security for

networks of devices. Technical report, MIT Laboratory for Computer Science.

. CCNx (2012). Codebase http://ccnx.org
. Chothia, T., & Chatzikokolakis, K. (2005). A survey of anonymous peer-to-peer file-sharing. In Proceed-

ings of the 2005 international conference on embedded and ubiquitous computing.

. Clarke, D., Elien, J. E., Ellison, C., Fredette, M., Morcos, A., & Rivest, R. L. (2001). Certificate chain

discovery in SPKI/SDSI. Journal of Computer Security, 9(4), 285-322.

. CP-ABE (2012). Implementation. http://acsc.cs.utexas.edu/cpabe/.
. Dearman, D., & Pierce, J. S. (2008). It’s on my other computer! Computing with multiple devices. In

CHI’08. Florence, Italy.

. Dohrmann, S., & Ellison, C. M. (2002). Public-key support for collaborative groups. In Annual PKI

Research Workshop. Hanover, NH.

. Druschel, P., & Rowstron, A. (2001). PAST: A large-scale persistent peer-to-peer storage utility. In

HotOS’01. Schloss Elmau, Germany.

. Ellison, C. M. (1996). Establishing identity without certification authorities. In USENIX’96. San Diego,

CA.

. Ferreira, R., Grama, A., & Jagannathan, S. (2005). Plethora: An efficient wide-area storage system. In

High performance computing—HiPC 2004.

. Ford, B., Strauss, J., Lesniewski-Laas, C., Rhea, S., Kaashoek, F., & Morris, R. (2006). Persistent personal

names for globally connected mobile devices. In OSDI’06. Seattle, WA.

. Filesystem in Userspace. (2012). http://fuse.sourceforge.net.
. Geambasu, R., Balazinska, M., Gribble, S. D., & Levy, H. M. (2007). HomeViews: Peer-to-peer middle-

ware for personal data sharing applications. In SIGMOD’07. Beijing, China.

. Gifford, D. K., Jouvelot, P., Sheldon, M. A., James, W., & O’Toole, J. (2007). Semantic file system. In

SOSP’91. Beijing, China.

. Goh, E. J., Shacham, H., Modadugu, N., & Boneh, D. (2003). SiRiUS: Securing remote untrusted storage.

In NDSS’03.

Henderson, S., & Srinivasan, A. (2009). An empirical analysis of personal digital document structures.
In HCII’09. San Diego, CA.

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F,, Briggs, N. H., & Braynard, R. L. (2009).
Networking named content. In CONEXT’09. Rome, Italy.

Jones, W. (2007). Personal information management. Annual Review of Information Science and Tech-
nologys, 41(1), 453-504.

Jones, W., Phuwanartnurak, A. J., Gill, R., & Bruce, H. (2005). Don’t take my folders away! Organizing
personal information to get things done. In CHI’05. Portland, OR.

Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., & Fu, K. (2003). Plutus: Scalable secure file
sharing on untrusted storage. In FAST’03. San Francisco, CA.

Kent, S., Lynn, C., & Seo, K. (2000). Secure border gateway protocol (S-BGP). IEEE JSAC, 18(4),
582-592.

Lansdale, M. W. (1988). The psychology of personal information management. Applied Ergonomics,
19(1), 55-66.

Mazieres, D., Kaminsky, M., Kaashoek, M. E., & Witchel, E. (1999). Separating key management from
file system security. In SOSP’99. Charleston, SC.

Miltchev, S., Prevelakis, V., Ioannidis, S., Ioannidis, J., Keromytis, A. D., & Smith, J. M. (2003). Secure
and flexible global file sharing. In USENIX.

Miltchev, S., Smith, J. M., Prevelakis, V., Keromytis, A., & Ioannidis, S. (2008). Decentralized access
control in distributed file systems. ACM Computing Surveys, 40(3), 10.

. Muthitacharoen, A., Morris, R., Gil, T. M., & Chen, B. (2002). Ivy: A read/write peer-to-peer file system.

ACIM SIGOPS Operating Systems Review, 36(SI), 31-44.
Nightingale, E. B., & Flinn, J. (2004). Energy-efficiency and storage flexibility in the blue file system. In
OSDI’04. San Francisco, CA.

@ Springer

http://ccnx.org
http://acsc.cs.utexas.edu/cpabe/
http://fuse.sourceforge.net

1472 U. Lee et al.

32.
33.

34.

41.

42.

43.
44.
45.
46.
47.
. xFS. (2012). http://xfs.org/.
49.
50.

S1.

Page, T. W., Guy, R. G., Heidemann, J. S., Ratner, D., Reiher, P., Goel, A., et al. (1998). Perspectives on
optimistically replicated peer-to-peer filing. SPE, 28(2), 155-180.

Paluska, J. M., Saff, D., Yeh, T., & Chen, K. (2004). Footloose: A case for physical eventual consistency
and selective conflict resolution. In WM CSA’04. Lake District National Park, UK.

Pedersen, T. P. (1991). Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO’91. Santa Barbara, CA.

