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ABSTRACT
In public health and safety, precise detection of blood alcohol con-
centration (BAC) plays a critical role in implementing responsive
interventions that can save lives. While previous research has pri-
marily focused on computer-based or neuropsychological tests for
BAC identification, the potential use of daily smartphone activities
for BAC detection in real-life scenarios remains largely unexplored.
Drawing inspiration from Instrumental Activities of Daily Living
(I-ADL), our hypothesis suggests that Smartphone-based Activities
of Daily Living (S-ADL) can serve as a viable method for identifying
BAC. In our proof-of-concept study, we propose, design, and assess
the feasibility of using S-ADLs to detect BAC in a scenario-based
controlled laboratory experiment involving 40 young adults. In this
study, we identify key S-ADL metrics, such as delayed texting in
SMS, site searching, and finance management, that significantly
contribute to BAC detection (with an AUC–ROC and accuracy
of 81%). We further discuss potential real-life applications of the
proposed BAC model.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in ubiq-
uitous and mobile computing; Empirical studies in HCI.
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1 INTRODUCTION
The recent COVID-19 pandemic has led to changes in the social
system (e.g., stay-at-home orders and relaxation of alcohol restric-
tions) [11], and the stress and depression caused by social isola-
tion have resulted in a significant increase in alcohol consumption
among the younger generation [26, 37]. According to previous
studies, approximately 50% of young adults aged 18 to 25 have
consumed alcohol in the previous month, with approximately 60%
of them experiencing a binge drinking episode within the same
time frame [2]. Moreover, 49.7% of the younger generation have
recently consumed alcohol on a regular basis [3]. These frequent
binge drinking behaviors of young adults have led to various un-
intentional physical health issues (e.g., bodily injuries, diseases)
and social problems (e.g., unprotected sex, productivity loss, drunk
driving) [1, 89, 91]. However, young adults often struggle to change
their frequent binge drinking behaviors compared with other age
groups because of factors such as a lack of psychological maturity
for impulse control in alcohol use disorder, lack of awareness of
their alcohol tolerance, and increased opportunities for alcohol con-
sumption owing to increased social activities accompanied by peer
pressure [19, 67]. Therefore, there is a need for a tool designed for
young adults that can assist in intervening against alcohol abuse
through continuous monitoring of alcohol consumption anytime
and anywhere.

Traditional methods measure BAC through self-reporting, trans-
dermal alcohol monitoring, or breathalyzers. Self-reporting meth-
ods use formulas (e.g., the Widmark formulation [116]) that require
personal information (e.g., sex, weight) and alcohol consumption
information (e.g., alcohol content, amount, and time of consump-
tion) to be manually input through a survey or experience sam-
pling method. Nevertheless, these methods rely on the memory
of the drinker, which leads to potentially inaccurate results and
user burden for repetitive reporting [10]. The common method of
transdermal alcohol monitoring (e.g., SCRAM and WrisTAS) in-
volves attaching an ankle bracelet to the skin [104]. However, this
measure is delayed by several hours after drinking, making it in-
appropriate for timely BAC detection [68], and there is a stigma
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related to wearing ankle bracelets [12]. Breathalyzers are the most
widely used [25]. Recently, Bluetooth-based portable breathalyzers
(e.g., BACtrack Mobile Pro [8]) have been developed. Nonetheless,
users must always carry the device, and false detections may oc-
cur depending on the oral environment and certain diseases (e.g.,
liver, diabetes, and kidney diseases) [25]. Thus, it is essential to
develop a new BAC detection method that can lower user burdens
while simultaneously increasing portability to enable immediate
self-monitoring of BAC.

At present, 80% of people carry smartphones for 22 hours in
their daily lives [4]. People interact with their smartphones for an
average of 3 hours and 15 minutes per day [74] and touch their
smartphones an average of 2,617 times per day [120], even when
they drink alcohol. Therefore, the influence of alcohol consumption
can be tracked using smartphones. In the field of HCI, smartphone-
enabled functional assessment methods have been developed to
automatically measure BAC. Given that after drinking, a functional
decline occurs while intoxicated, prior studies on BAC detection
have assessed the physical functional decline in terms of motor or
psychomotor coordination via smartphones for such detraction [6,
76]. However, the domain and degree of functional decline due to
changes in BAC vary among individuals [38]. Although detecting
BAC of 0.03% or 0.08%, which is the legal limit for drunk driving
in most countries [117, 118], is important, a decline in the motor
coordination (e.g., walking, balancing) is not typically evident at
these BAC levels [47, 113].

Therefore, in cases where there is a decline in cognitive functions
other than motor coordination functions after drinking, it is chal-
lenging to detect certain BAC levels (e.g., 0.03% or 0.08%) using the
motor function tracking method (e.g., [6]). Therefore, Mariakakis et
al. [76] detected BAC by assessing psychomotor control based on a
simple choice reaction involving reflexes (e.g., fine motor control
and balancing) through smartphone-enabled neuropsychological
tests. However, the mild functional decline that arises at BAC of
0.04% is not sensitive to the simple fine motor or psychomotor per-
formance (e.g., stimulus and reaction) [76, 77], varies in domain and
level among individuals; thus assessments that are more sensitive
to complex cognitive functions than simple cognitive screening
tests are required, such as neuropsychological tests [81, 123]. Fur-
thermore, such cognitive screening tests have learning effect issues
when measured repeatedly [13, 86].

Activities of daily living (ADL) instruments are fundamental
skills required to independently care for oneself [57]. Among ADL
instruments, the Instrumental ADL (I-ADL) requires more complex
activities and thinking skills related to the ability to live indepen-
dently in a community (e.g., money transfer and communication
with others) [65]. Moreover, before a noticeable cognitive decline
occurs in various cognitive domains, there is a decline in I-ADL
performance. This makes I-ADL-based functional assessments par-
ticularly attuned to detecting mild functional decline compared
with conventional neuropsychological tests [81, 123]. Moreover,
ADL-based functional assessments have a lower learning effect
than neuropsychological tests, making them useful for repetitive
BAC measurements [14]. Therefore, ADL-based functional assess-
ments can be more useful for determining varying BAC because
people typically exhibit mild or severe functional declines after
drinking.

In this study, we aimed to develop Smartphone-based activities
of daily living (S-ADL), which require more complex functional
skills with a mental workload than the simple choice reaction tasks
utilized in prior studies, to automatically detect mild functional
changes associated with varying BAC phases (normal: 0%, mild
drinking: 0.03%–0.04%, heavy drinking: 0.07%–0.08%) and explore
the feasibility of using S-ADL for BAC detection. Therefore, we
answered the following research questions: RQ1. How can S-ADL be
effectively designed to identify BAC? RQ2. Among the S-ADL-based
performance metrics considered for building a machine learning
model, which specific metrics demonstrate the most substantial
influence on the accuracy and reliability of the BAC model?

We first developed the S-ADLmethod by adopting an ADL-based
functional assessment and expanding the existing smartphone-
enabled functional assessment [76]. We designed seven representa-
tive S-ADL tasks based on common daily app usage scenarios and
developed the metrics for performance assessment related to BAC
changes. We then conducted a laboratory study with 40 participants
by following protocols similar to those in other alcohol-based stud-
ies [38, 62, 76]. In this study, participants performed seven S-ADL
tasks and three CNTs (N-BACK, SART, Task Switching) while intox-
icated at three BAC phases (0%, 0.03%–0.04%, and 0.07%–0.08%). The
CNT was performed alongside S-ADL at each BAC phase to verify
the effectiveness of S-ADL for measuring BAC compared with CNT,
which has been traditionally used for cognitive state assessment
according with BAC in previous research [38, 41, 70, 94].

Finally, we built and compared the performances of machine
learning models based on CNT and S-ADL. We also evaluated
which S-ADL tasks and metrics exhibited the best performance
and investigated whether BAC detection was effective using only
the top one or two tasks. Our results showed that both the binary
and multi-class models could effectively detect BAC with an ap-
proximately AUC–ROC and accuracy of 80%–81%. Moreover, the
BAC-based model showed better performance than the traditional
CNT-based model, which has been used in previous studies for
detecting BAC. In addition, BAC detection with an accuracy of 80%
could be achieved within one minute or less by performing only
the two best-performing S-ADL tasks (information search and SMS
reply).

In addition, we discuss the advantages of S-ADL usage over
traditional BAC detection methods (e.g., efficiency, usability, and
accessibility) based on user experience according to in-depth inter-
views with participants, as well as limitations and future studies
considering potential bias (e.g., demographic factors, OS difference),
noise problems, privacy concerns, potential psychological effects
(e.g., false positives/negatives and over-reliance), and other ADLs
with other smartphones or smart device sensors for real-life appli-
cability.

Our study is novel in that it develops a performance-based S-
ADL instrument for BAC detection that can assess an individual’s
ADL functional decline, such as a decline in perception, cognition,
and motor coordination, by conducting scenario-based common
daily use smartphone app tasks. Our design detects BAC in the
ranges of 0.03%–0.04% and 0.07%–0.08% as a classification model
rather than a regression model for 0.01% intervals because (1) the
BAC criterion for binge drinking is 0.08% [88], (2) additionally, the
legal threshold for drunk driving is set at 0.03% or 0.08% in most
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countries around the world [117, 118], and (3) according to previous
research on cognitive state differences due to alcohol consumption
and NIAAA [38, 41, 70, 87, 94], the difference in cognitive decline
due to acute alcohol consumption is more pronounced in interval
ranges of 0.03%–0.04% rather than in intervals of 0.01% or smaller
decimal units. Previous smartphone-based alcohol consumption
detection research [6, 9, 10] focused on detecting mild and heavy
drinking based on BAC phases of 0.03%–0.05% and 0.06%–0.08%.

2 BACKGROUND AND RELATEDWORK
2.1 Symptoms of Functional Decline via Acute

Alcohol Intake
After alcohol drinking, it takes approximately six minutes to reach
the brain through the stomach [16]. Alcohol absorbed by the brain
interferes with brain functions, leading to various functional de-
clines (e.g., gross motor skill/planning, attention, amnesia, motor
planning, peripheral vision, dysequilibrium, reflexes, and slurred
speech), and these effects can persist for several hours until the
alcohol is detoxified by the liver [47, 84, 90].

Blood alcohol concentration (BAC) represents the alcohol con-
centration dissolved in the blood. It is expressed as a percentage
either by the mass of alcohol (w) per volume of blood (v) (% w/v) or
by the mass of alcohol (w) per mass of blood (w) (% w/w) [31]. The
symptoms of cognitive or physical functional decline based on BAC
have been reported by the National Institutes on Alcohol Abuse
and Alcoholism (NIAAA) [88]. At BAC levels of 0.03%–0.059%, mild
declines occur (e.g., mild speech, memory, and fine motor coordina-
tion). At BAC levels of 0.06%–0.1%, moderate declines occur, such
as effects on reasoning, peripheral vision, and depth perception. At
BAC levels of 0.1%–0.15%, moderate declines occur (e.g., speech,
memory, attention, motor coordination, and balance). Finally, at
BAC levels of 0.16%–0.3%, severe declines are observed, such as
effects on gross motor skills, motor planning, reflexes, and memory
blackouts. Cognitive decline (e.g., executive function and attention)
has been observed within the BAC of 0.04% or 0.08%, which is the le-
gal limit for drunk driving in most countries [15, 117, 118]; however,
motor coordination issues are not prominently exhibited [47, 113].
Note that even if the same amount of alcohol is consumed, BAC
levels can differ among individuals owing to various factors, such
as the type of alcohol, race, age, sex, health status, body mass, and
individual tolerance [22].

2.2 Theoretical Backgrounds of BAC
Measurement through Functional
Assessment

Physical or cognitive functional decline due to BAC changes can
be measured using various functional assessment methods. Func-
tional assessments refer to the methods used to measure acute or
chronic functional declines caused by various factors (e.g., drinking,
stress, dementia, and strokes) such as functioning in activities of
daily living (ADL), cognition, and physical mobility [29]. Tradi-
tional functional assessment methods can be classified into four
types of tests: survey-based cognitive screening tests (e.g., MMSE,
MOCA) [51], motor function tests (e.g., TUG) [46, 78], neuropsy-
chological test-based cognitive screening tests (e.g., N-Back, Stroop

test) [42], and ADL instruments such as self/informant ADL re-
port questionnaires (e.g., Katz ADL, ADCS-ADL, B-ADL, I-ADL,
FIM) [54, 57, 65, 96], performance-based tests (e.g., DAFS) [79], and
naturalistic observations (e.g., MET [85]) [29].

