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a b s t r a c t

Mobile cloud computing has become a widespread phenomenon owing to the rapid
development and proliferation of mobile devices all over the globe. Furthermore,
revolutionary mobile hardware technologies, such as 5G and IoT, have led to increased
competition for mobile intelligence among tech-giants, like Google, Apple, and Facebook,
further leading to developments in the field of mobile cloud computing. However,
several challenges still remain; above all, resolving the task allocation problem that
determines the nodes on which tasks will be executed is of paramount importance, and
therefore, is the focus of many previous studies on mobile cloud. To this end, we propose
a novel Mobile MapReduce Task Allocation (MTA) strategy that simultaneously maximizes
both job speed and reliability by modeling communication delay and task reliability.
Based on extensive evaluations using various task allocation strategies, representative
workloads, and real mobility traces on a mobile MapReduce simulator validated against
a platform running on an actual smartphone cluster, we show that MTA significantly
outperformed the state-of-the-art task allocation algorithms by up to 3.7 times and 41%,
respectively, in terms of job speed and reliability, confirming its resource efficiency and
scalability as well.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background and motivation

1.1.1. Mobile computing
A single Apple Watch today surpasses the computing ability of a supercomputer from 30 years ago, owing to the

rapid advancement in mobile computing technology in recent times [1]. By 2021, the total number of mobile devices
that will be connected to the Internet is estimated to approximately reach 12 billion [2], which is one and a half times
the projected world population in that year. The success of Pokemon Go, a virtual reality mobile game, can be attributed
to proliferation of advanced sensors on modern smartphones [3]. Furthermore, companies like Google, Apple, Facebook,
and Baidu have already released their AI libraries for mobile environments to the general public [4–6]. Deep learning,
which recently gained significant attention from stakeholders in the field of AI, has already been introduced to several
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mobile applications. Identifying medicines using pictures captured on smartphones to avoid drug administration errors
[7] or sensing obstacles for seniors with poor vision using smart glasses [8] are examples of the benefits of these deep-
learning-based applications. However, even with these developments in mobile computing, further improvements are
still necessary. For example, current smartphones can only process four out of 15 frames per second, when real-time face
recognition is performed on videos [9]. Moreover, feature extraction in mobile image searches or object recognition based
on mobile deep learning can take more than 100 s [8].

1.1.2. Mobile cloud computing
To overcome the abovementioned limitations of mobile computing, cloud-based mobile computing, which involves

offloading of data and operations on to a cloud, was introduced [10]; in this approach, the mobile client device
only functions as an interface, while, in reality, the operations are performed on the cloud, which includes abundant
computational and energy resources. This mobile computing approach can be classified into four categories based on
two dimensions referred to as locality (remote/local) and mobility (fixed/mobile). In particular, remote-fixed cloud is a
conventional cloud with multiple servers on a remote site; in contrast, local-mobile cloud is a movable cloud based on
a mobile ad-hoc network (MANET) that is dynamically established upon the agreement of nearby device users. Remote-
mobile cloud is not considered further herein because it is rarely used. Local-fixed cloud, also called fog or edge computing,
provides resources using local servers; however, is out of the scope of this paper.

Our study is primarily related to the local-mobile cloud, which has several advantages over the other types of clouds.
The local-mobile cloud is based on device-to-device communication technology (e.g., Wi-Fi Direct or Bluetooth), which has
features of free communication, short latency, low energy consumption, and low probability of privacy violations [11].
In the remainder of this paper, for convenience, the remote-fixed and local-mobile clouds are referred to as conventional
cloud and mobile cloud, respectively.

Furthermore, mobile cloud computing can be classified into two types based on the time-intensiveness of a workload
[10]. In particular, when the workload is not time-intensive, a job for the workload can be processed on a single device;
for example, a certain speaker in a room can be quickly recognized by a smartphone with high accuracy based on shared
models that are individually trained on each device [12]. On the contrary, when the workload is time-intensive, mobile
cloud computing can involve collaboratively processing a job by splitting it into several sub-tasks that are performed by
multiple mobile devices for fast job processing; for example, Skyship [13] flies a blimp as an infrastructure coordinator to
create an ad-hoc 5G network in disastrous situations, and dispatches drones to the situation areas, allowing it to process
a large collection of images quickly. We categorize real-world workloads by the time-intensiveness in Section 6.1.4 and
discuss the applications and use cases for the workloads in Appendix A.

1.1.3. Distributed computation model in the mobile cloud
The distributed computation models primarily used in mobile cloud computing can be classified into Master–Slave,

MapReduce, and Dataflow [9,10,14]. First, the Master–Slave is the simplest one in which a master distributes tasks to
multiple slaves and collects the processed results [15]; this model is inappropriate for use in a mobile cloud because
the master device could become a bottleneck. Next, MapReduce is the most universally used model that represents a
job using map tasks for filter, transformation, or expansion operations and reduce tasks for aggregation operations [16].
The abstraction simplicity of map and reduce enables high scalability and fault tolerance [17]. Lastly, Dataflow is the
most expressive model that represents any job as a directed acyclic task graph [18]. MapReduce and Dataflow show
similar processing performance; nevertheless, MapReduce is more fault-tolerant than the Dataflow model because of the
associated overhead cost of managing tasks as a complicated task graph in the latter [19], when these models are compared
using Hadoop and Spark, which are representative execution platforms for MapReduce and Dataflow, respectively, and
without considering special platform features like memory caching. Therefore, in our study, first, we solely consider
MapReduce, and will extend our approach to Dataflow in a later study. Hereafter, MapReduce in the mobile cloud is
referred to as Mobile MapReduce.

1.1.4. Task allocation challenges of mobile MapReduce
The primary topics in mobile cloud computing include task allocation, fault tolerance, and energy awareness. Among

these, resolving the task allocation problem, which involves determining the nodes on which tasks are executed, is of
paramount importance; this is clear considering that the highest portion of mobile cloud computing studies were on this
topic or at least covered it as an issue, as summarized in Appendix B. In a similar vein, we identified two task allocation
challenges that arose when the MapReduce task allocation strategy of the conventional cloud was used in the mobile
cloud, owing to differences in cloud characteristics; Fig. 1 illustrated these differences from the perspective of network
contention and mobility.

• Task Allocation Challenge 1 (Long Communication Delay): In general, a conventional cloud connects hundreds of
geo-distributed racks through routers arranged in a tree hierarchy and each rack, in turn, connects tens of servers.
In contrast, a mobile cloud uses mesh topology with multi-hop connectivity between mobile devices in which
each device itself concurrently acts as a server and router. It should be noted that, due to contention between
communication channels and relatively low bandwidth, communication quality is relatively poor in mobile clouds
[20]. Furthermore, the conventional MapReduce task allocation strategy prioritizes hop-distance based data locality
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Fig. 1. Comparison of conventional and mobile clouds in terms of network contention and mobility. Contention (red) appears as a shaded circle
over device E. Mobility (blue) is represented by the cloud shape and node departure.

[21], whereas in the mobile cloud, performance degradation can occur when the conventional strategy is used [22].
For example, if the data in storage server A of a conventional cloud needs to be processed in one of the processing
servers B, C, or D, as shown in Fig. 1(a), the closest server B processes the data. In contrast, when the data in devices A
and B of a mobile cloud needs to be processed in devices C and D, as shown in Fig. 1(b), even though hop distances of
A–D and B–C pairs are shorter than those of A–C and B–D pairs, communication delay between the former pairs can
be longer than that of the latter pairs because device E, which is an intermediate device for communication, generates
contention. Therefore, when the MapReduce task allocation strategy in a mobile cloud is based on the conventional
hop distance, communication between tasks might be delayed due to contention, which can consequently result in
low job speed.
• Task Allocation Challenge 2 (Low Job Reliability): Considering network mobility, because network topology in a

mobile cloud changes as nodes join and leave the cloud, a task fails if the task-allocated node leaves the cluster.
Thus, because the conventional MapReduce task allocation strategy assumes a fixed topology, job reliability can be
low because of task failures in the mobile cloud [14].

To the best of our knowledge, there is currently no specific task allocation strategies for Mobile MapReduce, aside from
those based on the conventional MapReduce. For example, well-known mobile MapReduce platforms, such as Hyrax and
Misco, are based on Hadoop [14,23,24], which is the most widely used conventional MapReduce platform. Furthermore,
other than the importance of addressing this issue, finding a solution for it is not straightforward, because the complex
characteristics of both conventional cloud and mobile cloud need to be considered [10].

1.2. Key contributions, performance summary, and outline

In this study, we propose a novel Mobile MapReduce Task Allocation (MTA) strategy to solve the two Task Allocation
Challenges specified earlier. Our primary objective is to improve job speed and reliability by considering network
contention and mobility: Contention Awareness & Mobility Awareness. Based on the Contention Awareness principle, we
aim to model contention-based communication delays in a mobile cloud and allocate tasks to nodes that can reduce the
delay, consequently increasing job speed. In addition, based on the Mobility Awareness principle, we identify unreliable
nodes with high mobility and then allocate tasks by giving priority to reliable nodes instead. The increased reliability of
task processing or communication between tasks can, in turn, lead to increased job reliability. The contributions of our
study are summarized as follows:

• To the best of our knowledge, MTA is the first task allocation strategy to simultaneously consider both job speed
and reliability issues in the mobile cloud. The application of MTA can lead to improved synergy, and consequently,
better performance in the mobile cloud.
• We extensively evaluate the efficiency of MTA using state-of-the-art strategies (Hadoop, Purlieus, Mantri, and

HPSO) on representative mobile cloud computing workloads (Naive Bayes, SIFT, and Join) and hundreds of real
mobility traces (Conference, Village, and Race). In addition, we developed a new task allocation simulator for mobile
MapReduce and validated it against a mobile MapReduce platform running on an actual smartphone cluster. We have
released our software including the algorithms and simulator to help other researchers studying task allocation in
a mobile cloud. The software is available at https://github.com/kaist-dmlab/mta.
• Our results show that the proposed MTA significantly outperformed the state-of-the-art task allocation algorithms

by up to 3.7 times and 41% in terms of job speed and reliability, respectively. Furthermore, MTA is resource-efficient
as it can improve performance with fewer cluster resources than other algorithms and is scalable to input data size.

