
Leveraging Smartphone Human Interaction Routine Behavior Task
Mining and Modeling for Daily Stress Monitoring

HANSOO LEE∗, KAIST and KIST, Republic of Korea
TAEHYEON PARK, KAIST, Republic of Korea
YOUNGJI KOH, KAIST, Republic of Korea
JAE-GIL LEE, KAIST, Republic of Korea
UICHIN LEE†, KAIST, Republic of Korea

With advancements in mobile sensing technologies, there is a growing need for scalable and interpretable stress monitoring
solutions that remain robust over time. Existing smartphone passive sensing approaches rely on statistical app usage features
or multi-modal sensor data, making them susceptible to distribution shift and feature evolution (e.g., schema drift), and adding
model complexity. To address these challenges, we propose the Smartphone Human Interaction-based Routine Behavior Task
Mining, Modeling, and Feature Extraction (SHIRBT-MMF) framework, which models stress-related behaviors by mining fine-
grained interaction routine tasks rather than aggregated app usage patterns. SHIRBT-MMF leverages multi-level sequential
pattern mining and large language model-based automated task modeling to extract interpretable and stable features from
within-app UI state transitions. Unlike traditional methods that require hundreds of apps, SHIRBT focuses on a small, consistent
set of routine-based tasks, mitigating covariate shift and feature evolution while improving model robustness. We validated
SHIRBT-MMF through one- and four-month in-the-wild datasets with 26 participants, demonstrating that the SHIRBT-based
personalized model achieves an average accuracy of 75%, outperforming baseline models by 5% while using only 3–6% of app
types. Additionally, SHIRBT features remain stable over time, reducing covariate shift and ensuring reliable performance.
With its expandability to other mental health, interpretability, and privacy-conscious design, the SHIRBT-MMF framework
lays the foundation for personalized digital mental health monitoring.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing systems and tools; Empirical
studies in ubiquitous and mobile computing; • Computing methodologies→ Sequential pattern mining; Natural language
processing; • Applied computing→ Health informatics.

Additional Key Words and Phrases: Smartphone sensing; Routine behavior mining; Sequential pattern mining; Explainable
digital phenotyping; LLM-based task annotation; Distribution shift robustness; Feature evolution resilience; Stress monitoring

ACM Reference Format:
Hansoo Lee, Taehyeon Park, Youngji Koh, Jae-Gil Lee, and Uichin Lee. 2025. Leveraging Smartphone Human Interaction
Routine Behavior Task Mining and Modeling for Daily Stress Monitoring. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 9, 4, Article 187 (December 2025), 45 pages. https://doi.org/10.1145/3770644

∗Now at the Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
†Corresponding author.

Authors’ Contact Information: Hansoo Lee, KAIST and KIST, Daejeon and Seoul, Republic of Korea, hansoolee@kist.re.kr, hansoo@kaist.ac.kr;
Taehyeon Park, KAIST, Daejeon, Republic of Korea, gmdmf@kaist.ac.kr; Youngji Koh, KAIST, Daejeon, Republic of Korea, youngji@kaist.ac.kr;
Jae-Gil Lee, KAIST, Daejeon, Republic of Korea, jaegil@kaist.ac.kr; Uichin Lee, KAIST, Daejeon, Republic of Korea, uclee@kaist.ac.kr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2474-9567/2025/12-ART187
https://doi.org/10.1145/3770644

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

https://orcid.org/0000-0003-0268-3434
https://orcid.org/0009-0000-1142-6232
https://orcid.org/0000-0001-8405-4919
https://orcid.org/0000-0002-8711-7732
https://orcid.org/0000-0002-1888-1569
https://doi.org/10.1145/3770644
https://orcid.org/0000-0003-0268-3434
https://orcid.org/0009-0000-1142-6232
https://orcid.org/0000-0001-8405-4919
https://orcid.org/0000-0002-8711-7732
https://orcid.org/0000-0002-1888-1569
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3770644

187:2 • Lee et al.

1 INTRODUCTION
Global daily stress has been steadily rising, especially among young adults in their 20s and 30s facing academic,
employment, financial, and future uncertainties [7, 9, 63]. To reduce healthcare and welfare costs and enhance
productivity and academic achievement, early stress intervention and diagnostic technologies are crucial [15].
Young adults’ stress is closely tied to daily routines and smartphone app use. Notifications from social media, mes-
saging, and email disrupt concentration and heighten stress [41]. Negative self-reflection and the “fear of missing
out (FOMO)” amplify stress and encourage addictive app use [41, 78]. Conversely, apps like games, webcomics,
video calls, and music can temporarily relieve stress and support work or study [57]. Thus, smartphone use and
stress interact in both positive and negative ways. Monitoring app behavior enables digital phenotyping [95] for
early stress detection and intervention.