Survey-based cognitive screening tests are challenging to use for
multiple BAC measurements after drinking because of the learning
effects and user burden. Motor function tests (e.g., TUG) primarily
focus on assessing basic physical functions (e.g., balance and fall
risks) in older individuals [46, 78]. Therefore, these tests are not
very sensitive to measuring functional decline below the legal BAC
limit 0.08% [15, 117, 118], as the decline in cognitive function is
more pronounced than significant motor coordination issues at this
BAC level [47, 113].

Additionally, neuropsychological test-based cognitive screening
tests also have limitations in measuring BAC. Previous studies have
quantitatively measured participants’ functional performance us-
ing neuropsychological test-based cognitive screening tests (e.g.,
neuropsychological tests or computerized neuropsychological tests)
to understand the functional decline associated with alcohol intake
or BAC for each cognitive function domain [38, 41, 70, 94]. Lister et
al. [70] found that alcohol at doses of 0, 0.3, and 0.06g/kg had a selec-
tive effect on memory, affecting only explicit memory processes and
not implicit memory processes. Peterson et al. [94] determined that
there were differences in functional performance in planning, verbal
fluency, memory, and complex motor control through neuropsy-
chological tests under the conditions of low (0.132ml/kg), moderate
(0.66 ml/kg), and high dose (1.32 ml/kg) alcohol intake. Matthew et
al. [38] assessed performance in various cognitive functions such
as working memory, motor response, strategic optimization, vig-
ilance, psychomotor function, cognitive flexibility, and response
inhibition using six neuropsychological tests at BAC levels of 0%,
0.048%, 0.082%, and 0.10%. They demonstrated a decline in cognitive
function with an increase in BAC. However, previous research has
shown that, even as BAC or alcohol consumption increases, perfor-
mance in certain cognitive functions (e.g., logical memory, reaction
time, flexibility, psychomotor function, strategic optimization) ei-
ther improves or remains unchanged [38, 41, 70, 94]. Therefore,
even at the same BAC or alcohol dose, individuals showed signifi-
cant variation in performance across all cognitive function domains,
and the levels to which cognitive functions are affected vary. In
addition, several neuropsychological tests are difficult to administer
and require clinician guidance. Furthermore, repeated measure-
ments of these tests pose a learning effect issue [13, 86]. Therefore,
objective cognitive impairments may not be observed for each cog-
nitive function domain. To detect mild functional declines below a
BAC of 0.08% (the legal limit of DUI [15]).

ADL instruments that require a higher mental workload (e.g.,
cognitive processes) may be more appropriate for measuring BAC
than the three other types of functional assessment methods. The
common ADL instrument, also known as the basic ADL (B-ADL) or
physical ADL (P-ADL), was designed to assess the treatment and
prognosis of acute or chronic problems by observing the fundamen-
tal skills required to independently care for oneself. P-ADL consists
of six tasks: feeding, continence (regulating bowel and urinary func-
tions), transferring/ambulating, toileting, dressing, and bathing [57].
However, assessing mild cognitive impairment (MCI) based solely
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on basic ADL is challenging [54, 65]. This motivated the develop-
ment of another instrument called the I-ADL instrument, which
requires a more complex mental workload to discern various func-
tional declines, includingMCI, compared to basic ADL [65]. Initially,
I-ADL comprised seven tasks: communication, shopping, prepar-
ing food, household chores, transportation, medication intake, and
handling finances [65]. To date, 50 tasks have been developed from
37 I-ADL instruments in 25 studies [54]. The strength of the I-ADL
instruments lies in their demand for intricate cognitive abilities,
allowing them to discern minor functional declines more effectively
than P-ADL and neuropsychological assessments without learning
effects [14, 81, 123]. Furthermore, as the complexity of the I-ADL
task increases (e.g., banking tasks), its capability to detect nuanced
and minor functional decline improves [123].

The traditional methods for measuring I-ADL mainly include
self/informant reporting questionnaires and performance-based
tests [54]. Self/informant reporting questionnaires are used to score
the extent of ADL performance using 4–5 item questionnaires based
on daily self-reporting or informant’s observations. However, this
method relies heavily on the subjectivity of an individual or ob-
server daily, causing reliability issues. The performance-based test
method involves executing scenario-based ADL tasks. Given that
evaluators measure a patient’s performance [79], this method can be
more reliable and quantitative than self/informant reporting ques-
tionnaires, potentially making it possible to detect BAC changes.
However, traditional I-ADL test methods require evaluation based
on observer ratings or self-reports, which entails time and cost
limitations. Therefore, measuring BAC immediately after alcohol
consumption can be challenging.

Recently, with technological advancements, the potential to use
technology-enabled ADL methods has emerged to overcome the
limitations of traditional I-ADL test methods (e.g., long duration,
high cost, reliability, non-automated performance scoring, and in-
accuracy) for detecting BAC changes[29]. A representative method
for integrating digital technology with I-ADL for assessment is
the ADL-based tests on computer use [7, 56, 58, 93, 102, 103, 114].
Previous studies on computer-use ADL utilized interaction sens-
ing with a mouse and keyboard to determine the functional state
by evaluating computer usage performance. The test methods for
computer-use ADL include real-life monitoring-based tests and
performance-based tests. Real-life monitoring-based tests [58, 101–
103] use daily or monthly statistics-based performance metrics such
as the number of days in use per month, mean daily use, and time
spent on mouse movement. However, applying these metrics for
BAC detection within a few hours is challenging. In contrast, the
performance-based test methods [7, 56, 93, 114] conducts functional
assessments with a single-time measurement of pre-defined scenar-
ios by using web browsing metrics (e.g., websites visited), search
typing metrics (e.g., number of words per minute), and keystrokes
metrics (e.g., keystroke rate). This type of performance-based test
with one-time measurements has the potential to be applied for
immediate BAC detection.

Owing to the recent trend of mobile-only lifestyles, most young
adults perform I-ADL tasks (e.g., financial management, message
texting, calling, searching for information, navigating) through var-
ious apps on smartphones rather than on desktop computers. Addi-
tionally, while computers are mainly used in offices or homes, thus

having location constraints, smartphones can be carried around
anytime and anywhere, even when drinking alcohol. Furthermore,
the differences in display size and interaction methods between
computers and smartphones influence how humans perceive infor-
mation and make decisions based on Human-Computer Interaction
(HCI) theory (i.e., the processes of perception, cognition, and motor
functions) differently. This makes it challenging to directly apply
the performance metrics used in computer use ADL directly to
smartphones. Therefore, developing a smartphone-based ADL de-
sign that conducts traditional I-ADL tasks based on smartphone
applications commonly used in daily life will make immediate BAC
detection after drinking feasible.

2.3 Detecting Alcohol Consumption and BAC
with Smartphones

Prior HCI studies have used smartphone context sensing or smart-
phone enabled functional assessment methods to automatically
detect alcohol consumption episodes and BAC levels. Arnold et
al. [6] utilized a smartphone accelerometer to detect alcohol con-
sumption (normal, mild, and heavy drinking) through gait analysis
(e.g., number of steps and gait velocity). Unlike the detection of al-
cohol consumption detection, the determination of BAC is difficult
when there is no significant movement. Furthermore, according
to previous research, many individuals do not exhibit a decline in
simple motor coordination because that requires minimal cognitive
abilities below BAC of 0.08% [47], which limits its effectiveness in
detecting moderate alcohol consumption. Dai et al. [30] placed a
smartphone accelerometer sensor inside a vehicle to detect drunk-
driving movements.

Several studies leveraged smartphone-based passive sensing,
such as those by Phan et al. [95] and Bae et al. [9, 10]. These studies
detected normal, sober, and heavy drinking episodes by understand-
ing user contexts such as interaction behavior (e.g., app usage, calls,
messaging, key typing), location, and battery status, utilizing var-
ious built-in smartphone context data (e.g., GPS, app usage, and
system status). However, these approaches focused on identifying
the severity of drinking episodes and cannot be used to detect BAC
levels immediately after alcohol intake. Thus, while previous studies
have used smartphone sensors to monitor users’ motor functions
or context to determine alcohol consumption, there are limitations
in the immediate detection of BAC levels after drinking.

Mariakakis et al. [76] developed a smartphone enabled functional
assessment tool for BAC detection by adapting traditional neuropsy-
chological tests to smartphones. This tool utilized touch interactions
(e.g., swiping, typing, and tapping) and photoplethysmogram (PPG)
and heart rate sensing to gauge various aspects of psychomotor
coordination (e.g., fine motor coordination and psychomotor con-
trol/speed) for BAC detection. However, the smartphone-enabled
neuropsychological test used captures only the human motor pro-
cesses based on simple human perceptual processes (e.g., reflex
actions) [76]. Because tasks designed to evaluate the cognitive pro-
cesses (i.e., thinking skills) were not included, the ability of the
test to identify mild cognitive decline due to moderate alcohol con-
sumption is limited. Additionally, traditional neuropsychological
tests were implemented on smartphones instead of using common
daily–use smartphone apps, it implemented in the smartphone.
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Our study extends the existing smartphone-enabled functional as-
sessment methods for detecting drinking episodes and BAC levels
by demonstrating the feasibility of analyzing typical phone usage
behaviors (e.g., calling, texting, and map searching) that demand
complex cognitive functions as in traditional I-ADL.

3 S-ADL INSTRUMENT DESIGN FOR
DETECTING BAC

We propose a new instrument called the Smartphone Activities
Daily of Living (S-ADL) for BAC identification (RQ 1). First, we
discuss the preliminary S-ADL design with a rationale for BAC
detection. Then, we propose scenario-based S-ADL task scripts
for performance-based functional assessments. Finally, we suggest
performance metrics to measure interaction performance.

3.1 Preliminary S-ADL Design
We defined the S-ADL as follows: “S-ADL is a sequence of interac-
tion behaviors of smartphone apps frequently performed in every-
day life” by referring to the existing ADL. To develop the represen-
tative S-ADL, we primarily focused on smartphone apps that can
be commonly used among existing I-ADL tasks [17, 65, 92].

The major domains of I-ADL tasks can be defined as using
phones (e.g., social and communication), shopping, food prepara-
tion, housekeeping, laundry, community mobility (e.g., transporta-
tion), taking medication, handling finances, and obtaining informa-
tion [17, 65, 92]. Among these I-ADL tasks, tasks performed through
recent smartphone apps include communication ADL through short
messaging services (SMS) and phone calls, shopping ADL tasks
through shopping apps, mobility ADL tasks through navigation
apps, finances ADL tasks through banking apps, and information
ADL tasks through information searching apps (e.g., Google). In ad-
dition to traditional I-ADLs, ADLs can also be designed based on the
unique characteristics of smartphones. ADLs such as screen on/off
and typing are performed exclusively on smartphones and are not
limited to specific applications. We define these as “generic smart-
phone usage ADLs.” As a result, we proposed five S-ADL categories:
communication ADLs, photo taking/management ADLs, finance
ADLs, information searching ADLs, and generic smartphone usage
ADLs, as shown in Figure 1.

To design the preliminary S-ADL tasks, we first investigated
the statistics of the smartphone apps and functions that young
adults use most frequently. The most frequently used smartphone
apps for individuals aged 18–34 are communication, photos and
videos, news/weather information, music and media, games, and
navigation [107]. Referring to the most frequently used apps, we de-
fined six specific apps (phone, messaging, camera, banking, weather
search, and location search) based on our S-ADL categories, as
shown in Figure 1. Furthermore, referring to the most commonly
used features in studies utilizing smartphone-based interaction
data-driven functional health detection [23, 66], we defined a rep-
resentative generic smartphone usage ADL including actions such
as notifications, screens, typing, and app transition-related actions.
We then defined the representative generic usage ADL tasks corre-
sponding to these actions, as illustrated in Figure 1. As a result, 28
S-ADL tasks were derived from the five S-ADL categories as shown
in Figure 1.

3.2 Scenario-based S-ADL Task Design for BAC
Detection

Our instrument design builds upon the HCI theory and I-ADL re-
search. According to the human information processing models
in the HCI theory [21, 115], when interacting with a computer
or smartphone, humans perceive information and make decisions
through the processes of perception, cognition, and motor coordi-
nation sequentially. Human information processing requires the
use of attention resources and mental workload. This highlights
the fact that we can design S-ADL scenarios with diverse mental
workloads (e.g., cognition and motor workloads) to observe the
functional declines in terms of information processing.

Previous I-ADL studies [81, 123] have shown that tasks involving
thinking skills can better differentiate mild functional decline than
simple neuropsychological tests. Overall, the functional decline in
information processing for S-ADL tasks can effectively detect BAC;
thus, we designed various S-ADL task scripts with different mental
workload levels.