The remainder of this paper is organized as follows. In Section 2, previous task allocation studies related to both
conventional and mobile clouds are discussed. The task allocation problem for Mobile MapReduce is defined in Section 3
and its theoretical analysis is presented in Section 4. The design and evaluation details of MTA are described in Sections 5
and 6, respectively. Finally, Section 7 provides our conclusion.

https://github.com/kaist-dmlab/mta


4 J.-w. Lee, G. Jang, H. Jung et al. / Pervasive and Mobile Computing 60 (2019) 101082

Table 1
Summary of notations.
Notation Description

N, L Set of all nodes and set of all links in a mobile cloud
T, E Set of all tasks and set of all edges between tasks in a MapReduce job
NP Set of nodes with allocated tasks in phase P
TP Set of tasks in P
TAP Set of task allocations in P . TAP = {(T1,N1) , (T2,N2) , . . .}

K Number of task allocations. K = |TAP | = |NP | = |TP | = |N| × ClusterUtilization
dS,i Success duration, or delay, of the ith task
dF ,i Failure duration, or delay, of the ith task
ri Reliability of the ith task
λi Failure rate of the node to which the ith task is allocated

2. Related work

2.1. Task allocation in the conventional cloud

Task allocation in the conventional cloud is primarily aimed at increasing job speed based on a certain data locality.
In particular, Hadoop [21] allocates map tasks to nodes that minimize hop-distance based data locality and reduce tasks
to random nodes. LARTS [25] improves the random reduce task allocation by identifying nodes with the largest number
of map outputs in order to increase reduce task locality. Purlieus [26] allocates map tasks based not only on data locality,
but also on connected components, according to three representative workload types; in addition, it allocates reduce
tasks to the same nodes as map tasks. Mantri [27] follows the same approach as Hadoop in terms of map task allocation,
but maximizes node communication speed for reduce task allocation. Spark [28] implements data locality on a resilient
distributed dataset (RDD), which is a collection of data partitioned across nodes; for example, ShuffledRDD, an RDD for
representing shuffle communication, allocates reduce tasks by following the same objective as LARTS. Furthermore, in
a heterogeneous conventional cloud, task allocation strategies consider not only job speed, but also job reliability and
energy conservation. For example, HPSO [29] allocates tasks to maximize job reliability by modeling both processor and
communication reliability. In contrast, the approach proposed by Datla et al. [30] minimizes both job makespan and energy
consumption.

It is important to note that many conventional task allocation strategies based on well-known heuristic algorithms such
as A* [31,32] or dynamic programming [33] are inadequate because of the weakly optimal substructure of our mobile task
allocation problem. Please refer to Section 5.2 for details.

2.2. Task allocation in the mobile cloud

In general, a majority of mobile cloud computing studies (e.g., Hyrax or Mobile Storm) [9,14,23,24] are based on
conventional task allocation strategies from conventional cloud computing platforms (e.g., Hadoop or Storm). In contrast,
thus far, few studies on task allocation research have considered the characteristics of mobile cloud. MobiDic [34] allocates
tasks to nearby mobile devices in a round-robin fashion. Scavenger [35] allocates tasks to minimize job completion
time based on the assumption of heterogeneous communication bandwidth and processing power of mobile devices.
Serendipity [36] minimizes either job completion time or energy consumption. However, to the best of our knowledge,
no effort has been made in designing a task allocation strategy focusing on the Task Allocation Challenges faced in a mobile
cloud.

3. Problem statement

In this section, we define the task allocation problem for Mobile MapReduce. Table 1 lists the notations used in this
paper.

In a mobile cloud, as time elapses, nodes might join and leave, and links might connect and break, resulting in changes
to the topology; in particular, the topology of a mobile cloud can be represented as an undirected graph consisting of nodes
N ∈ N and links L ∈ L. Because task allocation must be completed in an instant to meet the responsiveness requirement
of mobile cloud computing [37], all the variables for an allocation are assumed to be for the same time, and thus, time
notations are not denoted on the variables.

A MapReduce job can be represented as a directed acyclic graph consisting of tasks T ∈ T and edges connecting the
tasks

(
Tj, Tk

)
∈ E. Tasks in a MapReduce job can be either Map or Reduce tasks, and the same type of tasks are processed

together in a set called phase P ∈ {Map, Reduce} [21]. In particular, map tasks primarily involve filter, transformation,
or expansion operations, while reduce tasks involve aggregation operations [16]. In general, a task TP ∈ TP belonging to
phase P initially receives the previous outcomes from tasks in the previous phase, performs the current operation for the
received data, and sends the current outcome to tasks in the next phase.
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Task allocation involves determining a set of task and node pairs TAP = {(T1,N1) , (T2,N2) , . . .} that describes the
nodes on which tasks are executed. The allocation of tasks to certain nodes depends on the objective of Mobile MapReduce.
As indicated in the Task Allocation Challenges, job speed, job reliability, or energy conservation can be regarded as the
objective of Mobile MapReduce. Thus, a task allocation problem refers to the optimization process of finding a certain task
allocation arrangement that best achieves the set objective, formally defined by Definition 1.

Definition 1 (Task Allocation Problem). When a phase P of a MapReduce job begins, for all candidate task allocation sets
TAP ∈ T AP generated from the given tasks TP and all nodes N in a mobile cloud, a certain task allocation arrangement
TAP

∗ is selected such that it minimizes the associated Cost , which can be expressed as Eq. (1).

TAP
∗
= argmin

TAP∈T AP

Cost (TAP) s.t. 0 < ClusterUtilization ≤ 1

|TAP | = |N| × ClusterUtilization
(1)

In a mobile cloud, because all nodes are not always available due to network unreliability or resource poverty in a
cluster (0 < ClusterUtilization ≤ 1) [10], not all nodes in the cluster participate in job processing, instead only a subset
thereof does. Hereafter, K refers to the number of task allocations |TAP | determined by |N|×ClusterUtilization. In addition,
K equals |NP | or |TP |.

Task allocations for all phases are conducted independently.

4. Theoretical analysis of task allocation problem

In this section, we describe our proposed novel optimization cost for Mobile MapReduce and derive the associated
properties by analyzing the task allocation problem from the perspective of Mobile MapReduce. First, in order to simplify
mathematical formulation, we prescribe three assumptions for relatively minor issues compared with and aside from
the Task Allocation Challenges in a mobile cloud even though the issues are frequently addressed in a conventional cloud
[18,21,28]. These assumptions are listed as follows:

• Assumption 1 (Homogeneity): Each node has equal processing power and equal maximum communication band-
width. However, this assumption on homogeneity can be relaxed in Eq. (5).
• Assumption 2 (Balanced Load): Each task is assigned an equal amount of workload. This assumption on balanced

load can also be relaxed in Eq. (5).
• Assumption 3 (Task Synchronization): The beginning of tasks in a phase are synchronized to the same time. This

is because, in the case of map tasks, all of them begin as a job starts. In contrast, reduce tasks cannot start until all
the map tasks have finished processing all key-value pairs, because, otherwise, there is no guarantee that all values
associated with the key of the reduce tasks would have been processed to be sorted and grouped by the key [21].
Furthermore, because modeling asynchronous tasks additionally requires expected states of tasks in the next phase,
such modeling is relatively harder and will be studied in a future work.

Next, more importantly, for the problem analysis, we establish two principles to resolve the Task Allocation Challenges,
which are specified as follows:

• Principle 1 (Contention Awareness): Tasks should be allocated to nodes that decrease contention-based communi-
cation delay.
• Principle 2 (Mobility Awareness): Tasks should be allocated to reliable nodes by determining network mobility.

Considering both abovementioned principles, we introduce Time to Phase Success (TPS) cost, which can account for
communication delays between tasks as well as task reliability simultaneously. Based on a universally adopted failure
recovery convention in which a failed task is restarted on another node until it is successfully completed [21,28], the
probability of task success at the jth (j = 1, 2, . . .) trial is

(1− ri)j−1 ri, (2)

where ri is the task reliability. Then, we define the time to task success averaged over all K tasks in the same phase as
TPS, which can be expressed as

TPS =
1
K

K∑
i=1

∞∑
j=1

(
dF ,i (j− 1)+ dS,i

)
(1− ri)j−1 ri, (3)

where dS,i and dF ,i denote the duration, or delay, of the task success and failure, respectively. By replacing∑
∞

j=1 j (1− ri)j−1 ri with 1/ri and
∑
∞

j=1 (1− ri)j−1 ri with 1, TPS becomes

TPS =
1
K

K∑
i=1

{
dS,i +

(
1
ri
− 1

)
dF ,i

}
. (4)
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Thus, TPS can account for effects from both task delay and task reliability factors.
We can express the three variables dS,i, ri, and dF ,i in further detail. First, task success delay dS,i is the sum of

communication and processing delays. Based on the Homogeneity and Balanced Load assumptions, the processing delay
dProc is same for all tasks. However, the communication delay is highly likely to be different for all communication paths
because of differences in contention. Thus, dS,i can be expressed as

dS,i = dComm,i + dProc . (5)

In Section 5.1, we introduce a method to determine communication delay dComm,i. To relax the assumptions on homogeneity
and balanced load, dProc in Eq. (5) needs to be extended to dProc,i = InputSizei/ProcessingThroughput i by considering the
input size and throughput of each task.