Peek, D., Flinn, J. (2006). EnsemBlue: Integrating distributed storage and consumer electronics. In OSDI.
PEM. (1993). http://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail.

Personal Content and Home Network Storage. (2007). the Perfect Storm, Tom Coughlin.

. Reiher, P., Heidemann, J. S., Ratner, D., Skinner, G., & Popek, G. J. (2004). Resolving file conflicts in

the ficus file system. In USENIX’94. Boston, MA.

Rivest, R. (1998). Can we eliminate certificate revocation lists? In In financial cryptography.

Salmon, B., Schlosser, S. W., Cranor, L. F., & Ganger, G. R. (2009). Perspective: Semantic data manage-
ment for the home. In FAST’09. San Francisco, CA.

Sandhu, R. S., & Samarati, P. (1994). Access control: Principle and practice. [EEE Communications
Magazine, 9(32), 40-49.

Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel, E. H., & Steere, D. C. (1990). Coda:
A highly available file system for a distributed workstation environment. /[EEE Transaction on Computers,
39(4), 447-459.

Sobti, S., Garg, N., Zhang, C., Yu, X., Krishnamurthy, A., & Wang, R. Y. (2002). PersonalRAID: Mobile
storage for distributed and disconnected computers. In FAST’02. Monterey, CA.

Strauss, J., Lesniewski-Laas, C., Paluska, J. M., Ford, B., Morris, R., & Kaashoek, F. (2009). Device
transparency: A new model for mobile storage. In HotStorage’09. Big Sky, MT.

Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M., & Hauser, C. (1995). Managing update
conflicts in Bayou, a weakly connected replicated storage system. In SOSP’95.

Veeraraghavan, K., Myrick, A., & Flinn, J. (2008). Cobalt: Separating content distribution from autho-
rization in distributed file systems. In FAST 0S.

X.509. (1988). http://en.wikipedia.org/wiki/X.509.

Yu, S., Ren, K., & Lou, W. (2008). Attribute-based content distribution with hidden policy. In NPSec’08.
Orlando, FL.

Yu, S., Wang, C., Ren, K., Lou, W. (2010). Achieving secure, scalable, and fine-grained data access
control in cloud computing. In INFOCOM’10.

Zhang, L., et al. (2010). Named data networking (NDN) project. Technical report, PARC technical report
NDN-0001.

Uichin Lee is an assistant professor in the Department of Knowl-
edge Service Engineering at Korea Advanced Institute of Science and
Technology (KAIST). He received a B.S. in computer engineering from
Chonbuk National University in 2001, an M.S. degree in computer sci-
ence from KAIST in 2003, and a Ph.D. degree in computer science
from the University of California at Los Angeles (UCLA) in 2008.
Before joining KAIST, he was a member of technical staff at Bell Lab-
oratories, Alcatel-Lucent until 2010. His research interests include dis-
tributed systems and mobile/pervasive computing.

@ Springer

http://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
http://en.wikipedia.org/wiki/X.509
http://xfs.org/

Secure Personal Content Networking 1473

Joshua Joy is a first year Ph.D. student in the Network Research Lab
at the University of California, Los Angeles (UCLA) under the guid-
ance of Dr. Mario Gerla. He received his M.S. degree in Computer Sci-
ence from UCLA in 2012. His research areas include future internet
architecture, mobile cloud computing, security, and privacy.

YoungTae Noh is a Software Engineer at Cisco Systems, Inc. Prior
to joining Cisco Systems, he received his B.S. in computer science
from Chosun University in 2005, an M.S. degree in Information and
Communication from Gwangju Institute of Science Technology (GIST)
in 2007, and a Ph.D. in computer science at University of California,
Los Angeles (UCLA) in 2012. His research areas include data center
networking, wireless networking, future Internet, and mobile/pervasive
computing.

@ Springer

	Secure Personal Content Networking Over Untrusted Devices
	Abstract
	1 Introduction
	2 Target Scenario and Design Goals
	3 Basic PCN Framework With CCN
	3.1 Background: CCN Review
	3.1.1 Naming
	3.1.2 Content Reachability
	3.1.3 Content Retrieval
	3.1.4 Content-Centric Security

	3.2 Naming in PCN
	3.3 Trust Management in PCN
	3.4 CCN Overlay Construction

	4 Secure Content Management
	4.1 Replication
	4.2 Synchronization
	4.3 Prefix Protection
	4.4 Content Centric Access Control
	4.5 Replica Management
	4.6 Key Revocation

	5 Related Work
	5.1 Distributed Peer-to-Peer File Systems
	5.2 Wide Area P2P Storage Systems
	5.3 Decentralized Access Control

	6 Prototype Implementation
	7 Evaluation
	7.1 Overhead of ABE
	7.2 Detailed Performance of Each Component
	7.3 PCN Overhead

	8 Discussion
	8.1 Security Attacks
	8.2 Semantic Versus Hierarchical Naming
	8.3 Energy Efficiency
	8.4 Interest-Based Push for Synchronization
	8.5 Private PCN
	8.6 Offline Devices
	8.7 Overlay Construction of the Devices Behind NATs

	9 Conclusion
	Acknowledgments
	References