As presented in Table 1, we finalized 17 of the 24 S-ADL tasks
(Figure 1) and designed the S-ADL task scripts as follows. Tasks
requiring a higher mental workload (i.e., various complex cognitive
and fine-motor skills required) include Banking, Information search
and share (IS), and SMS receives & reply (R&R). Tasks requiring
a moderate mental workload (i.e., one or two cognitive functions)
include SMS conversation (e.g., association skill), phone number
register & call (e.g., working memory, recall), and photo delete (e.g.,
working memory). Tasks requiring minimum mental workload
(simple stimulus & responses or fine motor tasks) include generic
usage (e.g., notification response, screen unlock), phone receive &
reply (R&R), which are similar to computerized neuropsychological
tests [76, 110].

For instance, the money transfer task in a banking app is a prime
example of a complex task that is commonly used in daily life with-
out a learning effect. However, the execution process involves a
more complex usage process than other S-ADL tasks (e.g., launch-
ing the banking app, authentication, selecting the bank, typing the
account number and transfer amount, unlocking with a password,
and initiating the transfer). This complexity results in increased
mental and physical workload during the three steps of the percep-
tion, cognition, and motor processes of HCI theory [21, 115], i.e.,
perceptive loads (e.g., interpreting the app’s user interface), cog-
nitive loads (e.g., working memory, decision-making, calculations,
information retrieval), and motor loads (e.g., typing passwords or
account numbers). Additionally, IS and SMS R&R require high fine
motor and cognitive loads. For instance, the SMS R&R task requires
cognitive processes because it involves calculating future meeting
times and dates from the given information, considering the meet-
ing location to formulate a response, and then typing the response.
This is in contrast to a previous study [76] that primarily focused
on simple typing tasks involving repeating provided sentences and
mainly assessed fine motor coordination. On the other hand, tasks
such as phone R&R, notification response, and screen unlocking
are similar to those tasks utilized by Mariakakis et al. [76] and
primarily rely on reflexive responses to simple visual stimuli (e.g.,
choice reaction). These tasks do not demand as much in terms of
processes of cognitive and motor load compared to complex tasks
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Figure 1: Description of Preliminary S-ADL Overview

Table 1: Scenario-based S-ADL Tasks and Scripts

S-ADL S-ADL Task Summary of Scenario-based S-ADL Task Scripts

Communication

Phone number register Save the sender’s phone number and name
Phone call Make a phone call and tell your personal information (e.g., email address)
Phone receive and reply Leave a different missed message depending on the caller
SMS conversation Answering a short question (e.g., fruit color) message
SMS receive & reply Send a reply message to make an appointment with time, place, date

Photo Take &
Delete

Photo take Take photos in the order of the cards presented
Photo delete Delete a particular photo among photos taken by instruction

Finance Management
(Banking)

Money Transfer Transfer the calculated amount to the provided bank account
Transfer information share Share bank transfer information to the sender via message

Information Search
and Share (IS)

Weather information search Enter the weather website and find the weather information on a specific day and location
Weather information share Find and share the weather information on a specific day and location
Location information search Find a restaurant with a high rating on a map for presented food name
Location information share Find and share the restaurant location route found via message

Generic Usage

Screen pattern unlocking Unlocking the specific screen lock pattern
Screen on by notification response Turning on the screen in response to an instruction message notification
App start after screen unlock Starting the app after unlocking the screen
App start by notification response Starting the app in response to a instruction message notification

(e.g., money transfer), as they are primarily based on automatic
reactions to visual cues.

Consequently, we created a set of eight S-ADL task scripts: phone
number register & call, phone R&R, SMS short conversation and
R&R, photo take and delete, banking, finance management, location
& weather IS as shown in the example Figure 2. These S-ADL
task scripts were created and revised to fit with smartphone app
usage tasks by referring to existing performance-based I-ADL task
scenarios [54, 79]. Our data were collected by performing S-ADL
tasks, which were later used to derive performance metrics. When

conducting a task in each session, we slightly altered the variables
in the task instructions to eliminate learning effects in the S-ADL
tasks (e.g., person name, fruit name, time, place, date, business card,
and food name). The generic smartphone usage ADLs selected in
Figure 1 were naturally performed in the process of performing
the eight S-ADL tasks. Eight types of S-ADL tasks were performed
continuously during data collection. Detailed explanations of the
eight S-ADL tasks’ scenario scripts are provided in the Supplement
material for instruction and response message, as well as the task
execution procedures (e.g., app start and end sequence) in Table 11.
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We conducted a preliminary user test with six participants. Based
on the test results, we excluded several S-ADL tasks and subtasks.
In the location search and share task, we needed to find other
food types and restaurants each time to eliminate the learning
effect. However, it was difficult to maintain the consistency of the
difference in difficulty depending on the type of food (e.g., there
are too many cafes and too few steak restaurants on the maps).
Therefore, we excluded the location search and share task. The SMS
conversation task with fruit color answers was also excluded from
the S-ADL task because of the variations in user knowledge of fruit
colors and the lack of discriminative power.

3.3 Design of S-ADL Performance Metrics
Users perform predefined S-ADL tasks in controlled lab environ-
ments, from which we could extract various interpretable metrics
that are useful for BAC detection. From the S-ADL tasks and sub-
tasks, we derived a total of 57 performance metrics related to seven
task correctness scoring metrics (referenced by traditional ADL
performance-based test metrics [54, 79]) in Tables 6 and 7, 21 task
completion time metrics including response time (e.g., notification
response time) in Table 8, eight numbers of transitions (e.g., num-
ber of app transition or screens unlocks trials) in Table 9, and 21
types of SMS or information site searching typing-related metrics
such as the error rate (e.g., COER), character level measure (e.g.,
intercharacter time), entry rates (e.g., CPS), and efficiency mea-
sure (e.g., UB) referring to Mackenzie et al. [75] in Table 10. These
metrics can be calculated by collecting interaction data from built-
in Android smartphone APIs such as Accessibility Service [33],
UsageStatsManager [36], NotificationManager [35], and Notifica-
tionListenerService [34]. For a more detailed explanation of the
S-ADL performance metrics, please refer to Appendix A.

4 CONTROLLED LAB EXPERIMENT
4.1 Participant Recruitment and Selection
We conducted a laboratory study to assess the feasibility of the
proposed S-ADL for BAC detection. The laboratory study was used
to supplement the limitations of inaccurate alcohol consumption
measures in previous studies involving real-life experiments (e.g.,
participant’s inaccurate memory, no reporting of alcohol consump-
tion, no calculation of BAC) [6, 9, 10, 95] and to enable the eval-
uation of the performance of S-ADL tasks at precise BAC levels.
The previous study [76] that identified BAC using smartphones in
a laboratory environment only collected data from 14 individuals.
However, 14 participants are insufficient to minimize potential bias
for the impact on alcohol-induced cognitive abilities since such
abilities may vary based on demographic information (e.g., sex,
body weight) [40, 64]. Therefore, we chose a larger sample size of
40 participants to ensure sufficient validation of the effectiveness of
S-ADLs while considering the impact of various demographic pa-
rameters on alcohol-induced cognitive abilities. Our study targeted
young adults, specifically in their early 20s to 30s, as these ages
exhibit the highest frequency and risk of binge drinking among all
age groups [2, 3]. We selected 40 university students aged 20–32
based on the results of a pre-screening survey conducted before
the experiment, comprising equal or slightly different distribution

numbers with differences in demographic information (e.g., sex,
age, and weight), as summarized in Table 2.

Furthermore, in addition to their demographic information (i.e.,
sex, weight, and age), the pre-screening survey obtained the follow-
ing pieces of information to prevent potentially risky situations due
to drinking-related health and psychological and physical health-
related problems:

• Drinking-related health states: An alcohol history was ob-
tained via an AUDIT [100] survey to ensure the safety of
the participants. We also collected information on drinking
habits, drinking capacity, alcohol-related personality traits,
and genetic disorders.

• Psychological and physical health states: To consider partic-
ipants with normal cognitive status before alcohol intake,
we checked whether participants had any mental health
issues such as ADHD, dementia, depression, stress, and gen-
eral health issues through the six different health surveys
(CAARS [28], GHQ-12 [44], PSS [27], PHQ-9 [63], EQ-5D-
5L [50], and PSQI [20]).

Additionally, to account for differences in learning effects, recruit-
ment was limited to participants with experience in using Android
OS-based smartphones, S-ADL task-related apps, and QWERTY
keyboards for at least one year. As indicated in Table 2, participants
were divided into two groups based on their experience using An-
droid OS (use for over five years or less five years) and current use
of different types of smartphone OS to consider potential bias in
S-ADL use depending on the OS.

The criteria selected through the pre-screening survey were as
follows: (1) To eliminate the learning effect, participants who did
not have at least one year or more than 10 times the presented
S-ADL-related app usage under the given conditions (Android, QW-
ERTY keyboard) were not allowed to participate in the experiment.
(2) To participate in the study, no history of alcohol misuse or ad-
diction could be present (both the participants and their families).
Individuals who consumed alcohol within one week before the ex-
periment were not allowed to participate. (3) Participants who were
pregnant or had major physical or mental health issues or diseases
were excluded from the study. All of these details were documented
in the Institutional Ethics Review Board (IRB) submission, and the
experiment was conducted with our university’s IRB approval.

4.2 Evaluation of the Functional Decline with
CNT to Detect BAC

The primary objective of this study is to detect BAC using hu-
man functional assessment. Therefore, we conducted a computer-
ized neurocognitive screening test (CNT), which is a conventional
performance-based functional assessment test that has been widely
employed in previous medical research, to measure functional de-
terioration associated with BAC. We formulated a BAC detection
model using the performance metrics obtained from the CNT and
compared its performance with that of our S-ADL-based BAC de-
tection model.

We selected the following popular CNT tasks: N-Back (NB) [61],
Task Switching (TS) [55, 80, 83, 111], and Sustained Attention to
Response Task (SART) [5, 97, 98] as shown in Figure 3. These tasks
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Figure 2: Illustration of S-ADL Task Script Example: Phone Number Registration and Calling Task

Table 2: Demographic factors and smartphone OS use experience of participants

Variable Category Numbers Percent (%) Range Mean SD
Gender Female 20 50.0

Male 20 50.0
Age (in years) 20-24 26 65.0 20-32 23.63 3.2625-32 14 35.0
Weight (kg) <51 10 25.0

41-78 61.00 10.9551-61 10 25.0
61-71 10 25.0
71 < 10 25.0

Smartphone Android OS
Use Experience

<5 years 10 25.0
>5 years 30 75.0

Type of OS currently in use Android 25 62.5
iOS 15 37.5

were designed to evaluate various cognitive capabilities of the exec-
utive function (e.g., attention, working memory, processing speed,
pattern recognition, cognitive flexibility, and response inhibition)
governed by the frontal lobe of the human brain because alco-
hol consumption results in a temporary decrease in frontal lobe
function. The three CNTs were configured for the web-based tests
by utilizing and modifying the libraries provided in the popular
software toolkit called PsyToolkit [108, 109]. As the performance
metrics of the CNT, each individual’s mean/median response time
(ms) and accuracy (%) for each of the CNTs, as well as the sum
scores of the three CNTs, were calculated.

4.3 BAC Phase Design for Safety-aware
Experimental Setup

BAC levels were consistently monitored and maintained below the
legal threshold for driving of 0.08% (defined as binge drinking by
NIAAA [88]) in most states in the United States (US) [15], in strict
compliance with the guidelines established by the IRB, as outlined
in the NIAAA guidelines [87], and by the specified DUI limit, as
documented in [15]. In addition, BAC of 0.03% or 0.04% is also the
legal limit for drunk driving in many countries (e.g., most European
and Asian countries) [117, 118]. Therefore, the detection of BAC
of 0.03% or 0.08% is also very meaningful. Furthermore, following
previous studies [38, 76, 82, 94, 119], the experiment was conducted
at BAC levels with intervals of BAC 0.03%–0.04% (none drinking:
0%, mild drinking: 0.03%–0.04%, and heavy drinking: 0.07%–0.08%),



S-ADL for BAC Detection CHI ’24, May 11–16, 2024, Honolulu, HI, USA

S-ADL Design Experiment Procedure

S-ADL Task Design 

BAC Model

S-ADL Performance Metrics

LOSO Cross-Validation model

Accuracy Comparison

Three BAC measured by breathalyzer

Press space bar 

when see digit, 

apart from ’3’!