Second, assuming that the cluster departure time of the task-allocated node follows an exponential distribution, which
is most commonly used for modeling reliability [38], ri can be expressed as

ri = exp
(
−λidS,i

)
, (6)

where λi is the task failure rate; we introduce a method to determine this in Section 5.1.
Lastly, dF ,i can be deduced from the relationship of dS,i and ri. According to the reliability theory [38], the probability

density function of task failure is

FailurePdf (t) =
d
dt

[1− exp (−λit)] = λi exp (−λit) . (7)

Then, dF ,i, which is the average of t during dS,i, can be represented as

dF ,i =

∫ dS,i

0
t × FailurePdf (t) dt =

∫ dS,i

0
λit exp (−λit) dt =

(
−dS,i −

1
λi

)
exp

(
−λidS,i

)
+

1
λi

. (8)

Consequently, by replacing dS,i, ri, and dF ,i in Eq. (4) with Eqs. (5), (6), and (8), respectively, TPS becomes

TPS =
1
K

K∑
i=1

{
1
λi

exp
(
λidS,i

)
+

(
dS,i +

1
λi

)
exp

(
−λidS,i

)
−

2
λi

}
. (9)

Eq. (9) is utilized as the optimization cost, which can be understood through Lemma 1.

Lemma 1. Minimizing TPS is the same as maximizing task speed and task reliability for all tasks.

Proof. By partially differentiating Eq. (9) on each dS,i, we obtain

∂TPS
∂dS,i

= exp
(
λidS,i

)
− λidS,i exp

(
−λidS,i

)
. (10)

Because the range of the equation is positive in the given domain, λi > 0 and dS,i > 0, thus TPS is increasing for dS,i. By
partially differentiating Eq. (9) on each λi, we obtain

∂TPS
∂λi
=

1
λi

2

{(
λidS,i − 1

)
exp

(
λidS,i

)
−

(
λi

2dS,i2 + λidS,i + 1
)
exp

(
−λidS,i

)
+ 2

}
. (11)

Because the range of the equation is positive in the given domain, λi > 0 and dS,i > 0, thus TPS is increasing for λi.
Therefore, minimizing TPS is the same as minimizing dS,i and λi for all tasks, i.e., based on Eqs. (5) and (6), minimizing
TPS is the same as maximizing task speed and task reliability for all tasks. ■

The effect of minimizing TPS can be explained using Theorem 1.

Theorem 1. Minimizing TPS implies maximizing job speed and reliability.

Proof. First, minimizing TPS of each independent phase in a job implies minimizing job duration, and, in turn, maximizing
job speed. Next, because job reliability is the product of reliability of all tasks in a job [38], maximizing task reliability by
minimizing TPS as in Lemma 1 implies maximizing job reliability. The converse does not hold. ■

Furthermore, a unique property of the task allocation problem can be derived as presented in Theorem 2. This property
should be considered for choosing a task allocation strategy in a mobile cloud.

Theorem 2. The task allocation problem in a mobile cloud exhibits weakly optimal substructure.

Proof. A problem is said to exhibit weakly optimal substructure if at least one optimal solution can be constructed from
the optimal solutions of its subproblems [39]. When we determine a new task allocation (T2,N2) after a predetermined one
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(T1,N1), the predetermined communication delay dComm,1 can change if contention arises on the shared communication
paths of the two task allocations for reasons stated in Task Allocation Challenge 1. However, in the case that the
communication paths are not shared; contention does not arise at all; a communication delay of a sub-task allocation
does not influence another; and therefore, at least one set of task allocations can be deterministically constructed from
the sub-task allocations. ■

5. Proposed task allocation strategy

In this section, we present our proposed novel Mobile MapReduce Task Allocation (MTA) strategy to solve the task
allocation problem in mobile cloud computing, which is known to be strongly NP-Hard [32]. If N denotes the number of
all nodes in a mobile cloud and K denotes the number of tasks to be allocated, the complexity of the entire search (NPK )
is the product of the complexity of a 0–1 knapsack problem (NCK ) and that of a traveling salesman problem (K !), which
involve selecting certain nodes for the tasks and ordering the tasks for each node selection, respectively, and both these
problems are known to be NP-Hard [39].

In addition, we derive two heuristics of the MTA based on whether cluster utilization is known. This is because the
cluster utilization is typically specified in the job requirements in a conventional cloud, whereas it should not be specified
in the mobile cloud for a dynamically changing resource caused by mobility [10]. Thus, we refer to MTA with static and
dynamic cluster utilization as MTA-S and MTA-D, respectively.

In Section 5.1, we discuss the estimation of the aforementioned undecided variables. Then, we present MTA-S that
involves maximizing job speed and reliability based on genetic node selection and greedy task ordering in Section 5.2 and
MTA-D that involves efficiently exploring the entire cluster utilization range to further maximize job speed and reliability
in Section 5.3.

5.1. Variable estimation

Before designing the heuristic, we set the failure rate λi and communication delay dComm,i, which were introduced in
Section 4. Because predicting these variables is beyond the scope of this study, we estimate these variables from history
information instead, which is a common convention in the field [22,27].

In particular, we trace mobility history, including node departure or link breakage, for all nodes and estimate λi by
taking the reciprocal of the expected time to failure of the node Ni based on the traced mobility history. Thus, the estimated
failure rate λ̂i can be expressed as

λ̂i =
fi∑

j TimeToFailureij
, (12)

where fi is the number of failures of Ni and TimeToFailureij is the jth time to failure of Ni.
Furthermore, we trace bandwidth history for all links and estimate dComm,i in terms of link bandwidth, which, in

turn, can be estimated by averaging the traced link bandwidth history. Based on the Task Synchronization assumption,
dComm,i for a task allocation (Ti,Ni) is determined as the maximum edge delay from all edges

(
Ti, Tj

)
∈ ETi of the task Ti

communicating with other tasks Tj [21]. In addition, the bandwidth of the edge
(
Ti, Tj

)
is determined as the minimum

link bandwidth from all links Lk ∈
(
Ni,Nj

)
in the shortest path composed of the edge. Thus, the estimated communication

delay d̂Comm,i can be expressed as

d̂Comm,i = max
(Ti,Tj)∈ETi

oj
minLk∈(Ni,Nj) b̂k

, (13)

where oj is the communication traffic between task Ti and Tj, which is same for all tasks based on the Balanced Load
assumption, and b̂k is the estimated bandwidth of Lk. Consequently, by replacing dComm,i in Eq. (5) with Eq. (13), the
estimated task success delay d̂S,i can be expressed as

d̂S,i = d̂Comm,i + dProc . (14)

5.2. MTA-S

The first heuristic MTA-S significantly reduces the search space of the task allocation problem by assuming static
cluster utilization, i.e., a fixed number of task allocations K . However, the product of NCK for node selection and K ! for
task ordering is still high in the case of a mobile cloud; therefore, efficient search algorithms need to be employed.

MTA-S involves genetic node selection for the combinatorial outer search and greedy task ordering for the factorial
inner search of each outer node selection. Thus, the genetic and greedy algorithms can be appropriately used for designing
MTA-S regardless of the weakly optimal substructure property defined by Theorem 2. On the contrary, the conventional
heuristic algorithms, such as A* [31,32] or dynamic programming [33], that require a problem to exhibit strongly optimal
substructure are inadequate in the mobile cloud. In particular, for the node selection as the outer search, we adopt the
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Algorithm 1 MTA-S (Overall Procedure)
Input: TP , N
Output:

(
TAP

∗ , CostP ∗
)

1: /* Outer Search: Genetic Node Selection */
2:

(
NP =

{
NP,1, · · · ,NP,PopulationSize

})
← Sample K -sized (|TP |) node subsets PopulationSize times

3:
(
TAP

∗ , CostP ∗
)
← argminNP∈NP

Evaluate_Fitness (TP , NP)

4: while Not_Finished
(
NP , CostP ∗ , MaxGenerations

)
5:

(
NP,S,NP,O

)
← Select (NP)

6: NP ← NP,S + Alter
(
NP,O

)
7:

(
TAP

∗ , CostP ∗
)
← argminNP∈NP

Evaluate_Fitness (TP , NP)

8: return
(
TAP

∗ , CostP ∗
)

9:
10: function Evaluate_Fitness((T = (T1, · · · , TK ))← TP , (N = (N1, · · · ,NK ))← NP )
11: /* Inner Search: Greedy Task Ordering */
12:

(
T∗ =

(
T1∗, · · · , TK ∗

))
← Greedy_Task_Ordering (T , N) // Algorithm 2

13: TAP
∗
←

{(
T1∗,N1

)
, · · · ,

(
TK ∗,NK

)}
14: return

(
TAP

∗ , TPS
(
T∗ , N

))
15: function TPS(T , N)
16:

(
λ̂1, · · · , λ̂K

)
← Estimate failure rates of T on N based on Eq. (12)

17:
(
d̂S,1, · · · , d̂S,K

)
← Estimate success delays of T on N based on Eq. (14)

18: return 1
K

∑K
i=1

{
1
λ̂i
exp

(
λ̂id̂S,i

)
+

(
d̂S,i + 1

λ̂i

)
exp

(
−λ̂id̂S,i

)
−

2
λ̂i

}
// Eq. (9)

genetic algorithm, one of the most widely used meta heuristics for task allocation research [29,33,40]. On the other hand,
for the task ordering as the inner search, we adopt a sorting-based greedy algorithm instead of the genetic algorithm.
This is because the complexity of the greedy algorithm O(K 2) is significantly less than that of the genetic algorithm
O(MaxGenerations · PopulationSize) in the case of a mobile cloud, where MaxGenerations is the maximum number of
generations and PopulationSize is the population size per generation, and thus it can be considered that the greedy
algorithm is suitable for real-time task allocation, as shown in Section 6.2.2. Task ordering in the mobile cloud is a greedy
process, because it solely focuses on changing the order of two tasks at each comparison operation, ignoring the implicit
influence of these changes on other tasks owing to corresponding changes in the shared communication paths. Finally, the
overall complexity can be represented as O(MaxGenerations · PopulationSize · K 2), which is in polynomial time. Algorithm
1 describes the overall procedure of MTA-S.