Mobile interaction–based mental health studies use passive sensing over weeks or months to monitor stress in
real life, training ML models on smartphone features representing daily and social activities [70, 94]. However,
extracting numerous features from hundreds of apps increases model complexity, reducing interpretability and
performance [16, 18, 45]. Moreover, whenever the smartphone environment changes, such as through different app
usage or operating system (OS) updates, data collection, preprocessing, feature extraction, and model retraining
must be repeated, increasing time and cost. To reduce feature dimensionality, prior studies avoided fine-grained
features based on specific app usage or within-app behaviors (Depth Level 4–5 in Figure 1). Instead, they extracted
aggregated statistical features from time-windowed data, including total smartphone usage and category-level
metrics (e.g., social, finance, and system apps) related to duration, frequency, and typing behavior (Depth Level
1–3 in Figure 1) [44, 68, 104]. However, such broad or category-based features capture only surface-level behaviors,
and the multifunctionality of modern third-party apps makes single-category classification difficult.

Moreover, when relying on statistical features computed over fixed time windows, newly collected data after
model deployment can cause distribution shifts (e.g., covariate shift and concept drift) [30, 65]. In addition, changes
in app usage patterns, such as those resulting from app updates, UI/UX revisions, or event schema modifications,
can trigger feature evolution (i.e., schema drift), which alters feature types or column structures [39, 69, 86, 105].
These shifts may reorder feature importance, and reusing outdated core features can degrade model performance
on new datasets, thereby reducing robustness and reliability [3, 27, 65]. Although prior studies have addressed
these problems by detecting drift and applying adaptive learning techniques such as online retraining, incremental
learning, and domain adaptation [30, 65, 67], such approaches incur heavy computational and resource costs,
making them impractical for smartphones with strict latency and memory constraints [67]. In contrast, this study
introduces a robust feature design that, without adaptive learning, is inherently resilient to both covariate shift
and schema drift.

In this study, we focus on daily and social activities tasks that individuals routinely perform, such as messaging,
financial payments, emailing, and web browsing. These tasks remain stable despite variations in OS, app types, or
contextual factors (e.g., environment and time), allowing covariate shift and schema drift to be mitigated without
adaptive learning. Accordingly, we propose the Smartphone Human Interaction-based Routine Behavior Task
Mining, Modeling, and Feature extraction (SHIRBT-MMF) framework (Figure 2).

We utilize within-app user interface (UI) state events derived from app usage logs at Depth Level 5 in Figure 1,
which include package names (e.g., com.example.myapp) and class names corresponding to user interactions
(e.g., activity, dialog, frame layout, view layout). During smartphone interactions, users transition between UI
states through actions such as clicking, typing, and scrolling to accomplish specific tasks (e.g., chatting, browsing,
and video watching). We filter out events irrelevant to daily and social activities and focus on smartphone
human interaction–based routine behavior tasks (SHIRBT) that are more closely related to daily stress. For
this, we developed amulti-level sequential pattern mining (ML-SPM) algorithm that extracts sequential
patterns of daily within-app UI state events. Since these patterns often contain unfamiliar package or class names,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:3

Smartphone

Usage Behavior
DLV 1.

Total App

Usage Behavior
DLV 2.

Categorized App

Usage Behavior
DLV 3.

Individual App

Usage Behavior
DLV 4.

Within-App

Usage Behavior
DLV 5.

Smartphone device usage time/frequency behavior, e.g., screen on/off session,

screen unlocking time/frequency, battery state, power on/off

Total app usage time/frequency/typing-related behaviors, e.g., total apps

usage duration/frequency

Each categorized app usage time/frequency/typing-related behaviors, e.g.,

social category usage duration/frequency/typing speed or error rate

Individual apps usage time/frequency/typing-related behaviors, e.g., call and

SMS app usage duration time/frequency/typing speed or error rate

Within-app usage time/frequency/typing-related behaviors, e.g., YouTube

video watching and commenting duration time/frequency

Fig. 1. Depth level (DLV) of smartphone interaction usage behavior and feature examples

switching to a different app providing the same service (e.g., using Bing instead of Chrome for web browsing)
requires re-extraction. To address this issue, we develop an LLM-based SHIRBT modeling automation system that
unifies within-app behaviors into single, task-level representations (e.g., a web-browsing), independent of app or
UI structure. The system was tested 200 times across various apps performing equivalent tasks with different
event schemas, achieving 95–100% annotation accuracy consistent with SHIRBT ground-truth labels. Using the
extracted SHIRBT and extending prior work on smartphone activities of daily living (S-ADL) [51], we computed
time-, frequency-, and typing-based metrics (Figure 2) and built stress detection models using SHIRBT features
from the SHIRBT-MMF framework.