7 à press ‘space’

3 à do not press 

‘space’

Shape task: 

circle à ‘b’

rectangle = n 

Color task: 

blue = press n    

yellow = press b  

Recall 3 Back
If 3 back word 

matches with 

current word → 

press ‘m’ key

CNT measurement in three BAC phases

S-ADL measurement in three BAC phases Identify top k-metrics

- S-ADL → 81.4%

- S-ADL WO Correctness → 80.8%

- CNT → 70.8%

- CNT + S-ADL → 79.4% 

- Each S-ADL Task → 76% (best Task)

- Best Combination S-ADL Task → 80% 

- Task Completion Time

- Task Correctness Scoring

- Typing (e.g., Character per Time)

- Number of App Transition or 

Screen - Unlocking

Perform S-ADL

Messaging 

ADL

Weather Info

Search ADL

Location Info

Search ADL

Banking

ADL

Camera 

ADL

Phone 

ADL

Non 

Drinking

Moderate

Drinking

Heavy 

Drinking

N-BACK SART Task Switching Perform CNT

BAC

0.00%

BAC

0.04%

BAC

0.08%

Figure 3: Overview for S-ADL Design, Experiment, and Result

which represents a significant change in the functional decline
state.

To prevent alcohol overconsumption, the amount of alcohol that
should be consumed by individuals over the three BAC phases was
calculated in advance using Widmark’s formula [116]. To calculate
Widmark’s formula, we collected weight and sex information from
each participant. To avoid additional alcohol overdose, participants
were asked to drink Soju with 20.1% alcohol by volume, a popular
Korean distilled alcoholic beverage, once every 30 minutes using a
25 mL plastic cup. BACwas measured using a digital breathalyzer to
ensure that the target BAC level was reached. According to Armin
et al. [16], it takes approximately 20 minutes for alcohol to reach
the liver, which metabolizes approximately eight grams of alcohol
per hour.

Owing to the continuous increase or decrease in BAC levels
during the progression of the experiment, BAC measurements were
taken after completion of each session’s CNT or S-ADL tasks to
ensure the BAC was maintained at 0.03%–0.04% or 0.07%–0.08%.
In addition, if there were no abnormalities in the BAC level, the
experiment was conducted continuously. However, if the BAC level
was higher than expected, the experiment was paused until the BAC
level dropped to the desired range. If the BAC level was lower than
expected, an additional 25 mL of alcohol was consumed, followed by
a 20-minute wait. After re-measuring the BAC level and achieving
the desired BAC level range, the next session was carried out.

Safety criteria were established to ensure the experimental sta-
bility. We provided sufficient rest, water, and hangover remedies
to participants during the experiment. Fortunately, no significant
body reactions were observed in the 40 participants during the ex-
periement. For ethical experiment execution, in the pre-experiment
orientation, participants were explicitly informed about precautions

regarding alcohol consumption, as well as the option to immedi-
ately withdraw from and discontinue the experiment at any time
upon the participant’s request or the experimenter’s judgment. Af-
ter the experiment, we provided taxi fares to ensure the participant
returned home safely and participants were not allowed to use
private vehicles.

4.4 Apparatus and Experiment Procedure
We conducted a laboratory study involving 40 participants. An
overview of the experimental procedure is shown in Figure 3. In the
experiment, nine sessions were performed for the S-ADL and three
CNT tasks at three BAC phrases (0%, 0.03%–0.04%, and 0.07%–0.08%)
in three sessions. We collected nine samples across three repetitions
of each BAC phase to ensure reliability, validity, and reproducibility,
according to Design of Experiments (DoE) principles. By repeating
the experiment under the same conditions three times, we can
estimate the variability of the results and increase the accuracy of
the estimate, assuming no systematic error. The reason for limiting
the experiment to three repetitions is due to the practical and ethical
limitations of lab studies involving alcohol consumption, balancing
the need for statistical significance with participant health and
ethical considerations.

The CNT tasks were performed using the same laptop model.
Participants performed S-ADLs on the same model Samsung Galaxy
Android smartphone, and we collected smartphone usage data us-
ing a usage data logger made with Android APIs such as [33–36].
BAC was measured using a digital breathalyzer (AL8000 model) to
quantitatively determine the degree of alcohol intake. To minimize
the learning effect that may occur as the number of sessions in-
creases, both the S-ADL and CNT groups performed at least three
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training sessions in advance. In addition, we counterbalanced the
orders of the CNT and S-ADL tasks.

5 MACHINE LEARNING MODEL FOR BAC
DETECTION

Our goal in RQ2 is to build a machine-learning model for BAC
detection using S-ADL-based performance metrics and to identify
specific metrics that demonstrate the most substantial influence on
the accuracy and reliability of the BAC model. Toward this end, we
posed the following three detailed evaluation questions. We first as-
sessed the performance of a BAC detection machine learning (ML)
model using S-ADL performance metrics (RQ2.A). We then com-
pared this model with the computerized neuropsychological test
(CNT) performance metrics-based models. Secondly, we explored
what the key performance metrics are in the best BAC detection
model based on S-ADL (RQ2.B). Third, we identified the S-ADL task-
based metrics that were the most effective for BAC detection when
used individually with separate S-ADL tasks. We then compared
the performances of the best-performing S-ADL task-based metrics
when used exclusively with the overall S-ADL task-based metrics to
examine the feasibility of detecting BAC through a single S-ADL in
a short period (RQ2.C). Finally, we explored whether demographic
factors and smartphone OS use experience influenced the model by
incorporating these features into it and comparing the performance
with the S-ADL task-based metrics model (RQ2.D).

5.1 Machine Learning Based Model Building
and Evaluation Methods

5.1.1 Binary and Multi-class Model Building. This study exam-
ined both binary and multi-class models for three BAC phases (0%,
0.03%–0.04%, and 0.07%–0.08%) and two BAC phases (0%–0.04% and
0.07%–0.08%), as in previous smartphone-based alcohol consump-
tion detection studies [6, 9, 10]. Through this, we aimed to ascertain
whether there was a difference in model performance between the
two and three BAC phases. The reason for using a classifier model
instead of a regression model was presented in Section 4.3, due
to the definition of binge drinking by the NIAAA being a BAC of
0.08% [88], and most countries having a legal threshold for driv-
ing at 0.03% or 0.08% [15, 15]. Therefore, it is important to detect
BAC within this range. In the multi-class model, there is a balanced
dataset with three samples per class, whereas, in the binary-class
model, there is an imbalanced dataset with six samples for one class
and three samples for the other class. Therefore, to address the is-
sue of an imbalanced dataset, we employed the Adaptive Synthetic
Sampling (ADASYN) oversampling methods [49] and class weights
to evaluate the performance of the model.

5.1.2 Model Selection and Evaluation Methods. We utilized leave-
one-subject-out cross-validation (LOSOCV) to minimize bias (i.e.,
underfitting) by considering the sample data for all participants
and enhance the generalizability by considering potential between-
subject variation (i.e., the variance in the participant’s unique smart-
phone usage performance capabilities or behavior habits such as
typing speed & accuracy, and task completion time under normal
conditions) in the training and validation process. LOSOCV involves
excluding one subject (n=1) from the entire dataset (n=40), training

the model using the remaining subjects (n=39), and then evalu-
ating the model’s performance with the excluded subject (n=1).
This process was repeated for all 40 participants in the dataset.
Compared with other cross-validation methods, LOSOCV is an ef-
fective method for enhancing generalizability in situations with
limited data samples [39, 48]. This approach considers the differ-
ences between individual subjects, which is especially important
in cognitive decline-related research where individual differences
are high [39, 60]. Therefore, we conducted LOSOCV for validation
to reduce bias and improve generalizability by using the data for
all participants.

Furthermore, we employed the bagging-based ensemble mod-
els such as Random Forest (RF) [18] and boosting-based ensemble
models which are Gradient Boosting Machine (GBM) [43], eXtreme
Gradient Boosting (XGB) [24], and Light Gradient Boosting Ma-
chine (LGBM) [59] from the Sklearn library. These ensemble models
are known for their ability to improve the model’s performance by
preventing overfitting or underfitting by reducing bias or variance,
applicability to various datasets, robustness against noise, and an
ability to identify feature importance in recent studies [24, 43, 59].
Moreover, these models have been proven in other smartphone
data-driven cognitive impairment detection studies [24, 45]. To
validate the superiority of the ensemble model’s performance, we
employed additional classifier models such as Naive Bayes (NB),
Decision Tree (DT), and Logistic Regression (LR), which have been
used in previous studies todetermine alcohol consumption using
smartphone-based context data [6, 9, 10, 95]. To assess the model
performance, we primarily relied on the commonly used classifier
metrics, such as the area under the ROC curve (AUC–ROC) and
accuracy (macro-average).

5.1.3 Model Agnostic Model Explanation. The SHapley Additive
exPlanation (SHAP) value [72] was used to calculate the feature
importance of the inference models trained in the outer loop. SHAP
values were used instead of the built-in feature importance methods
in the ensemble model because 1) SHAP values are model agnostic,
meaning they can be applied regardless of the model type, 2) they
provide consistent interpretations even when the model’s architec-
ture and parameters change, 3) they calculate feature importance
more fairly and accurately by distributing the marginal contribu-
tion compared with ensemble model’s built-in feature importance
technique, thus overcoming the opacity of complex and hard-to-
interpret ensemble models, and 4) they allow for the harmony of
local and global model’s interpretations, enabling the identifica-
tion of feature importance not only for the overall model but also
through SHAP values of each of the 40 individual test results [72, 99].
We obtained the SHAP values of the 360-sample dataset (40 subjects
with nine samples per subject) by using the SHAP value and ranking
them in order of importance to determine the S-ADL performance
metrics that had the most significant influence on the best model.
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Table 3: Model Performance of S-ADL and CNT based Metrics

Binary Model Multiple Model Binary Model Multiple ModelCombination
of metrics

ML
Model AUCROC Accuracy AUCROC Accuracy

Combination
of metrics

ML
Model AUCROC Accuracy AUCROC Accuracy

NB 0.594 0.597 0.608 0.411 NB 0.588 0.692 0.608 0.411
DT 0.650 0.667 0.646 0.528 DT 0.681 0.711 0.625 0.500
LR 0.665 0.675 0.725 0.494 LR 0.654 0.711 0.715 0.481
RF 0.780 0.811 0.793 0.592 RF 0.775 0.800 0.787 0.578
GBM 0.779 0.806 0.800 0.642 GBM 0.779 0.797 0.790 0.580
XGB 0.779 0.797 0.808 0.636 XGB 0.773 0.808 0.793 0.589

S-ADL

LGBM 0.783 0.814 0.814 0.636

S-ADL
(WO
correctness
scoring)

LGBM 0.770 0.794 0.796 0.603
NB 0.500 0.667 0.500 0.333 NB 0.594 0.597 0.608 0.411
DT 0.631 0.667 0.563 0.417 DT 0.602 0.633 0.613 0.483
LR 0.606 0.667 0.742 0.492 LR 0.723 0.717 0.752 0.492
RF 0.644 0.692 0.746 0.475 RF 0.754 0.794 0.861 0.606
GBM 0.675 0.708 0.696 0.475 GBM 0.715 0.747 0.834 0.594
XGB 0.663 0.692 0.696 0.483 XGB 0.763 0.789 0.841 0.597

CNT

LGBM 0.619 0.642 0.721 0.492

S-ADL & CNT

LGBM 0.727 0.739 0.820 0.600

5.2 RQ2.A: Performance Comparison of the
BAC Detection Models using S-ADL and
CNT

5.2.1 Model Performance with S-ADL. As summarized in Table
3, The S-ADL-based binary class model exhibited the best perfor-
mance, with the AUC–ROC of 78.3% and the accuracy of 81.4% using
LGBM. The performance of the S-ADL-based multi-class model ex-
hibited the best performance, with an AUC–ROC of 81.4% using
LGBM and an accuracy of 64.2% using XGB, as presented in Table
3. The average performance across the four ensemble models was
as follows: for the binary-class models, the AUC–ROC was 78.0%
and the accuracy was 80.7%; for the multi-class models, the AUC–
ROC was 80.4% and the accuracy was 62.6%. In comparison to the
ensemble models, single classifiers such as NB, DT, and LR showed
an average performance in the binary-class models with the AUC–
ROC of 63.6% and the accuracy of 64.6%, whereas in multi-class
models, they exhibited the AUC–ROC of 66.0% and the accuracy
of 47.8%. Therefore, ensemble models demonstrated an average
improvement of approximately 14%–15% in both AUC–ROC and
accuracy compared to single classifiers in both binary-class and
multi-class models. Ensemble models perform better than single
classifiers because they combine decisions from multiple individ-
ual models, thus reducing errors, bias, and variance. This allows
ensemble models to perform well even in complex datasets with
many features and noise. Accordingly, ensemble models exhibit
better performance than single classifiers because the 57 features
of the S-ADL-based model constitute a high-dimensional dataset.
Additionally, the relatively lower accuracy of all multi-class models
compared with all binary-class models, despite the higher AUC-
ROC, is likely because there are three classes in the multi-class
model, making accurate classification more difficult.