In more detail, MTA-S takes the task set TP to be allocated for P and entire node set N in the mobile cloud as input
and returns the best task allocation set TAP

∗ that minimizes TPS as output. As specified earlier, MTA-S begins with
genetic node selection for the outer search. First, node population NP is initialized by randomly sampling K -sized node
subsets PopulationSize times from N; then, the fitness of the initial population is evaluated to determine the initial best
task allocation set TAP

∗ (Lines 2–3). Next, the genetic algorithm is used to select the survivor NP,S and offspring NP,O
populations for recombination. Then, these populations are combined together; however, they are altered using crossover
and mutation operations to create genetic diversity (Lines 5–6). A crossover operation combines the genetic information
of two node sets to generate new sets, and a mutation operation alters one or more nodes in a node set while leaving
others unchanged. Then, the fitness of the evolved node population NP is evaluated (Line 7). Lines 4–7 of the algorithm are
repeated until the population has evolved MaxGenerations times or the cost becomes constant. Finally, the outer search
is terminated by returning the best task allocation set with its TPS cost (Line 8). The determination of the parameters for
the genetic algorithm, including Select, Alter, PopulationSize, and MaxGenerations, is discussed in Section 6.1.5.

The Evaluate_Fitness function is used for greedy task ordering for the inner search and calculates the TPS cost for the
ordered tasks. To maintain task order during function execution, input parameters are passed as sets and then transformed
into vectors (Line 10). Furthermore, the Greedy_Task_Ordering function in Algorithm 2 performs the inner search, in
essence, and returns the local best task order T∗ (Line 12). This function then terminates by returning the local best task
allocation TA∗, which is obtained by pairing T∗ with N element-wise (Lines 13–14).

For each outer node selection, greedy task ordering is performed in the MTA-S. In particular, we adopt the indexing
approach of the bubble sort for the aforementioned reason. The task ordering procedure is described by Algorithm 2; it
determines the best task order T∗ with the minimum TPS based on a task order T and node order N as inputs from the
outer search. In an iteration of the bubble sort (Lines 2–3), Tj−1∗ is swapped with Tj∗ from the current best order (T∗) to
define the expected next order (TNext ) (Line 4), and T∗ is compared with TNext to update the current best order if TPS of
the next one is lower than the current one (Lines 5–6). After the search is completed, the best task order is returned (Line
7).
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Algorithm 2 Greedy Task Ordering (Inner Search)
Input: (T = (T1, · · · , TK ) , N = (N1, · · · ,NK ))
Output: T∗
1:

(
T∗ =

(
T1∗, · · · , TK ∗

))
← (T1, · · · , TK )

2: foreach i ∈ (1, · · · , K )
3: foreach j ∈ (2, · · · , K − i)
4:

(
TNext =

(
TNext,1, · · · , TNext,K

))
← (T1∗, · · · , Tj∗, Tj−1∗, · · · , TK ∗)

5: if TPS
(
T∗ , N

)
> TPS (TNext , N) then // Algorithm 1

6: T∗ ← TNext

7: return T∗

Algorithm 3 MTA-D (Overall Procedure)
Input: N
Output: TAP

∗

1:
(
KLow , KHigh

)
← (1 , |N|)

2: while KLow <= KHigh

3:
(
KLeft , KMid , KRight

)
←

((
3× KLow + KHigh

)
/4 ,

(
KLow + KHigh

)
/2 ,

(
KLow + 3× KHigh

)
/4

)
4:

(
TLeft =

{
T1, · · · , TKLeft

}
, TRight

)
← Generate KLeft and KRight tasks

5:
(
TALeft , CostLeft , TARight , CostRight

)
←

(
MTA-S

(
TLeft , N

)
, MTA-S

(
TRight , N

))
6: if CostLeft < CostRight then
7:

(
KHigh , TAP

∗
)
←

(
KMid − 1 , TALeft

)
8: else
9: (KLow , TAP

∗)←
(
KMid + 1 , TARight

)
10: return TAP

∗

5.3. MTA-D

In contrast to MTA-S, which is a special case of MTA-D, MTA-D involves exploring the entire cluster utilization up to N
to decide a certain K that is most suitable with the dynamically changing resource in consideration. Because linear search
over N is inefficient, MTA-D utilizes binary search and performs MTA-S for each K selection. Therefore, the complexity
of MTA-D is O(log2 N · MaxGenerations · PopulationSize · K 2), which is still in polynomial time. Algorithm 3 describes the
overall procedure of MTA-D.

In particular, MTA-D takes the entire node set N as input and returns the best task allocation set TAP
∗ as output, which

has the minimum TPS, and consequently, the best K value. It begins by initializing the search range with the lower limit
KLow and higher limit KHigh (Line 1). Then, the range is repeatedly divided into half to select the half containing the better
task allocations until the range of K is reduced to a single value (Lines 2–9). In every iteration, three new quartiles are
defined (Line 3). KLeft and KRight denote the representative positions for each half and KMid denotes the middle position.
Then, the task set TLeft and TRight for each half are generated such that the given workload for the phase is divided into
equal KLeft and KRight parts (Line 4). At the end of each loop, the better half is selected based on the costs obtained from
performing the MTA-S procedure for each half (Lines 5–9). Finally, the best task allocation set is returned (Line 10).

6. Evaluation

In our study, the evaluation was systematically conducted to support the following:

• MTA is faster and more reliable than other state-of-the-art task allocation algorithms (Section 6.2.1).
• MTA is resource-efficient (Section 6.2.2).
• MTA is scalable to input data size (Section 6.2.3).
• MTA is compared with task offloading approach (Section 6.2.4).
• MTA is evaluated with different fault tolerance conventions (Section 6.2.5).

6.1. Experimental setting

6.1.1. Configuration
We developed a mobile MapReduce simulator to extensively evaluate the efficiency of the proposed MTA with various

task allocation strategies, representative workloads, and real mobility traces. We used Hadoop 1.2.1 to execute the
distributed MapReduce, J-Sim 1.3 to simulate the mobile ad-hoc network, Jenetics 4.3.0 to perform the genetic algorithm,
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Table 2
Compared algorithms.
Algorithm Task allocation objective Variable estimation method Optimization

Map Reduce dComm,i λi Algorithm

Hadoop [21] (baseline) Data locality Random Hop distance None Greedy
Purlieus [26] Connected components Same nodes as map tasks Hop distance None Greedy
Mantri [27] Data locality Max Comm. Speed Node history None Greedy

HPSO [29] Max job reliability Hop distance Mobility history PSO
MTA (proposed) Max job speed & reliability Link history Mobility history GA

Table 3
Statistics of faultload data sets.
Data set Category # Nodes Duration # Faultloads Avg. Group size Avg. NCD

hagglea Conference 78 3 days 455 19.2 0.18
pmtrb Village 44 19 days 188 11.0 0.39
rollernetc Race 62 3 h 99 21.4 0.60

ahttps://crawdad.org/cambridge/haggle/20090529.
bhttps://crawdad.org/unimi/pmtr/20081201.
chttps://crawdad.org/upmc/rollernet/20090202.

and JDK 1.8.0_191 as the Java compiler. The simulator was validated against a mobile MapReduce platform running on
an actual smartphone cluster as described in Appendix E.

6.1.2. Algorithms
In Table 2, MTA is compared with four state-of-the-art task allocation algorithms in terms of task allocation objective,

variable estimation method, and optimization algorithm. We selected more relevant algorithms among those introduced
in Section 2; in particular, we excluded algorithms if their task allocation objective led to negligible performance
improvements in task allocation [25,34] or if they were considered relatively unimportant in the field of mobile cloud
computing [30,35,36], as is specified in Appendix B.

Baseline Hadoop [21] allocates map tasks to nodes that minimize hop-distance based data locality and reduce tasks to
random nodes; in contrast, Purlieus [26] allocates map tasks by considering data locality as well as connected components
and reduce tasks to the same nodes as map tasks. Mantri [27] allocates map tasks in the same manner as Hadoop, but
allocates reduce tasks in order to maximize node communication speed. Unlike the aforementioned algorithms, HPSO
[29] allocates tasks without phase distinction to maximize job reliability by modeling both processor and communication
reliability; lastly, the proposed MTA allocates tasks by concurrently maximizing job speed and reliability based on link
bandwidth and mobility history. MTA is the only algorithm that supports not only static but also dynamic cluster
utilization.