5.2.2 Comparison of the Model Performance with S-ADL and CNT.
The best CNT-based models, both binary and multi-class, showed a
lower AUC-ROC by approximately 9%–11% and a lower accuracy
by approximately 11%–15% than the best S-ADL-based models, indi-
cating that the S-ADL-based models outperformed the CNT-based
models as indicated in Table 3. Therefore, we conclude that the

S-ADL method performs better than the CNT in detecting BAC-
related functional decline. This indicates that similar to previous
research findings, I-ADL instruments are more sensitive to func-
tional decline than CNT [81, 123]. In contrast to the S-ADL-based
models, in the CNT-based models, the ensemble model did not
show a significant difference in performance results compared to
the single-classifier models for both the binary and multi-class
models. This was attributed to the smaller number of features in
the CNT-based models, leading to a reduced effect of the ensemble
model.

5.2.3 Comparison of the Model Performance with S-ADL vs Com-
bination of S-ADL and CNT. Furthermore, we evaluated whether
combining the performance metrics of the S-ADL and CNT would
achieve a better BAC detection performance. As indicated in Table
3, the best performance of the S-ADL and CNT-based binary class
model exhibited an AUC-ROC of 76.3% using XGB and an accu-
racy of 79.4% using RF. The best performance of the S-ADL-based
multi-class model showed an AUC–ROC of 86.1% and an accu-
racy of 60.6% using RF. Similar to the S-ADL-based models, S-ADL
and CNT-based models consist of a large number of features (i.e.,
high-dimensional data). Consequently, the performance results for
the ensemble models (RF, GBM, XGB, and LGBM) were generally
higher than those of the single classifiers (NB, LR, and DT). The best
performance of the binary class model that used the performance
metrics of both S-ADL and CNT was lower than that of the S-ADL
performance metrics-based model, possibly because of overfitting.
The multi-class model showed a slightly higher AUC–ROC than
the model that used only S-ADL performance metrics, although the
accuracy was lower in this case. Therefore, it appears that there is
no compelling need to use both S-ADL and CNT together for BAC
detection because the results were not notably better than when
using S-ADL alone.

5.3 RQ2.B: BAC Detection Model for Ranking
the Importance of Performance Metrics

As shown in Figure 4, the top 20 features were derived from the
LGBM-based multi-class model, which showed the highest perfor-
mance, with an AUC-ROC of 81.4% as summarized in Table 3. As
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Figure 4: S-ADL performance metrics importance in the best multiclass model: SHAP value summary plots in (a) the non-
drinking class (BAC 0%), (b) the mild drinking class (BAC 0.03%–0.04%), (c) the heavy drinking class (BAC 0.07%–0.08%), (d) the
total class

shown in Figure 4(d) (absolute mean plot of the SHAP values), the
typing and task completion time metrics were identified as part of
the top 20 metrics in terms of importance. However, none of the
S-ADL task-related task correctness scores or transition metrics
were included, except for the Total Task Sum Correctness metric.
The typing-related metrics, such as Intercharacter Time (IT), To-
tal/Corrected Error Rate (TER, COER), and Character/Keystrokes per
Second (CPS, KSPS), accounted for 10 of the top 20 metrics. Nine task
completion time metrics for banking, information search, phone
call, screen unlocking, and photo deletion were included among
the top 20 metrics in that top five order, indicating a high level
of influence on the model. When considered on a per-S-ADL task
basis, information search & share (IS) task-related metrics were

included in the most prevalent eight metrics among the top 20 met-
rics. Following, the SMS reply task and generic usage task-related
metrics included each included three of the top 20 metrics.

In the binary-class model as well, typing and task completion
time-related metrics had the highest influence on the best perfor-
mance (accuracy of 81.4%) of the LGBM-based model, as shown in
Figure 5. In the binary-class model, the median intercharacter time
(IT) metric for the IS task exhibited an influence that was twice that
of the total task sum correctness scoring metric, which showed the
highest influence in the multi-class model. It surpassed all of the
other metrics by a significant margin. Task completion time-related
metrics also comprised eight of the top 20 metrics, with the top five
in the order of banking, screen unlocking, information share, phone
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Figure 5: S-ADL performance metrics importance in the binary class model (BAC 0%–0.04%, BAC 0.07%–0.08%): (a) SHAP value
summary plot in total class (b) SHAP value of mean absolute plot in total class

call, and phone number register task completion time exhibiting a
high influence. In the S-ADL tasks, IS task-related metrics were the
most prevalent with eight metrics, followed by five metrics related
to SMS reply, among the top 20 metrics. Ultimately, the key metrics
included in the top 20 were similar for the binary and multi-class
models.

Based on the keymetric results (Figures 4 and 5), this study found
that each S-ADL-based task correctness scoring metric, developed
by referencing the task correctness scoring method of traditional
ADL instruments [53, 79] using automated scoring technology,
was not a significantly important metrics in either the binary or
multi-class models, even if the total task sum correctness scoring
metric was one of the top three significant metrics. Furthermore,
task correctness scoring metrics were limited to specific app tasks
compared with other metrics. Because task correctness scoring
metrics are based on the S-ADL task script in this study, it may
be challenging to apply them to other apps with similar purposes.
Therefore, we further analyzed the performance of binary and
multi-class models using only typing, task completion time, and
transition metrics, which can be generalized to other similar apps,
and explored the feasibility of S-ADL-based BAC detection through
different apps. As summarized in Table 3, we identified by excluding
the task correctness scoring metrics-based model, the best binary-
class model exhibited a difference of 0.4% in AUC–ROC and 0.6% in
accuracy, and the best multi-class model exhibited a difference of
0.8% in AUC–ROC and 3.9% in accuracy compared to the best overall
S-ADL metrics based model. This result demonstrates that the S-
ADL model without the task correctness scores metrics can perform
well for BAC detection. Thus, we have identified the potential
for BAC detection using S-ADL performance metrics that can be
applied to other similar apps without being limited to specific tasks.

5.4 RQ2.C: Comparison of the Model
Performance of Each S-ADL Task

This study compared the actual performance of binary and multi-
class BAC detection models using metrics from each S-ADL task
with the metric importance results based on the SHAP values, as
presented in Figures 4 and 5. The S-ADL tasks exhibited the best
performance. Furthermore, it was possible to achieve good per-
formance using only one or two S-ADL tasks instead of all tasks.
Selecting only a few tasks can reduce the time required for BAC
detection. As depicted in Table 4, we developed a total of seven
binary and multi-class BAC detection models, each utilizing S-ADL
task-related metrics, including the task completion time, task cor-
rectness scoring, typing, and transitions, for each respective S-ADL
task (Appendix Section A). The typing metric was included only
in the SMS reply and IS tasks. Table 4 clearly indicates that in the
binary-class model, the best performance in terms of AUC–ROC
and accuracy was obtained for metrics related to the following
tasks, in descending order: IS, SMS reply, banking, phone number
register & call, photo take & delete, and phone receive & reply tasks.
In the multi-class model, the rankings were the same, except for a
change in the order of the banking task-related metrics and phone
number register & call-related task metrics.

The models with IS task-related metrics showed a performance
difference compared to the models with all S-ADL tasks-related met-
rics, with a difference of approximately 5%–6% in both AUC–ROC
and accuracy in the binary model and showed a more substantial
difference of 11.1% in AUC-ROC and 7.7% in accuracy, as indicated
in Table 4. The two best models based on the combination of metrics
related to S-ADL tasks (IS and SMS reply) exhibited a performance
difference of approximately 0.6% in AUC-ROC and 1.4% in accuracy
in the binary model and 6.3% in AUC-ROC and 6.8% in accuracy in
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Table 4: Model Performance of Each S-ADL Task
Binary Model Multiple Model Binary Model Multiple ModelCombination

of metrics
ML

Model AUCROC Accuracy AUCROC Accuracy
Combination
of metrics

ML
Model AUCROC Accuracy AUCROC Accuracy

NB 0.594 0.597 0.608 0.411 NB 0.508 0.356 0.515 0.350
DT 0.650 0.667 0.646 0.528 DT 0.515 0.547 0.540 0.386
LR 0.665 0.675 0.725 0.494 LR 0.571 0.556 0.608 0.392
RF 0.780 0.811 0.793 0.592 RF 0.508 0.606 0.536 0.353
GBM 0.779 0.806 0.800 0.642 GBM 0.469 0.572 0.549 0.347
XGB 0.779 0.797 0.808 0.636 XGB 0.515 0.578 0.559 0.403

All S-ADL

LGBM 0.783 0.814 0.814 0.636

Photo take
& delete
ADL

LGBM 0.529 0.611 0.572 0.406
NB 0.479 0.319 0.506 0.333 NB 0.460 0.378 0.513 0.347
DT 0.525 0.550 0.521 0.361 DT 0.527 0.544 0.519 0.358
LR 0.590 0.586 0.629 0.436 LR 0.590 0.628 0.619 0.381
RF 0.521 0.614 0.537 0.361 RF 0.525 0.622 0.566 0.375
GBM 0.521 0.608 0.544 0.358 GBM 0.542 0.633 0.588 0.417
XGB 0.510 0.583 0.499 0.331 XGB 0.538 0.606 0.562 0.394

Phone
number
register
& call ADL

LGBM 0.535 0.617 0.548 0.353

Finance
management
ADL

LGBM 0.525 0.597 0.530 0.369
NB 0.500 0.350 0.508 0.347 NB 0.585 0.575 0.546 0.400
DT 0.492 0.531 0.502 0.336 DT 0.702 0.731 0.656 0.542
LR 0.538 0.553 0.547 0.383 LR 0.675 0.683 0.696 0.472
RF 0.527 0.561 0.488 0.300 RF 0.712 0.750 0.703 0.554
GBM 0.517 0.539 0.501 0.339 GBM 0.727 0.753 0.685 0.532
XGB 0.533 0.564 0.473 0.278 XGB 0.733 0.756 0.694 0.565

Phone
receive &
reply (R&R)
ADL

LGBM 0.523 0.547 0.499 0.311

Information
search &
share (IS)
ADL

LGBM 0.725 0.744 0.679 0.557
NB 0.542 0.425 0.544 0.369 NB 0.594 0.592 0.585 0.414
DT 0.612 0.625 0.552 0.403 DT 0.704 0.739 0.635 0.514
LR 0.638 0.642 0.658 0.461 LR 0.696 0.706 0.715 0.472
RF 0.617 0.628 0.604 0.428 RF 0.760 0.792 0.738 0.574
GBM 0.619 0.633 0.633 0.414 GBM 0.777 0.800 0.720 0.564
XGB 0.610 0.639 0.593 0.403 XGB 0.769 0.794 0.751 0.562

SMS
receive
& reply (R&R)
ADL

LGBM 0.590 0.647 0.610 0.397

IS and
SMS R&R
ADL

LGBM 0.760 0.792 0.722 0.566

the multi-class model when compared with the models containing
all of the S-ADL task-related metrics. These results demonstrate
that there was little difference in the BAC detection performance
using only the S-ADL tasks of IS and SMS reply, which were the
most frequently included in the top 20 metrics derived from the
SHAP values, compared to using all of the S-ADL tasks, as shown
in Figures 4 and 5. Therefore, considering that the execution time
for both S-ADL tasks was less than one minute, this highlights the
possibility of achieving rapid BAC detection without performing
all of the S-ADL tasks.

As shown in Table 4, except for IS ADL, IS, and SMS R & R ADL,
the results of the logistic regression model, a single classifier, were
slightly better than those of the ensemble models in terms of accu-
racy for the binary-class model and both accuracy and AUC–ROC
for the multi-class models. This outcome is contrary to the results
of all of the S-ADL tasks-related metrics-based models in Table 3.
While ensemble models are more suitable for complex data model-
ing, particularly high-dimensional data, logistic regression can be
advantageous in cases where the data are simple and have a clear
linear relationship [69]. Therefore, the logistic regression model
shows higher performance than the ensemble models because the
individual S-ADL task-related metrics-based models, in contrast to
all S-ADL tasks-related metrics-based models, use only the perfor-
mance metrics corresponding to each S-ADL task, thus resulting
in models trained on relatively fewer features, or low-dimensional
data.

5.5 RQ2.D: Comparison of the Model
Performance with S-ADL vs S-ADL with
Personal Attributes

We examined the impact of demographic features (age, sex, and
weight) and smartphone OS use experience (Android OS usage
experience and the type of OS currently in use), as summarized in
Table 2, on the S-ADL-based BAC detection model. When building
the models, we considered an approach of fairness through aware-
ness [112] by incorporating these features into the machine learning
model. The results are presented in Table 5. Compared to the best
existing S-ADL-based metrics model, the best binary model showed
a slight improvement of 1.3% in AUC–ROC and approximately
0.3% in accuracy, whereas the best multiple model exhibited an
approximately 0.6% increase in AUC–ROC but a 2.3% decrease in
accuracy. Models incorporating only demographic data showed an
improvement of around 1% in AUC–ROC in both binary and multi-
ple models, with a slight increase or decrease in accuracy. Models
including only smartphone OS usage experience showed a 1.4%
decrease in accuracy in the best binary model, whereas the multiple
models exhibited a marginal improvement of approximately 0.2%–
0.3%. These results suggest that the variance caused by the addition
of demographic and smartphone OS usage experience features leads
to some performance improvements in certain models; however,
the overall impact on the performance of the S-ADL-based BAC
detection model is minimal. Regarding feature importance, neither
of these two feature types was ranked within the top 20 SHAP
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values. Therefore, we conclude that including personal attributes
has a minimal impact on the S-ADL-based detection model.

6 DISCUSSION
6.1 A Summary of Major Findings and

Contributions
We developed S-ADL tasks and performance metrics for BAC de-
tection and identified the key metrics by building machine learning
models. S-ADL tasks are based on scenario-based common daily
use smartphone app tasks and can assess an individual’s ADL func-
tional decline, such as a decline in perception, cognition, and motor
coordination. The S-ADL-based performance metrics could detect
BAC after drinking, achieving AUC–ROC and an accuracy of ap-
proximately 81%. Furthermore, we validated the superiority of the
S-ADL-based performance metrics in detecting BAC compared
with traditional performance metrics based on neuropsychological
tests that have been widely used to measure functional decline
associated with BAC [38, 41, 70, 94]. These findings are consis-
tent with previous findings that ADL functional assessment tools
are more sensitive to functional decline than neuropsychological
tests [14, 81, 123]. Additionally, in the case of CNT, three were
required. However, for S-ADL, because this method involves tasks
utilizing commonly used apps and operating systems in daily life,
no additional practice was required, even for complex S-ADL tasks
(e.g., banking and information searching). Thus, we concluded that
S-ADL showed less of a learning effect than CNT, as mentioned in
previous studies [13, 14, 86]

Feature importance analyses using SHAP (Figures 4 and 5) re-
vealed that task completion time and typing-related metrics were
the key metrics among the five types of metrics. In particular, the
banking task completion time and SMS & information searching
(IS) typing metrics were the key metrics. Furthermore, the BAC
detection model based on IS, SMS receive & reply (R&R), and bank-
ing task-related metrics showed better performance than the other
S-ADL-task-based models, as indicated in Table 4. This is because IS,
SMS R&R, and banking tasks require more perception and cognitive
skills (e.g., computational ability and short-term memory) along
with fine motor skills (e.g., keystroke typing) than other S-ADL
tasks, as indicated in Table 1. The results of previous I-ADL studies
also showed that the finance management ADL, which requires
complex thinking skills, is more sensitive for detecting functional
decline than other I-ADLs [14, 65, 81, 123]. In contrast, photos
take & delete and phone receives & reply (R&R) metrics, which
require less cognitive and motor loads (i.e., relying predominantly
on psychomotor control and speed), exhibited lower performance,
as depicted in Table 4. Hence, we found that S-ADL tasks demand-
ing more cognitive and motor processes tended to perform better
in binary and multi-class BAC detection models. Moreover, the
model based on the two tasks that involved the highest levels of
perception, cognition, and motor load (IS and SMS R&R) showed
a minimal difference compared with the model based on all of the
S-ADL-task-related metrics. This suggests it is possible to detect
BAC within less than one minute if users perform only the IS and
SMS R&R tasks.

Additionally, generic usage ADL tasks (e.g., screen unlocking,
notification responses), photos take & delete, and phone R&R tasks

related metrics were not included in the top 20 metrics in the BAC
0.03%–0.04% class of the multi-class model, as shown in Figure 4(b).
In contrast, IS, SMS R&R, and banking tasks metrics were included
in seven metrics of the top 20 features in the BAC 0.03%–0.04%
class model as shown in Figure 4(b). This highlights that the S-
ADL-related metrics demand more cognitive and motor processes
and have a greater influence on discerning mild functional decline
resulting from mild drinking (BAC 0.03%–0.04%). These results are
consistent with those of previous studies [76, 77] in which the
BAC detection methods based on psychomotor performance and
response tasks had difficulties in detecting mild drinking (BAC
0.03%–0.05%). Indeed, a previous study [76] also used a typing task,
but it primarily involved simply repeating given sentences without
engaging in a significant thinking process. However, the typing task
in our study required elaborate cognitive processes, such as thinking
about meeting places and times for replies, memorizing responses,
considering typing timing, and decision-making. Furthermore, a
previous study [76] used only two efficiency metrics (e.g., utilized
bandwidth and participant conscientiousness) from the metrics
presented by MacKenzie et al. [75]. In contrast, we expanded the
scope by incorporating a variety of 12 typing-related performance
metrics, as summarized in Table 10, including the error rate (e.g.,
COER), character level measure (e.g., intercharacter time), entry
rates (e.g., CPS), and efficiency measures (e.g., UB and WB) which
can be utilized for BAC detection, as shown in Figures 4 and 5.
Therefore, we believe that the sensitivity of the S-ADL to cognitive
functioning could make it effective for detecting functional declines
associated with mild drinking (BAC 0.03%–0.04%) or heavy drinking
(BAC 0.07%–0.08%), and S-ADL based models achieved a better
detection performance than the models in previous studies [76].

6.2 Privacy Issues and Potential Risks of S-ADL
Use

The S-ADL-based assessment tool does not require personal iden-
tification of information, as it records extracted features such as
the time spent per task in a certain app, the frequency of screen
transitions within an app or between apps, typing measures (e.g.,
character per time, error rate), and/or notification response time
extracted by scenario-based app tasks. Hence, this study method
has minimal potential privacy risks. Nonetheless, to generalize this
test in daily life with similar applications, the technical effort is
necessary to ensure privacy protection during the process of data
collection and processing as follows. One promising strategy is
the use of on-device learning, which can be adapted to create a
personalized model to prevent the potential leakage of personal
data to an external server. Raw data can be deleted after feature ex-
traction and aggregation, and categorical data (e.g., app names) can
be encrypted using a one-way hash function to prevent potential
data leakage.

We determined whether there were potential privacy concerns
when collecting S-ADL performance metrics data based on actual
user surveys and interviews through a questionnaire employing
a seven-point Likert scale. The details of the follow-up user study
are described in the Supplementary Material (Supplement: Section
D). Additionally, we assessed whether privacy protection mech-
anisms (e.g., on-device learning or a one-way hash function for
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Table 5: Model Performance of S-ADL with Personal Attributes: Demographic and OS Experience Features

Binary Model Multiple Model Binary Model Multiple ModelCombination
of metrics

ML
Model AUCROC Accuracy AUCROC Accuracy

Combination
of metrics

ML
Model AUCROC Accuracy AUCROC Accuracy

NB 0.594 0.597 0.608 0.411 NB 0.592 0.603 0.608 0.411
DT 0.650 0.667 0.646 0.528 DT 0.631 0.658 0.669 0.558
LR 0.665 0.675 0.725 0.494 LR 0.669 0.683 0.733 0.492
RF 0.780 0.811 0.793 0.592 RF 0.777 0.813 0.800 0.597
GBM 0.770 0.806 0.800 0.642 GBM 0.796 0.817 0.802 0.619
XGB 0.779 0.797 0.808 0.636 XGB 0.788 0.806 0.800 0.617

S-ADL

LGBM 0.783 0.814 0.814 0.636

S-ADL (with
demographic
features +
OS use
experience
features) LGBM 0.783 0.806 0.820 0.619

NB 0.588 0.594 0.608 0.411 NB 0.592 0.603 0.608 0.411
DT 0.698 0.717 0.652 0.536 DT 0.675 0.700 0.646 0.528
LR 0.677 0.689 0.725 0.483 LR 0.675 0.689 0.726 0.508
RF 0.764 0.789 0.815 0.616 RF 0.766 0.798 0.782 0.586
GBM 0.794 0.819 0.806 0.622 GBM 0.767 0.792 0.798 0.628
XGB 0.790 0.817 0.798 0.631 XGB 0.783 0.800 0.798 0.645

S-ADL (with
demographic
features)

LGBM 0.783 0.811 0.823 0.639

S-ADL (with
OS use
experience
features)

LGBM 0.771 0.794 0.816 0.642

data leakage) could mitigate users’ privacy concerns. As shown
in Figure 12 of Supplement: Section D, positive responses were
obtained regarding the collection of performance metrics data, both
on-device and to an external database, for detecting BAC while
performing scenario S-ADL tasks and other types of S-ADL tasks
through commonly used apps in everyday life. Conversely, it was
noted that there was more positivity towards data collection per-
formed on-device than in an external database, highlighting the
need for privacy protection mechanisms in real-life applications. In
addition, even if the data were collected in an external database, the
responses indicated that it would not significantly affect the usage
of S-ADLmethods, as other health diagnostic apps collect evenmore
detailed data. Among the performance metrics data, typing-related
metrics received relatively lower positive scores than the other data.
This was because the most sensitive information (e.g., bank account
passwords, login IDs/passwords, and text message contents) was
collected through typing. Although raw data (e.g., typed characters)
were not stored, the participants were concerned that some data
might have been erroneously stored on the device. This highlights
the importance of transparently sharing the information on the
collected data and their usage with the users to mitigate privacy
concerns.

6.3 User Experiences of S-ADL-based BAC
Detection: A Preliminary Examination

The S-ADL approach leverages widely accessible technology, po-
tentially offering a convenient tool for users to monitor BAC levels
and make safer decisions, such as avoiding binge drinking. Our
approach provides an alternative to traditional BAC identification
methods and their smartphone-based applications, such as com-
puterized neuropsychological tests, survey-based formulation ap-
plications (e.g., the Widmark formulation), and breathalyzers. As
previously stated, a follow-up user study with surveys and inter-
views was conducted, as described in the supplementary material
(Supplement: Section C). For a quantitative evaluation of S-ADL
usability, we customized the usefulness, ease of use, ease of learn-
ing, and satisfaction (USE) questionnaire [71]. Most participants
rated the usefulness, ease of use, ease of learning, and satisfaction
positively, with an average score of 6–7 out of 7 in Supplement:

Section C (Figures 8–11). Participants mostly responded that they
preferred the S-ADL method to traditional methods because it al-
lowed for automatic BAC determination through the smartphone
that they normally carried, without the need for separate measure-
ment devices (e.g., breathalyzer) or additional applications (e.g.,
CNT).

The other user experience dimensions examined were related to
users’ perceptions of the machine learning algorithms. A significant
risk associated with the use of ML models in health-related fields
is the potential for over-reliance by users. If individuals trust these
systems blindly, they may overlook the inherent limitations and
potential errors such as false positives (i.e., the model incorrectly
identifies a higher BAC than the actual amount of alcohol consumed
or indicates that alcohol consumption when it has not occurred) and
false negatives (i.e., the model incorrectly identifies a lower BAC
than the actual amount of alcohol consumed or indicates no alcohol
consumption when it has occurred) in ML predictions [10, 52].
For example, if a BAC detection app through S-ADL based on ML
algorithms inaccurately classifies a user’s alcohol level as safe when
it is not, the consequences could be dangerous, potentially leading
to decisions such as drivingwhen it is unsafe to do so. To understand
the user experience regarding over-reliance and concerns about
false positives/negatives, we interviewed participants from our
experiment about their needs for BAC measurements and their
concerns aboutmisclassifications.Most participants expressedmore
concern about false negatives than false positives, as detailed in
Supplement’s Section C. This was becausemost participants wanted
to use S-ADL to raise awareness about alcohol consumption through
quantitative indicators such as BAC, rather than relying on their
subjective judgment. They responded that while extreme accuracy
was not necessary (e.g., BAC measurement within 0.01% unit), they
would appreciate knowing the margin of error for the measured
BAC or the range of BAC (e.g., indicating mild or binge drinking
phases), possibly through notification alarms or data visualizations.