The last column in Table 2 specifies the method using which each algorithm is optimized. Furthermore, while
Hadoop, Purlieus, and Mantri allocate tasks at once in a greedy fashion, HPSO and MTA search for optimal solutions
using particle swarm optimization and genetic algorithm, respectively. To assign more importance to the task allocation
objective, rather than the optimization algorithm in our evaluation, we permit both to converge even though this favors
HPSO, because MTA with complexity O(MaxGenerations · PopulationSize · K 2) finishes earlier than HPSO with complexity
O(MaxGenerations · PopulationSize2 · K ) given that PopulationSize is assumed to be greater than K in both cases.

6.1.3. Faultloads
In our study, we prepare the group mobility trace using node mobility traces, because raw mobility data usually

represents some form of individual node mobility, such as node position or node contact, as time elapses. A group mobility
trace is constructed by combining similar connected components over time based on edge Jaccard similarity, which is the
number of common edges divided by the number of edges that belong to at least one of the two connected components
being considered. For example, as shown in Fig. 2, two connected components at t1 are derived from a previous connected
component at t0 by an edge break between nodes A and B and an arrival of node C; edge Jaccard similarity (in the middle of
each triangle) is evaluated for each new connected component. The previous connected component at t0 is combined with
the left connected component at t1 whose edge Jaccard similarity (0.6) is greater than the minimum Jaccard coefficient
(0.4, see Section 6.1.5 for its calculation). Consequently, this process generates thousands of group mobility traces that
are a few hundred seconds long.

A group mobility trace is also referred to as a faultload, because the trace describes nodes on which a fault
(i.e., disconnection) occurs as well as the time when it occurs [41]. We evaluated three faultload data sets that encompass
various real situations, such as a conference, village, and race, thus exhibiting different statistics, as summarized in Table 3.

Because there is no universal measure of mobility, we define a new measure Normalized Centrality Distance (NCD) that
can be used to evaluate faultload mobility using graph centrality distance [42]. NCD values for all faultloads are listed in

https://crawdad.org/cambridge/haggle/20090529
https://crawdad.org/unimi/pmtr/20081201
https://crawdad.org/upmc/rollernet/20090202
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Fig. 2. Example of a group mobility trace construction from time t0 to t1 . The group mobility trace is represented as a combination (dotted lines)
of the similar connected components (gray circles).

Table 4
Statistics of workloads.
Workload Naïve Bayes SIFT Join

Category Decision making Information retrieval Sensor preprocessing
Map selectivity 0.04 1.5 0.6
Reduce selectivity 0.9 1 2
Map throughput (MB/s) 0.3 0.1 2
Reduce throughput (MB/s) 0.3 4.2 1

Input data size (MB)
haggle 35 10 60
pmtr 40 13 70
rollernet 55 20 100

the last column of Table 3. In particular, NCD value determination involves measuring the average of centrality distances
between successive connected components for the entire faultload duration to account for the effects of node arrivals or
departures to the group. To exclude the influence of group size in the NCD, we divide the average centrality distance by
the average group size. Thus, NCD can be defined as Eq. (15).

NCD (Faultload) =
Average Centrality Distance over Time

Average Group Size over Time
=

∑
t
∑

n |C (Gt−1, n)− C (Gt , n)|/T∑
t wt × GroupSize (Gt)/

∑
t wt

, (15)

where t denotes time, T is the total duration, n represents node, Gt denotes the connected component graph at t , C is
the centrality function, and wt is the group weight at t . Closeness centrality is used for C, as suggested by Roy et al. [42],
while group continuation time is used for wt .

For a sanity check, we confirmed that a job of any workload with any task allocation strategy never fails on the faultload
that exhibits no mobility.

6.1.4. Workloads
We evaluated three popular workloads in mobile cloud computing: Naïve Bayes Classifier, SIFT Feature Extraction,

and Join, which belong to three representative application scenarios, namely Decision Making, Information Retrieval, and
Sensor Preprocessing, respectively.

Table 4 lists workload statistics, such as data selectivity and processing throughput, which were obtained by running
real map and reduce tasks on a Samsung Galaxy S8 (SM-G950N) device; this device is equipped with Samsung Exynos
8895, 4 GB RAM, and 64 GB storage and runs on Android 7.0 Nougat. Naïve Bayes is based on a Hadoop-based MapReduce
implementation,1 wherein a map task emits a count for each discretized attribute value, while a reduce task sums these
counts. SIFT is implemented as a MapReduce algorithm based on the well-known OpenCV library,2 wherein a map task
extracts thousands of 144-dimensional features from an image, while a reduce task aggregates them. Furthermore, in the
case of Join, a map task filters raw sensor values, while a reduce task calculates the Cartesian product of the sensor values
on timestamp. As input data, Naïve Bayes and Join use real sensor data with 24 attributes collected from smartphone
users [43], while SIFT uses 1440 × 1080 images.

As is clear from the data presented in Table 4, input data sizes differ based on workload and faultload, because the
input size considered in our study is the one determined for the case when the baseline algorithm for a job takes 30 s
on average to complete it. This 30 s time average is based on the responsiveness requirement of mobile cloud computing
[37]. It should be noted that the smaller the input data size in Table 4, the more time-intensive the workload is. Then, the
time-intensiveness of the three workloads is in the following order: Join < Naïve Bayes < SIFT. Please refer to Appendix C
for the further analysis of the time-intensiveness in a mobile cloud.

1 https://github.com/theofilis/hadoop-Naïve-bayes.
2 https://github.com/opencv/opencv.

https://github.com/theofilis/hadoop-Na%EFve-bayes
https://github.com/opencv/opencv
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Table 5
Summary of parameters (the default value in bold).
Category Parameter Value

Genetic algorithm (Algorithm 1)

Survivor in Select Tournament (Sample size 5)
Offspring in Select Roulette wheel
Crossover in Alter Single point crossover (Rate 0.16)
Mutation in Alter Stochastic mutator (Rate 0.115)
MaxGenerations 1000 2000 3000 4000 5000
SteadyGenerations 5 10 · · · 50
PopulationSize 100 200 300 400 500

Faultload Minimum Jaccard coefficient 0.4

Environment Cluster utilization 0.5
Maximum link bandwidth 5 MB/s

6.1.5. Parameters
Table 5 lists the three classes of parameters used in evaluation, namely Genetic Algorithm, Faultload, and Environment

parameters.

• Genetic Algorithm: These experimentally determined parameters include the commonly used ones as well as those
suggested in the previous studies [29,33]. Survivor and offspring selection in Select are tested with Boltzmann, elite,
roulette wheel, tournament, and truncation algorithms; mutation and crossover operations in Alter are tested with
stochastic, swap, uniform, single point, and multi point algorithms. In particular, we randomly set input arguments
for each candidate algorithm within their ranges for 100 trials. MaxGenerations was varied from 1000 to 5000 with
increments of 1000; SteadyGenerations was varied from 5 to 50 with increments of 5; and PopulationSize was varied
from 100 to 500 with increments of 100. We execute MTA on the three workloads and 100 sampled faultloads for
every combination and determine the best parameters indicated in bold in Table 5.
• Faultload: The minimum Jaccard coefficient for generating faultload is decided as follows. As the minimum Jaccard

coefficient increases, the similarity between the connected components in the faultload increases, and, in turn,
the NCD, which is used to evaluate faultload mobility, starts decreasing. Based on this point in the NCD plot, the
minimum Jaccard coefficient is roughly set to 0.4, which is the average of the NCD values.
• Environment: The cluster utilization is set to 0.5 for static algorithms; the influence of varying it is discussed in

Section 6.2.2. Furthermore, based on a device-to-device communication study in an actual smartphone cloud [44],
the maximum link bandwidth is set to 5 MB/s.

6.1.6. Fault tolerance
We evaluated the performance of the task allocation algorithms using the two fault tolerance conventions: task

migration and task dropping. We follow the task migration convention by default except for the preliminary evaluation of
the task dropping convention in Section 6.2.5.

• Task Migration: This is one of the universally-adopted fault tolerance conventions in both conventional and mobile
clouds [10,21,28]. A failed task attempts to recover the input data from the previous tasks and even recursively traces
back to the previous phases. However, if any data partition cannot be recovered even after the recursive traces, the
task fails, and thus the job fails.
• Task Dropping: Since the inception of MapReduce, it has been a common practice to drop severely malfunctioning

nodes or bad records on which tasks deterministically crash [17,45,46]. That is, this convention is more suitable for
unreliable situations like mobile clouds than the task migration convention is. Recently, Pandey et al. [34] applied
this convention to mobile cloud computing. Here, a user allows an approximate result, and a job can tolerate task
failures up to the user-specified threshold at the expense of slight accuracy loss.

Furthermore, recent studies on mobile cloud consider data replication to increase data availability and job reliability
[47,48]. However, we do not include data replication in our study, because data availability and job reliability introduced
by data replication are not the primary focus of our task allocation approach.

6.1.7. Methodology
All our experiments are evaluated in the same manner as follows. We randomly sample 200 faultloads from each

mobility data set and attempt to execute a job with the abovementioned fault tolerance convention until it is successfully
completed in each faultload. If the job eventually fails, we mark the faultload as failed, and run the job on the next
faultload. Because every algorithm involves randomness, we evaluate each algorithm 30 times and report the average
result.
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Fig. 3. Job speedup relative to Hadoop of three workloads on three faultloads.

Fig. 4. Job completion rate of three workloads on three faultloads.

6.1.8. Metrics
We evaluated the performance of the task allocation algorithms using the following four metrics.

• Job Speedup is used to evaluate job speed over the time taken from the first task start to the last task finish. Because
job speed could differ based on faultload even when the same algorithm and workload are considered, we measure
job speedup of each algorithm relative to the baseline algorithm (Hadoop) when both algorithms have succeeded.
• Job Completion Rate is used to evaluate job reliability. In particular, we measure the job completion rate by

calculating the ratio of the number of successful job trials to the total number of trials.
• Task Speedup is used to evaluate task speed over the task execution time averaged over all succeeded tasks. That

is, the time for failed tasks is not included. Owing to the same reason as described above, we measure task speedup
of each algorithm relative to the baseline algorithm.
• Task Completion Rate is used to evaluate task reliability. In particular, we measure the task completion rate by

calculating the ratio of the number of successful task trials to the total number of trials.

6.2. Results

6.2.1. Job speed & reliability
Figs. 3 and 4 show the job speedup and job completion rate plots for the three workloads on the three faultloads,

respectively. In terms of job speedup, MTA-S outperformed Hadoop by 1.2–3.7 times, Purlieus by 1.2–3.5 times, Mantri
by 1.1–2.4 times, and HPSO by 1.2–1.7 times. Furthermore, in terms of job completion rate, MTA-S outperformed Hadoop
by 26%–41%, Purlieus by 16%–40%, Mantri by 17%–36%, and HPSO by 12%–26%. Both performances consistently followed
the order: Hadoop < Purlieus < Mantri < HPSO < MTA-S.

This performance trend can be explained based on the task allocation objectives of the different algorithms, as listed
in Table 2. In particular, because Hadoop incorrectly models communication delay using hop-distance based data locality
and does not model task reliability at all, it yielded the worst job speedup and worst job completion rate. Purlieus
exhibited a similar job speedup and job completion rate to Hadoop for Naïve Bayes (map-input-heavy) and Join (map-and-
reduce-input-heavy) workloads (Figs. 3(a), 3(c), 4(a), and 4(c)), because it is based on the same strategy as Hadoop in the
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Fig. 5. Task speedup on three faultloads.

Fig. 6. Task completion rate on three faultloads.

specified cases. However, in the case of the SIFT (reduce-input-heavy) workload, Purlieus exhibited a slightly increased job
speedup (Fig. 3(b)) because it allocated tasks to closely connected nodes to reduce off-rack traffic and slightly increased
job completion rate (Fig. 4(b)) owing to the unintentional increase in reliability because of the close allocations that were
established. This approach is not effective because, unlike in a conventional cloud, there is no clear distinction of a rack
in a mobile cloud due to the relatively small cluster size.

Figs. 5 and 6 show the task speedup and task completion rate plots, respectively, with phase distinction, thus enabling
a deeper analysis of Mantri, HPSO, and MTA-S, in that they consider task speed and task reliability unlike Hadoop and
Purlieus. The results shown are those that are averaged over all workloads. Mantri behaves in the same manner as Hadoop
for map allocation, which explains their similar task speedup (Fig. 5(a)) and task completion rate (Fig. 6(a)). In contrast,
for reduce allocation, Mantri, which aims at maximizing task speed, exhibited an increased task speedup (Fig. 5(b)).
Nevertheless, MTA-S was still faster than Mantri, because the link-based delay estimation of MTA-S has finer modeling
granularity for communication bandwidth than the node-based delay estimation used in Mantri, and thus MTA-S exhibits
better efficiency. Furthermore, in the case of Mantri, task completion rate slightly decreased (Fig. 6(b)) in favor of the
biased improvement in task speed. Consequently, Mantri showed a slight performance improvement in both job speed
and job completion rate (Figs. 3 and 4). Next, HPSO, which aims to maximize task reliability, exhibited a significantly
increased task completion rate (Fig. 6) and thus ranked next to best in both job speed and job completion rate (Figs. 3
and 4). Nevertheless, MTA-S still exhibited better task reliability than HPSO (Fig. 6), because, unlike MTA-S, HPSO does
not optimize task speed, a factor of task reliability; as a result, HPSO achieved the worst task speedup (Fig. 5). Lastly,
MTA-S outperformed other algorithms in both job speed and job completion rate (Figs. 3 and 4) by maximizing both task
speed and task reliability (Figs. 5 and 6). It is important to note that the obtained result is consistent with Theorem 1.

6.2.2. Resource efficiency
The resource efficiency of MTA can be identified from Table 6 by comparing MTA-D with MTA-S in terms of job speedup,

job completion rate, and search cost on the three faultloads. Here, we only present the result for the Join workload owing
to similar performance trends in the case of other workloads. Similar to the approach described in Section 6.1.4, the input
data size is determined to be the one when MTA-S takes 30 s for the given cluster utilization of either 0.5 or 0.9.

In all cases, the cluster utilization of MTA-D consistently converged to around 0.67 achieving considerably better job
speedup and job completion rate than MTA-S. In particular, when the cluster utilization for MTA-S was 0.5, the job
speedup showed a greater increase than the job completion rate for MTA-D, because of relatively lesser resources leading
to slow processing and communication. In contrast, when the cluster utilization for MTA-S was 0.9, the job completion rate
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Table 6
Comparison of MTA-D with MTA-S.
Faultload Cluster utilization Job speedup Job completion rate Allocation time (s)

MTA-S MTA-D relative to MTA-S relative to MTA-S MTA-S MTA-D

haggle 0.5 0.66 1.18 1.01 2.4 9.8
0.9 0.68 1.06 1.16 2.1 9.7

pmtr 0.5 0.67 1.15 1.08 2.0 7.4
0.9 0.67 1.06 1.18 1.9 6.7

rollernet 0.5 0.68 1.42 1.34 1.2 4.5
0.9 0.69 1.21 1.35 1.0 3.7

Fig. 7. Scalability to input data size.

improved more significantly than the job speedup for MTA-D, because node selection could not exclude low reliability
nodes, which resulted in low job reliability. It is interesting to note that the latter implies both job speedup and job
completion rate can be improved even with few resources, which is counterintuitive to the conventional notion of cluster
utilization.

The allocation time taken by both algorithms, MTA-S and MTA-D, are listed in the last two columns of Table 6; as
previously mentioned, the algorithms were executed on a Samsung Galaxy S8 (SM-G950N) device having eight multi-
threads. Based on these results, it can be considered that MTA-S is suitable for real-time operation, whereas MTA-D is
not, because it requires up to about 10 s for task allocation in certain cases as it takes log2N time more than MTA-S to
evaluate costs given that it uses the binary search. To address this issue, MTA-D could be performed asynchronously; this
requires further research, and till such time, the converged value of 0.67 for cluster utilization can be used as a rule of
thumb.

6.2.3. Scalability
Fig. 7 shows the scalability of the algorithms in terms of job speedup and job completion rate relative to baseline

Hadoop as the input data size varies from 40 MB to 100 MB. The results shown are those that are averaged over all
workloads and faultloads. In all cases, MTA-S outperformed the other algorithms with near-linear scalability. This is
because increased communication traffic caused by increased input data makes optimizations of communication delay and
task reliability in MTA-S a lot more valuable. The overall performance consistently follows the following order: Hadoop
< Purlieus < Mantri < HPSO < MTA-S, which is explained earlier in 6.2.1. Overall, in future, the superiority of MTA over
current state-of-the-art algorithms will be more prominent, as the amount of mobile data is increasing at a rapid annual
rate of roughly 1.5 times [2], owing to its high scalability.

6.2.4. Comparison of MTA with the task offloading approach
We compared MTA (the mobile cloud approach) with the task offloading approach that is based on a remote cloud.
Fig. 8 shows the job completion time of MTA and the task offloading approach averaged over all workloads. The

results for the task offloading are estimated based on processing powers of different Amazon EC2 servers and cellular
communication speeds at various cities around the world. The result of MTA is constant regardless of an EC2 server and
a city because it uses neither remote servers nor cellular communication. MTA finished significantly faster than the task
offloading approach on a c5.large server and achieved comparable performance on a c5.4xlarge server and a c5.18xlarge
server which is the most compute-intensive instance of EC2. Therefore, in many situations, the mobile cloud is preferred
to the task offloading approach in terms of job completion time. Please refer to Appendix D for the comparison details.
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Fig. 8. Job completion time of MTA and the task offloading approach.

Fig. 9. Job completion rate of Join on rollernet for different % of maximum dropped tasks.

6.2.5. MTA with task dropping-based fault tolerance
We conducted a preliminary evaluation of the task allocation algorithms with task dropping-based fault tolerance

convention that is configured to work with the default task migration convention. Fig. 9 shows the job completion rate
as the percentage of maximum dropped tasks varies from 0% to 50%. Here, owing to similar performance trends, we only
present the result for Join on rollernet, which achieves the lowest performance improvement in Fig. 4(c). MTA showed
around 90% job completion rate by dropping up to 20% task failures and about 1.6 times improvement by dropping up to
only 10% task failures. Such a low level of task failures is tolerable even in terms of accuracy because the accuracy loss
caused by task dropping is less than only 10% for many similar workloads [46].

7. Conclusion

In this study, we proposed a novel task allocation strategy, referred to as MTA, to address the task allocation problem,
which is one of the most urgent challenges in the field of mobile cloud computing. The proposed MTA concurrently
maximizes job speed and reliability by modeling communication delay and task reliability for mobile MapReduce. We
compared MTA with four state-of-the-art strategies on three representative workloads and hundreds of real mobility
traces using a mobile MapReduce simulator validated against a platform running on an actual smartphone cluster. Based
on our obtained results, it is evident that MTA significantly outperformed the state-of-the-art task allocation algorithms
by up to 3.7 times and 41%, respectively, in terms of job speed and reliability; in addition, it was resource-efficient as
well as scalable to different input data sizes. In conclusion, we believe that our study significantly enhances the usability
of the task allocation strategy in mobile cloud computing.
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Appendix A. Mobile cloud computing applications

In this section, we introduce various real applications and use cases in mobile cloud computing which can benefit from
MTA, the proposed task allocation strategy. These applications and use cases are classified into those for decision making,
information retrieval, and sensor preprocessing.