Therefore, while the application of ML in HCI for functions such
as BAC detection is promising, it is crucial to approach the imple-
mentation of such systems with careful consideration of the user
experience and potential psychological impacts. It is especially im-
portant to inform users about the capabilities and limitations of the
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ML model to prevent risky decisions due to over-reliance and to en-
hance trustworthiness. Additionally, the continuous improvement
and rigorous testing of these systems are essential to minimize
errors and enhance reliability. Understanding and addressing these
aspects is crucial before we can conclusively deem such systems
to be wholly beneficial. Compared to existing smartphone-based
alcohol consumption determination models, the S-ADL method
is designed to be more interpretable and transparent through its
ML model, allowing users to better understand how the system
operates from their perspective. The operation of S-ADL can be
explained through the human information processing process in
HCI theory [21, 115]. After drinking, when a user interacts with
their smartphone using S-ADL, it automatically measures changes
in functional decline in human information processing (perception,
cognition, and motor coordination) to determine the BAC, which
can be categorized as a situational impairment [76, 122]. The S-ADL
method allows visualization of the causes of incorrect judgments
or errors by presenting task-specific information to the users. Task-
specific interpretable features in S-ADL represent a major departure
from existing black-box models [6, 9, 10, 95]. The S-ADL allows
for the identification of specific tasks being performed, enabling
more interpretation from the user’s perspective compared to the
previous black-box models [6, 9, 10, 95]

In addition, it is essential to educate users about the system’s
accuracy and margin of error to prevent risky decisions due to over-
reliance on the system. For example, information that identifies the
results of heavy drinking (BAC of 0.07%) as mild drinking (BAC of
0.04%) can be provided to users to prevent serious consequences
(e.g., drunk driving and binge drinking) due to over-reliance. In
future research, we can use visualization techniques or alarms to
help young adults proactively reflect on their drinking patterns and
motivate them to encourage the regulation of their drinking pat-
terns. However, because this study was conducted in a controlled
laboratory environment, applying the current system directly to
real-life situations poses challenges owing to various real-world
factors such as environmental noises (e.g., weather, multi-tasking,
interruption by unintended notifications, and other persons), and
demographic factors and smartphone OS differences. Therefore,
to build a reliable system, it is necessary to conduct further verifi-
cation that considers real-life contexts, including the surrounding
environment, system environment, physical activity, noise (e.g., in-
terruptions), and potential biases (e.g., demographic factors, device
variations, and smartphone operating systems). In the following
sub-section, we discussed the limitations of our laboratory-based
BAC detection method and possible directions for future work.

6.4 Limitations and Future Work
Can S-ADL be generalizable across different demographics data? Al-
though BAC is influenced by various demographic factors (e.g.,
age, sex, weight, and alcohol tolerance) and reflects the results
of different amounts of alcohol consumption, already considers
these factors, there is still a potential for bias due to differences in
smartphone usage abilities between individuals experiencing func-
tional decline and those in a normal state at the same BAC level. To
address this potential bias, our study targeted a healthy younger
demographic and included 40 participants, considering age, sex,

and weight for training, as shown in Table 2. This approach helped
us develop a model that considered differences in demographic fac-
tors within the young population to some extent, thereby assessing
the impact of these factors on the bias in the S-ADL-based BAC
detection model. However, in real-world scenarios, the need for the
S-ADL methodology extends beyond healthy young individuals and
encompasses a variety of demographic factors, including the elderly,
people with disabilities, and individuals struggling with alcohol
addiction, all of whom can benefit from increased awareness of the
risks of binge drinking. Therefore, future studies should broaden
the participant pool to include a more diverse set of demographic
factors known to affect mental and physical health due to drinking
habits. To minimize potential bias and enhance the generalizability
of the findings, these factors may include age, academic background,
race, occupation, nationality, health status, level of disability, and
degree of alcohol addiction.

Can S-ADL be generalizable across different apps, devices, and
platform users? We leveraged widely used commercial applications
as S-ADL tasks that people commonly use in everyday life, which is
the main departure from the existing approach developed by Mari-
akakis et al. [76]. Our approach avoids the user burden associated
with practicing less familiar tasks designed for BAC detection. How-
ever, S-ADL may face challenges in generalizing beyond specific
scenario-based tasks under given OS platforms and application set-
tings, which require additional user studies for further optimization.
S-ADL is defined on the Android platform; thus, iOS users may be
required to familiarize themselves with UI differences. We believe
that cross-app and cross-device generalizability is a potential possi-
bility. For instance, in our study, the specific scenario-based tasks
tested on iOS users showed the potential for generalizability. This
was inferred from the quantitative ML results and user interview
responses, where users reported no significant difference in the UI
within the same app between the iOS and Android platforms. The
key metrics (e.g., task completion time and typing-related metrics)
may be collected across all apps with various user interfaces cor-
responding to specific S-ADL tasks such as communication ADL
and finance management ADL. However, the current study, which
primarily focused on laboratory-based testing, cannot directly ap-
ply its key features (e.g., task completion time and typing-related
metrics) to real life. For instance, users who have never used An-
droid may experience differences in the S-ADL tasks conducted
through other commonly used apps. In addition, real-world data
often contains noise, such as interruptions from others and unex-
pected notifications. Accordingly, we need to consider minimizing
such noise and OS differences when applying S-ADL to real-life
scenarios for BAC detection in future work.

How can we reduce the noise when applying S-ADL in the real
world? As mentioned in Section 6.3, BAC detection through S-ADL
performance in the real world has potential risks of misclassifica-
tions, including false negatives/positives due to various contextual
factors (e.g., system & surrounding context, weather, physical ac-
tivity state, etc.) and negative smartphone usage habits (e.g., typing
errors), as revealed through user interviews in Supplement: Section
C. False negatives, in particular, could lead to serious consequences,
such as drunk driving. To mitigate noise from environmental and
system-related disturbances during the S-ADL tasks and enhance
system reliability, this study aims to understand the environmental
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and physical context by considering not only the app usage-based
S-ADL utilized in this study but also other types of S-ADLs using
various smartphone context sensors (e.g., GPS, Wi-Fi, system status,
and physical activity). This approach will be helpful for distinguish-
ing between the performance impacts caused by drinking and those
caused by environmental or system status factors, ultimately reduc-
ing the potential risk of BAC misclassification in real life. Moreover,
future research should consider a wider array of demographic fac-
tors and smartphone OS environments and collect data from more
participants over a longer period. It is possible that long-term re-
peated measures would involve distinguishing between the average
values of performance metrics during non-drinking and drinking
periods for each individual. However, even with these considera-
tions, it is important to acknowledge that unpredictable variables
in real life mean that exact BAC identification cannot always be
guaranteed. As mentioned in Section 6.3, the results indicate that
users are willing to accept a certain degree of error in BAC detection
and are more focused on raising awareness and reducing alcohol
consumption. Therefore, risky decisions can be reduced through a
transparent and interpretable model that informs users about the
key metrics of the results and the potential range of errors.

Beyond S-ADL: How can we extend S-ADL to include ADLs that
can be captured with smartphones? This study developed S-ADLs,
focusing on smartphone app tasks primarily performed in daily
life, such as making phone calls, managing finances, and searching
for information. BAC detection was then performed using these S-
ADLs. However, I-ADLs also include mobility tasks both within and
outside the home, such as housekeeping, ambulating, and shopping.
Therefore, utilizing these I-ADL tasks for BAC detection is expected
to further enhance the feasibility of the model in real-world settings.
Data from various smartphones or wearable sensors can be utilized
to detect these I-ADL tasks. According to Lee et al. [66], smartphone
sensing-based mobile usage and sensor data include interaction
sensing, context sensing, and system sensing data. If we use context
and system sensing-based data, various I-ADLs can be detected. As
in previous smartphone context sensing-based drinking episode
detection studies [9, 10, 95], the utilization of various context data
(e.g., GPS, Wi-Fi, camera, and NFC) can be employed to assess the
functional decline in mobility ADLs such as using transportation
and shopping ADLs after drinking.

Beyond S-ADL: How can we leverage other types of sensing, such
as home IoT or in-vehicle sensors? When alcohol consumption oc-
curs within the household, it is possible to automatically assess
functional decline in household ADLs after alcohol consumption
by employing embedded sensors (e.g., infrared and motion sen-
sors), as used in previous research on smart home ADLs or by
using accelerometer-based activity recognition with smartphones
and wearables [73]. Similarly, in driving situations, smartphones or
wearable cameras can be utilized to monitor driving ADLs, which
can be applied in conjunction with BAC detection [62]. Therefore,
while this study focused on BAC detection using S-ADLs developed
by applying interaction-based I-ADLs to smartphones, we expected
that by exploring various I-ADLs through a wider range of smart
devices and sensors, it will be possible to enhance the BAC detec-
tion model by capturing a more multifaceted functional decline.
Therefore, understanding these ADLs, as inferred from the app
usage behavior-based S-ADL tasks presented in this study, can help

reduce noise from environmental and system-related disturbances
during the S-ADL tasks, thus contributing to improved performance
of the BAC detection model in real life.

7 CONCLUSION
Smartphones are tightly wired into our daily lives, significantly
expanding the scope of traditional activities of daily living (ADL).
We presented smartphone ADL (S-ADL) tasks and built a classifica-
tion model for automatic BAC detection in this study. The S-ADLs
built upon existing Instrumental ADL research, included five S-ADL
tasks and 14 subtasks that people use most frequently. We derived
57 performance metrics from the S-ADLs to detect BAC. We con-
sidered two phases BAC (0%–0.04% and 0.07%–0.08%) and three
phases BAC (0%, 0.03%–0.04%, and 0.07%–0.08%) for BAC label. We
demonstrated the feasibility of the proposed method by comparing
the S-ADL BAC detection model with the well-known CNT model
and identified the key metrics and S-ADL tasks. A laboratory-based
study was conducted to collect an interaction dataset with the pre-
cise BAC levels using a counterbalanced study design (e.g., task
sequence and gender). The results showed that the S-ADL-based
BAC detection model achieved an AUC–ROC of over 80% in the
binary and multi-class models and showed better performance than
the CNT-based model. The key metrics of the best model were
task completion time and typing, which can be applied to similar
purpose apps in specific S-ADL tasks. Additionally, S-ADL tasks in-
volving high cognitive and motor loads had better predictive power
than the other tasks, demonstrating the ability to detect BACwithin
a short period by performing one or two of the top-performance
S-ADL tasks. Our study offers an initial step toward defining and
understanding S-ADL instruments, building upon several decades
of research on ADL assessments. To generalize the study results,
long-term, large-scale studies in everyday life are required. As hu-
man behaviors are predictable and a large number of samples can be
collected from individuals considering various demographic factors
and smartphone use experiences over time, the S-ADL method may
have the potential to reliably track within- and between-person
variations in diverse areas of functional declines. Beyond alcohol
detection, we solicit further studies on using S-ADL-based func-
tional health monitoring, such as to evaluate health risks to young
adults associated with substance use disorders (e.g., alcohol and
cannabis) and mental health problems (e.g., depression and stress).
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A DETAILED EXPLANATION OF S-ADL
PERFORMANCE METRICS

A.1 Correctness-based performance metrics
Thesemetrics measure task correctness scoring by checking a user’s
response messages. This allowed us to determine whether the tasks
were performed correctly. If the correct response was recorded for
each S-ADL task, a given task received one point; otherwise, it re-
ceived zero points as shown in Table 6. The total sumwas calculated
by assigning 1 point if it was completely correct for each sub-task
and 0 points if it was partially incorrect. In addition, the correctness
summation scores for all six S-ADL tasks were extracted. A more
detailed explanation of the selected seven correctness metrics is
provided in Table 7.

A.2 Completion time-based performance
metrics

These metrics were derived by the interaction sensing of fine-
grained smartphone-specific app usage task completion time (e.g.,
SMS R&R time, transfer money time) and generic smartphone usage
response time(e.g., notification response time).

A.3 Transition-based performance metrics
Transition aims to check how many app transitions (including erro-
neous transitions) have been made when performing a given S-ADL
task. For the transition measure calculation, each app start/end fre-
quency was counted by sensing while performing an S-ADL task
script. It was calculated by comparing how many more app transi-
tions were performed compared to the number of app transitions
required by the S-ADL script (when performed without any mis-
takes).