A.1. Decision making

• Collaborative Inference: This scenario is primarily aimed at becoming better aware of surrounding context by
facilitating collaboration of multiple inference models for multiple mobile devices in a mobile cloud [49]. For
example, DarwinPhone [12] confirmed that a speaker can be recognized with higher accuracy and confidence when
multiple devices share their models. In addition, it presents other use cases, such as discovering locations using RFID
or tagging people in pictures.
• Augmented Reality: Augmented reality applications based on real-time object recognition can also benefit from our

task allocation strategy by improving the response time. Locating injured persons in smoke environments, snipers
in urban warfare settings, or obstacles in disaster situations are examples of this scenario [10,11].

A.2. Information retrieval

• Multimedia Retrieval: Hyrax [14] demonstrated the usability of searching multimedia files in a mobile cloud
constructed in a real stadium. As another example, missing children can be found with the help of a mobile cloud
as well [10], by transmitting the picture of the child to the nearby smartphones, comparing the picture with other
kids in the vicinity of each participant, and reporting the results back to the requester.
• Collaborative Photography: LetsPic [50] proposed a new method for photography that enhances group activities by

displaying group photography information overlaid on the camera screen. In particular, group members can easily
see the pictures being captured by other members of the group by automatically comparing their viewfinder screen
with all images captured and distributed over participating smartphones as a user moves the viewfinder in real-time.

A.3. Sensor preprocessing

• Crowd Sensing: Skyship [13] flies a blimp as an infrastructure coordinator to create an ad-hoc 5G network in disaster
situations, dispatches drones as intermediate nodes, and processes a large collection of images quickly using these
drones. In addition, we can use a mobile cloud for joining or sorting raw data that is distributed over multiple devices
based on timestamp [14], or filtering unnecessary data while classifying trail conditions for group hikers [51].

Appendix B. More realistic task allocation problem in a mobile cloud

The mobile task allocation problem can be extended by considering additional issues in mobile cloud computing or
different assumptions in contrast to the prescribed ones in Section 4. We suggest possible extensions of the task allocation
problem in Appendix B.1 and show the effect of a different assumption in Appendix B.2.

B.1. Task allocation with additional objectives

Fig. B.10 shows the priority of primary topics in mobile cloud computing in terms of the percentage of research studies
in which they were addressed out of 56 major researches. Above all, resolving the task allocation problem, which involves
determining the nodes on which tasks are executed, is the most prevalent primary topic, which is directly or indirectly
covered in 92% of the mobile cloud computing studies. To the best of our knowledge, this is the first topic-based priority
statistic, which was obtained by clustering and ordering all the primary topics considered in four renowned surveys
[10,52–54], five major platform researches [9,14,23,24,34], and 47 other papers related to mobile cloud that include
citations for one of these nine, aforementioned paper.

Among these primary topics, energy-awareness and incentive issues can be incorporated into the task allocation
problem as follows. (Fault tolerance and scalability are already discussed in Section 6; heterogeneity will be addressed in
Appendix B.2.)
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Fig. B.10. Priority of primary topics in mobile cloud computing.

Table B.7
Processing throughput (MB/s) statistics of three workloads on five mobile devices.
Type Naïve Bayes SIFT Join

Map Reduce Map Reduce Map Reduce

Google Nexus 7 0.07 0.07 0.02 1.02 0.49 0.24
LG Nexus 5 0.13 0.13 0.04 1.79 0.85 0.43
LG G3 0.20 0.20 0.07 2.77 1.32 0.66
Samsung Galaxy S6 0.23 0.23 0.08 3.23 1.54 0.77
Samsung Galaxy S8 0.30 0.30 0.10 4.20 2.00 1.00

• Constraint 1 (Resource): There are M types of resources, such as energy, computation, storage, and even security
level; each node to which the ith task is allocated restricts its type-m resource ρi,m within the budget of type-m
resource Ri,m where m ∈ {1, . . . ,M}.
• Constraint 2 (Incentive): According to the pay-per-use monetary incentive [10], each node to which the ith task is

allocated participates in a job if the utility ui, or incentive, is greater than the cost ci, where the total cost is paid by
the clients who benefit from the job result.

Then, these two additional constraints extends the task allocation problem from Eq. (1) to Eq. (B.1).

TAP
∗
= argmin

TAP∈T AP

Cost (TAP) s.t. 0 < ClusterUtilization ≤ 1

|TAP | = |N| × ClusterUtilization
ρi,m ≤ Ri,m, i ∈ {1, . . . , |TAP |} , m ∈ {1, . . . ,M}
ci < ui, i ∈ {1, . . . , |TAP |}

(B.1)

B.2. Task allocation with a different assumption

By relaxing the homogeneity assumption, we evaluated MTA with a heterogeneous device setting as well. Table B.7
lists the processing throughput statistics of the three workloads, which were obtained by running real map and reduce
tasks on five different mobile devices—Google Nexus 7, LG Nexus 5, LG G3, Samsung Galaxy S6, and Samsung Galaxy S8.
For all evaluation instances, a node is assigned a device type uniformly at random among the five devices. All the other
parameters hold the same.

Figs. C.11 and C.12 show the job speedup and the job completion rate for the three workloads on the three faultloads,
respectively, with the heterogeneous device setting. It is worthwhile to note that the performances consistently follow
the same order obtained with a homogeneous device setting: Hadoop < Purlieus < Mantri < HPSO < MTA-S.

Appendix C. The time-intensiveness and time-sensitiveness of workload in a mobile cloud

In this section, we discuss both the time-intensiveness and time-sensitiveness of a workload from the perspective
of mobile cloud computing. First, a time-intensive workload can be more negatively impacted than a less time-intensive
workload in a mobile cloud. As explained in Section 6.1.4, the time-intensiveness of the three workloads is in the following
order: Join < Naïve Bayes < SIFT. Table C.8 tabulates the job speedup of Fig. 3 in detail and, as shown in the last column of
Table C.8, a time-intensive workload tends to obtain lower speedup gain than a less time-intensive workload in a mobile
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Fig. C.11. Job speedup relative to Hadoop of three workloads on three faultloads with heterogeneity.

Fig. C.12. Job completion rate of three workloads on three faultloads with heterogeneity.

Table C.8
Job speedup relative to Hadoop of three workloads on three faultloads (a tabulation of Fig. 3).
Workload Faultload Purlieus Mantri HPSO MTA Average

Naïve Bayes
haggle 1.03 1.07 1.03 1.20 1.08
pmtr 0.97 1.21 1.28 1.69 1.29
rollernet 1.01 1.33 2.09 2.76 1.80

SIFT
haggle 1.00 1.01 0.98 1.32 1.08
pmtr 1.30 1.30 1.41 1.96 1.49
rollernet 1.36 1.08 1.81 2.74 1.75

Join
haggle 1.07 1.12 1.03 1.45 1.17
pmtr 1.05 1.28 1.39 2.18 1.47
rollernet 0.99 1.57 2.16 3.66 2.10

cloud. For example, the job speedup ranges from 1.17 to 2.10 for Join, whereas it only ranges from 1.08 to 1.75 for SIFT.
Furthermore, it should be noted that MTA always performs the best regardless of the time-intensiveness.

Next, a time-sensitive workload in a mobile cloud can benefit from effective task allocation [11,55]. Even though the
performance improvement is only in units of milliseconds, this is significant from the perspective of a time-sensitive
workload. However, based on the current MapReduce implementation, the initialization overhead itself far exceeds the
potential improvement, because MapReduce is basically a batch query processing system and has difficulties in running
real-time queries [21]. Therefore, we currently aim at supporting batch workloads in a mobile cloud, which take from 5
to 50 s based on the responsiveness requirement [37], and will extend our approach to time-sensitive workloads as well.

Appendix D. Methodology for the comparison of MTA with the task offloading approach

In this section, we describe the comparison of MTA (the mobile cloud approach) with the task offloading approach in
detail, which is presented in Section 6.2.4. Since task offloading consists of cellular communication and remote processing,
its job completion time is the sum of the time for cellular communication and remote processing, which is estimated as
below.
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Table D.9
Cellular download and upload speeds (MB/s) at various cities around the world.
Country City Download Upload

Carrier 1 C2 C3 Average C1 C2 C3 Average

U.K. London 22.2 18.2 12.6 17.63 0.9 0.7 0.5 0.67
Japan Tokyo 29.3 17.3 14.0 20.22 0.5 0.8 0.6 0.64
China Beijing 14.7 13.5 16.4 14.88 0.4 0.9 0.9 0.75
France Paris 29.9 23.7 21.3 24.94 1.0 0.7 0.8 0.84
U.S. New York 33.4 19.9 17.8 23.68 1.5 0.3 0.9 0.89
U.S. San Francisco 25.8 20.0 17.5 21.10 1.4 1.0 0.7 1.05
Korea Seoul 49.0 34.4 33.3 38.88 1.6 1.9 1.2 1.55

Table D.10
Processing powers of mobile devices and remote servers in terms of multi-core floating point scores and performance gain ratios.
Type Multi-core floating point Score Performance

Instance 1 I2 I3 I4 I5 Average Gain ratio

Google Nexus 7 1719 783 1463 1446 1478

2788 1
LG Nexus 5 1167 1190 1240 1727 1767
LG G3 1174 1145 1606 2474 1838
Samsung Galaxy S6 3645 3614 3745 3474 3526
Samsung Galaxy S8 5775 6462 6185 5883 5173

Amazon c5.large 4349 5587 4761 5661 5651 5202 1.9
Amazon c5.4xlarge 33992 35134 39150 38778 34616 36334 13.0
Amazon c5.18xlarge 51747 106598 95782 95062 101803 90198 32.4

First, for cellular communication, Table D.9 shows the cellular download and upload speeds at various cities around
the world, which are provided by OpenSignal3 as of May 1, 2019. The carrier names are hidden to avoid unnecessary
dispute, and the average of the three carriers is used for the estimation. Cellular communication, in turn, consists of
offload and retrieve communications. The offload time can be expressed as (input size / (number of nodes × upload
speed)) because input data partitions are distributed across multiple nodes, and the retrieve time can be expressed as
(output size/download speed) because it is generally assumed that a single job client who initiated the job retrieves the
result.

Next, for remote processing, Table D.10 shows the processing powers of Amazon c5.large, c5.4xlarge, and c5.18xlarge
EC2 instances, in addition to the five mobile devices used in Appendix B.2. In Table D.10, a score indicates the floating
point performance measured by Geekbench4 as of May 1, 2019. The average of five instances or devices is used for
the estimation. Then, we define the ratio of the average score of a remote server to the average score of all mobile
devices as the performance gain ratio. Considering the performance gap between a remote server and a mobile device, the
remote processing time is estimated by dividing the map and reduce time already measured on a mobile device by the
performance gain ratio.

Appendix E. Simulator validation

For comprehensive evaluation of mobile MapReduce, we have considered various options to construct a realistic
evaluation setting. First, we started this study with a prototype laptop testbed to conduct a preliminary evaluation on
task allocation. We were able to quickly confirm the feasibility of our study because Hadoop did not need to be ported
to Ubuntu, which was the operating system used for the laptop testbed; however, because the performance of a laptop
is different from that of a mobile device, this setting was not perfectly realistic. Next, we adopted a smartphone testbed,
which enabled us to conduct evaluations on a small mobile cloud; however, increasing the scale of the smartphone testbed
was difficult in practice because it entails the cost of having dozens of smartphones or hiring dozens of people. As a
result, we designed a simulator for evaluating a large mobile cloud as shown in Appendix E.1 and validated it using the
smartphone testbed as shown in Appendix E.2.

E.1. Design of the simulator and testbed platform

Fig. E.13 shows an abstract architecture for mobile MapReduce with a class diagram that is used for designing the
simulator and platform. Hereafter, the mobile MapReduce software built on the testbed is shortly referred to as the
platform. It is important to note that we did not merely compile Hadoop on Android, but developed the simulator and

3 https://www.opensignal.com.
4 https://www.geekbench.com.

https://www.opensignal.com
https://www.geekbench.com
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Fig. E.13. An abstract architecture for mobile MapReduce with a class diagram. A white box represents a class, a dotted line represents a dependency,
and a solid line represents a generalization. The predicate letter ‘p’ in a class name is used for a class of which the implementation only exists for
the platform.

platform by porting the design principles of core Hadoop components presented in the architecture to Android. Now, we
explain the ported design principles and implementation details of each building block and each class in the architecture,
which apply to both the simulator and platform unless otherwise stated.

• Wireless Network: The D2D Network Manager aims at forming a D2D group, sending or receiving data between
nodes, and handling a node arrival or departure event. To achieve these features, the Wireless Network layer supports
the IP address assignment and routing protocol. Above all, it is assumed that a unique IP address is assigned to each
device, and there is no single DHCP server that generates IP addresses in a mobile cloud. To satisfy the assumptions,
we assign a predetermined static IP address to each node, which is sufficient for validation. An approach like dynamic
configuration of IP addresses5 could be adopted as well. Next, for route maintenance and packet forwarding, we
adopt AODV (Ad-hoc On-demand Distance Vector) for a routing protocol, which is a well-known reactive protocol
that discovers routes only when it is needed. AODV implementations in a J-Sim network simulation library6 and a
well-known open source project on Android7 are used for the simulator and platform, respectively.
• Mobility Management: The D2D Network Manager notifies the Mobility Manager of a node arrival or departure event,

and the Mobility Manager, in turn, notifies other class instances of the event for subsequent operations. When a node
joins the group, the node initializes itself by starting core class instances, such as a Data Node and a Task Tracker. The
Mobility Manager of other nodes notifies the Name Node and the Job Tracker, which are hosted in the master node,
of the node arrival for balancing resources. On the contrary, when a node leaves the group, the Mobility Manager of
other nodes notifies the Name Node for block recovery and the Job Tracker for fault tolerance. In particular, if the
master node leaves the cloud, the next node that participated in the group becomes a new master node; a new
Name Node and Job Tracker are started on the new master node; the Name Node recovers a distributed file system by
receiving block reports from all Data Nodes; the jobs from the old Job Tracker are restarted. To avoid an unnecessary
master node departure during validation, a node that does not fail within a faultload is intentionally assigned the
role of a master node.
• Distributed Storage: The distributed storage consists of a distributed file system (DFS) and a distributed database

built on top of the DFS. First, the DFS follows the same design principles as Hadoop distributed file system (HDFS) in
terms of block management between a Name Node and a Data Node except for block replication. The block replication

5 https://tools.ietf.org/html/rfc3927.
6 https://sites.google.com/site/jsimofficial.
7 https://code.google.com/archive/p/adhoc-on-android.

https://tools.ietf.org/html/rfc3927
https://sites.google.com/site/jsimofficial
https://code.google.com/archive/p/adhoc-on-android
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Fig. E.14. Job speedup relative to Hadoop of three workloads on three faultloads.

of the HDFS based on rack awareness is inappropriate in a mobile cloud where rack hierarchy does not even exist.
Recent studies on mobile clouds consider data replication to increase data availability and job reliability [47,48],
whereas we only provide a random replication because we do not consider data replication in our study.
Next, we additionally developed the Distributed Database within the platform to facilitate information retrieval in a
mobile cloud, which is one of the representative application scenarios as presented in Appendix A.2. The Database
Helper supports basic operations like select, insert, delete, and nearest neighbor search of high-dimensional vectors
by using a KD-tree-based Distributed Index. This can be useful for a multimedia retrieval application based on a
feature extraction algorithm like SIFT that extracts thousands of 144-dimensional features from an image.
• Distributed Computation: The Job Tracker and Task Tracker follow the same design principles as Hadoop MapReduce

except for memory management on the platform. Hadoop reserves 100 MB memory by default for buffering and
sorting map outputs, whereas the heap of an Android application cannot grow to 100 MB. We resolved this issue
by adjusting io.sort.mb and io.sort.record.percent configurations of MapReduce according to the memory
availability of each device and enabling the Android largeHeap configuration. Furthermore, the Task Scheduler also
follows the same design principles as Hadoop.
• Programming Interface & Data Analytics: The Programming Interface layer is required to seamlessly integrate the

MapReduce algorithms in the Data Analytics layer, such as Naïve Bayes, SIFT, and Join, with the aforementioned
lower layer components. For the simulator, the integration is simple because, as described in Section 6.1.4, the
simulator does not require an actual implementation of a MapReduce algorithm, but the workload statistics of an
algorithm. In contrast, for the platform, a MapReduce job runs on an Android background Service, whereas the job
is submitted to the Service and interacts with it on an Android foreground Activity. For the seamless integration
between the background and foreground processes, we provide a number of callback functions, e.g., onMapperFin-
ished(), onIterationFinished(), and onJobFinished(), which are invoked when the corresponding event
in a MapReduce flow occurs.

For efficiency of development, we also followed the guidelines suggested by Hyrax [14], which involves optimizing
MapReduce configurations, substituting processes for threads of a single process, and integrating job classes into the
platform to resolve the classpath issue caused by dynamically deploying a job.

E.2. Validation methodology and results

To validate the simulator introduced in Section 6.1.1, we devised an actual smartphone testbed that supports a multi-
hop network by placing intermediate wireless routers to bridge the smartphones in the mobile ad-hoc network. To
recreate the same effect as that of using intermediate routers during simulation, we disable the processing ability of the
router nodes. For network parameters, we use the AODV routing protocol and constrain the maximum link bandwidth to
5 MB/s. Finally, we set up a mobile cloud testbed with five Samsung Galaxy S8 (SM-G950N) devices running Android 7.0
Nougat and five ipTime A304 routers, which leads to a faultload group size of less than or equals to 10.

To address the difficulty of moving devices in reality for validation, we instead aim to reproduce pseudo faultload
mobility; in particular, we place smartphones and routers as in the initial layout of the faultload and reproduce node
departure by forcing the node out of the cluster using an Android application script instead of physically moving the
node. Furthermore, for validation simplicity, we ignore node join events.

Figs. E.14 and E.15 show the job speedup and job completion rate of the three workloads on the three faultloads. In
particular, we selected Hadoop and MTA-S as the representative heuristics of conventional and mobile clouds, respectively.
In terms of job speed, the validation result seems to be highly correlated with the simulation result; the results are only
slightly different because of the unavoidable incompleteness in a simulation. Furthermore, in terms of job completion
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Fig. E.15. Job completion rate of three workloads on three faultloads.

rate, the validation result almost perfectly matched the simulation result because failures occur on the same nodes at
any rate in both validation and simulation scenarios; however, a slight difference in these results can be attributed to the
failure rate noise caused by the small contention difference.
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