A.4 Typing-based performance metrics
We used the typing measures by Mackenzie et al. [75] about site
searching (total 15 typing entries: “www.weather.com”) and SMS
receive & reply typing tasks (total 45 typing entries: “Alright, let’s
meet there by 4:15 PM on Aug. 14th”). According to Mackenzie et
al. [75], there are four categories (i.e., character per time, character
level analysis, error rate, and efficiency) and 23 typing metrics
(e.g., keystrokes per second and corrected error rates). We selected
12 typing metrics out of the total 23 based on the criteria; if the
measures were similar, we selected the recently developed and
verified measures from previous studies[75, 105, 106, 121]. A more
detailed explanation of the selected 12 typing metrics is provided
in Table 10. The weather site search typing of the IS task does not
have the “incorrect typing not fixed” in contrast to the SMS R&R
typing task because site typing requires fixing all the incorrectly
typed letters to be able to access the site. Thus, site address typing
tasks can be used only "COER" among error rate metrics. Moreover,
site address letters are not uppercase letters or special characters,
entering a shift or switching key is not required. Therefore, the
"GPS" does not exist in the IS typing tasks.

In this study, all S-ADL performance metrics were automati-
cally extracted and calculated by Android built-in APIs such as
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AccessibilityService [32, 33], UsageStatsManager [36], and Notifi-
cationManager and NotificationListerService [34, 35]. The detailed
process of extraction metrics is provided in supplement materials.

B DETAILED EXPLANATION OF S-ADL TASK
SCRIPTS

B.1 Communication ADL
Communication ADL consists of four S-ADL tasks (phone number
register & call, phone receive & reply, SMS conversations, SMS
receive & reply). Detailed task script descriptions in Supplement
Materials.

B.2 Photo Take & Delete ADL
Photo Take & Delete ADL consisted of two S-ADL tasks (photo
taking and deletion). Detailed task script descriptions in Supplement
Materials.

B.3 Finance Management ADL
FinanceManagement ADL consists of two S-ADL subtasks (transfer-
ringmoney and sharing information by sendingmessages). Detailed
task script descriptions in Supplement Materials.

B.4 Information Search and Share ADL
Information Search and Share ADL consists of two S-ADL task
groups (location search & share, weather search & share). Detailed
task script descriptions in Supplement Materials.
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Table 6: Task Correctness Scoring metric criteria for each S-ADL task
S-ADL Task S-ADL Sub Task Correctness Criteria Score (Correct: 1 point)

Phone Number
Register & Call

Phone Number Register Does the registered phone number match the presented phone number? 1 point

Phone Call Were the name, contact number, student ID, and e-mail mentioned over
the phone the same as they actually are? 1 point

Photo Take &
Delete

Take photos of business cards Were the three business cards photographed in the order presented? 1 point
Delete one of the business card photos Was the presented card deleted among the three business cards? 1 point

Phone Receive
& Reply Send absence message Was the absent message sent properly according to the caller? 1 point

SMS Receive
& Reply

Reply location Was the location entered correctly? 1 point
Reply time Was the time zone entered correctly? 1 point
Reply day of the week Was the entered day of the week correct? 1 point
Typed total sentence Were the spellings of total sentences entered correctly? 1 point

Banking Typed recipient number Were bank transfer receipts messages sent to the presented phone number? 1 point
Typed banking remittances Were the bank transfer amounts matched to the presented remittance? 1 point

Location
Search & Share

Search and type restaurant name Was the searched & typed restaurant name matched to the presented restaurant name? 1 point
Search and type the restaurant’s rating Was the searched & typed restaurant’s rating matched to the presented restaurant’s rating? 1 point

Weather
Search &
Share

Search and type weather information search location Was the searched & typed weather location matched to the presented searched location? 1 point

Search and type temperature & humidity Was the searched & typed weather information matched to the weather
of the presented date and location? 1 point

Sum 15 point

Table 7: S-ADL task correctness scoring-related performance metrics

S-ADL Task Terms of Performance Metrics Description of Performance Metrics

Phone number Register & Call Total Phone Number Register & Call Correctness Whether phone number register & call tasks were performed correctly
Phone Receive & Reply (R&R) Total Phone R&R Correctness Whether phone R&R tasks were performed correctly
SMS Receive & Reply (R&R) Total SMS R&R Correctness Whether SMS R&R tasks were performed correctly
Photo Take & Delete Total Photo Take & Delete Correctness Whether photo take & delete tasks were performed correctly
Banking Total Banking Correctness Whether Banking tasks were performed correctly
Information Search & Share (IS) Total IS Correctness Whether IS tasks were performed correctly
Total S-ADL Tasks Total Task Sum Correctness Whether Total S-ADL tasks were performed correctly

Table 8: S-ADL task completion time-related performance metrics

S-ADL Task Terms of Performance Metrics Description of Performance Metrics

Phone number Register & Call
Phone Number Register Time Time taken register phone number and name
Phone Call Time Time taken to personal information (e.g., name, phone number, email address)
Total Phone Number Register & Call Time Total time taken to conduct phone number register & call time task

Phone Receive & Reply (R&R) Phone Reply Time Time taken to leave an absent message after calling
Total Phone R & R Time Total time taken to conduct phone R&R task

SMS Receive & Reply (R&R) SMS Reply Time Time taken to type SMS replying
Total SMS R&R Time Total time taken to conduct SMS R&R task

Photo Take & Delete
Photo Take Time Time taken to take number cards with a camera app
Photo Delete Time Time taken to delete a specific image among number cards in a gallery app
Total Photo Take & Delete Time Total time taken to conduct photo take & delete task

Banking
Transfer Money Time Time taken to authenticate the bank app and type account and money amount
Transfer Information Share Time Time taken to share remittance information as the message sending
Total Banking Time Total time taken to conduct banking task

Information Search & Share (IS)
Information Search Time Time taken to type weather site and search weather information
Information Share Time Time taken to share weather information
Total IS Time Total time taken to conduct IS task

Generic Usage

Mean App Start Time after Noti The average of time taken to start the messaging app after noti in All S-ADL tasks
Median App Start Time after Noti The median of time taken to start the messaging app after noti in All S-ADL tasks
Screen On Time after Noti Time taken to Turn off the screen from screen off after noti
Message App Start Time after Screen Unlock Time taken to start message app after screen unlock
Screen Unlock Time after Noti Time taken to unlock screen unlock pattern
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Table 9: S-ADL transition-related performance metrics

S-ADL Task Terms of Performance Metrics Description of Metrics

Phone number Register & Call Phone Number & Call App Transition Number of apps converted to perform total phone number register & call task
Phone Receive & Reply (R&R) Phone R&R App Transition Number of apps converted to perform total phone R&R task
SMS Receive & Reply (R&R) SMS R&R App Transition Number of apps converted to perform total SMS R&R task
Photo Take & Delete Photo Take & Delete App Transition Number of apps converted to perform total Photo Take & Delete task
Banking Banking App Transition Number of apps covered to perform total Banking task
Information Search & Share (IS) IS App Transition Number of apps converted to perform total IS task
Generic Usage Number of Screen Unlock Number of attempts to unlock screen unlocking pattern
Total S-ADL Tasks Total Task Sum Transition Number of apps converted to perform total S-ADL tasks except number of screen unlock

Table 10: S-ADL typing-related performance metrics. R&R=receive & reply, , IT=Intercharacter time, IS=Information Search &
Share.

S-ADL Task Terms of Performance Metrics Description of Performance Metrics

SMS
Receive &
Reply (R&R)

SMS R&R Mean IT The mean of average inter-keystroke interval time in SMS replying typing
SMS R&R Median IT The median of average inter-keystroke interval time in SMS replying typing
SMS R&R Min IT The mix of average inter-keystroke interval time in SMS replying typing
SMS R&R Max IT The max of average inter-keystroke interval time in SMS replying typing
SMS R&R Characters per Second (CPS) CPS (i.e., (|T|-1)/S) in SMS replying typing
SMS R&R Keystrokes per Second (KSPS) KSPS (i.e., (|IS|-1)/S) in SMS replying typing
SMS R&R Gestures per Second (GPS) Gestures (i.e., atomic action) per Second (i.e., (|IS𝜙 |-1)/S) in SMS replying typing
SMS R&R Total Error Rate (TER) TER (i.e., IF+INF/C+INF+IF) in SMS replying typing
SMS R&R Corrected Error Rate (COER) COER (i.e., IF/C+INF+IF) in SMS replying typing
SMS R&R Uncorrected Error Rate (UER) UER (i.e., INF/C+INF+IF) in SMS replying typing

SMS R&R Utilized Bandwidth (UB) UB (i.e., C/C+INF+IF+F) is the proportion of transmitted keystrokes that
contribute to the correct aspects of the transcribed string in SMS replying typing

SMS R&R Wasted Bandwidth (WB) WB (i.e., INF+IF+F/C+INF+IF+F) in SMS replying typing

Information
Search &
Share (IS)

IS Mean IT The mean of average inter-keystroke interval time in weather searching typing
IS Median IT The median of average inter-keystroke interval time in weather searching typing
IS Min IT The min of average inter-keystroke interval time in weather searching typing
IS Max IT The max of average inter-keystroke interval time in weather searching typing
IS CPS CPS (i.e., (|T|-1)/S) in weather searching typing
IS KSPS KSPS (i.e., (|IS|-1)/S) in weather searching typing
IS COER COER (i.e., IF/C+INF+IF) in weather searching typing

IS UB UB (i.e., C/C+INF+IF+F) is the proportion of transmitted keystrokes that
contribute to the correct aspects of the transcribed string in weather searching typing

IS WB WB (i.e., INF+IF+F/C+INF+IF+F) in weather searching typing



S-ADL for BAC Detection CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 11: Overview of S-ADL task with task sequence and extracted S-ADL subtask. ‘*’ These tasks were excluded after a
preliminary study (see the details in Section 3.2

S-ADL Task Task Sequence: App Start & End S-ADL subtask Extraction

Phone Number
Register & Call

Screen off (start)→ SMS notification→ Screen on→ Screen pattern unlock→
Home UI app start→ Home UI app end → SMS app start→ SMS app end→
Contact app start→ Contact app end→ SMS app start→ Calling start→
Calling end→ SMS app end

Notification response (screen on)
Screen unlock
Starting app from Home UI
Instruction SMS reading
Phone number register (typing)
Phone call
App end (click back button)

Phone
Receive & Reply

Home UI app start→ SMS notification→ Home UI app end → SMS app start
→ SMS app end→ Calling notification→ Calling end→ SMS app start
→ SMS app end

Notification response (app start)
Starting app from Home UI
Instruction SMS reading
Phone reply
App end (click back button)

SMS Conversation* Home UI app start→ SMS notification→ Home UI app end → SMS app start
→ SMS receive → SMS send→ SMS app end

Notification response (app start)
Starting app from Home UI
SMS short conversation
App end (click back button)

SMS Receive &
Reply

Home UI app start→ SMS notification→ Home UI app end → SMS app start
→ SMS app end

Notification response (app start)
Starting app from Home UI
SMS reply task & App end

Photo Take
& Delete

Home UI app start→ SMS notification→ Home UI app end → SMS app start
→ SMS app end→ Home UI app start → Home UI app end→ Camera app start
→ Camera app end → Gallery app start→ Gallery app end→ Camera app start
→ Camera app end→ SMS app start→ SMS app end

Notification response (app start)
Starting app from Home UI
Instruction sms reading
Starting app from Home UI
Photo take
Photo delete
Photo transfer*
App end (click back button)

Banking Transfer
& Share

Home UI app start→ SMS notification→ Home UI app end → SMS app start
→ SMS app end→ Banking app start → Banking app end→ SMS app start
→ SMS app end

Notification response (app start)
Starting app from Home UI
Banking app start
Banking password/transfer
Banking sharing task & App end

Location Search
& Share*

Home UI app start→ SMS notification→ Home UI app end → SMS app start
→ SMS app end→ Home UI app start → Home UI app end
→ Google map app start→ Google map app end→ SMS app start→ SMS app end

Notification response (app start)
Starting app from Home UI
Instruction sms reading
Starting app from Home UI
Navigation Route search & share
App end (click back button)

Weather Search
& Share

Home UI app start→ SMS notification→ Home UI app end → SMS app start
→ SMS app end→ Home UI app start → Home UI app end→ Chrome site start
→ Chrome site end→ SMS app start→ SMS app end

Notification response (app start)
Starting app from Home UI
Instruction SMS reading
Chrome app start
Weather search & share
App end (click back button)
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