To validate our model, we collected in-the-wild data from 26 students and workers in their 20s and 30s. Since
the impact of SHIRBT features on stress may vary with the consistency of daily task performance, smartphone
usage data were automatically logged via a custom app usage logger, and daily binary stress labels (positive or
negative) were obtained using the experience sampling method (ESM) [97], validated in prior work [44]. Data
were collected over two periods: a short-term phase (about one month, 16 participants) and a long-term phase
(about four months, 10 participants). The average number of SHIRBTs was 7.6 and 6.1, with mean accuracies of
75.9%±8.7 and 73.8%±5.0, respectively, showing minimal performance differences between the two durations.
To evaluate performance, we compared SHIRBT features with baseline features corresponding to Depth Levels
1–3 in Figure 1, as used in prior stress studies. The SHIRBT-based classifier achieved 5% higher accuracy while
using only 3–6% as many apps as the baseline (Figure 2). Although SHIRBT tasks differ among individuals,
essential social tasks such as messaging and financial transactions are largely consistent across age, gender, and
occupation. Accordingly, the SHIRBT global model outperformed the baseline model, though its accuracy was
slightly lower than that of the personalized model. Moreover, under covariate shift and schema drift conditions,
SHIRBT features exhibited lower shift scores and higher structural consistency, confirming their robustness and
long-term stability without additional retraining.
The contributions of the paper are as follows:

• We propose SHIRBT-MMF, a novel framework for stress monitoring that leverages smartphone interaction
patterns instead of conventional app usage metrics. The framework improves scalability, interpretability,
and robustness in digital stress monitoring.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:4 • Lee et al.

Fig. 2. Smartphone human interaction-based routine behavior task mining, modeling, feature extraction (SHIRBT-MMF)
framework & stress model pipeline

• We develop a multi-level sequential pattern mining (ML-SPM) algorithm that captures fine-grained
within-app UI event sequences for daily task-level behavior mining. Unlike existing coarse-grained ap-
proaches that use statistical methods, this method identifies stable, routine-based behaviors that mitigate
covariate shift and schema drift over time.
• We present an LLM-based automated task classification and labeling approach that standardizes
and categorizes smartphone UI interaction sequences into explainable SHIRBT tasks. This enables the
derivation of interpretable, high-quality stress-related features, enhancing both model transparency and
explainability.
• We validate SHIRBT-MMF on in-the-wild datasets collected from 26 participants over one- and four-month
periods. The SHIRBT-based personalized model outperformed the baseline models while using only 3–6%
as many apps as the baseline.
• We confirmed that SHIRBT features showed greater robustness to covariate shift and schema drift than
baseline features, maintaining stable performance and structural consistency over time. This robustness
indicates that SHIRBT can serve as a cost-effective framework for long-term digital mental healthmonitoring
without frequent model retraining.

2 BACKGROUND AND RELATED WORK

2.1 Smartphone Interaction Sensing-based Stress Models
We reviewed the past decade that developed stress models using features based on smartphone interaction in
Table 1. Most studies incorporated smartphone or wearable-based interactions (e.g., app usage, device state)
along with contextual data (e.g., location, physical activity). As noted in Section 1, while multi-modal sensor data
improve human behavior analysis, they increase data collection and feature engineering costs. A large feature
set reduces model interpretability (e.g., [44] used approximately 3,356 features). Previous research primarily

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:5

employed aggregated statistical features derived through time windowing, such as total smartphone usage, app
category duration, frequency, and typing behavior (e.g., speed and error rate). To reduce model complexity
and improve interpretability, studies applied dimensionality reduction [85], feature elimination, or selection
techniques, as summarized in Table 1.

However, app-level or category-level features are broad and surface-level, and the multifunctionality of modern
third-party apps makes single-category classification challenging. As a result, time-windowed features provide
limited insight into specific daily activities (e.g., finance payments, web browsing, messaging), reducing the
model’s ability to link behaviors to stress. Furthermore, relying on fixed-interval statistical features can cause
distribution shifts after deployment, affecting feature selection or importance rankings and compromising
robustness [2, 3, 27]. If these shifts are ignored, model performance may degrade on new datasets as outdated
features remain in use.

2.2 Distribution Shift in Smartphone Interaction Sensing
In streaming-based ML environments, such as smartphone sensing, distribution shift (also called data drift or
dataset shift) occurs when the source distribution 𝑝 used during training differs from the target distribution 𝑓

encountered during deployment [36, 65, 67]. Distribution shifts are generally categorized into three types [65, 79]:
(1) Covariate shift, where the input distribution changes but the input–label relationship remains constant:

𝑝𝑋 (𝑥) ≠ 𝑓𝑋 (𝑥), 𝑝𝑌 |𝑋 (𝑦 | 𝑥) = 𝑓𝑌 |𝑋 (𝑦 | 𝑥)

Table 1. Review of prior smartphone usage behavior-based stress detection model research. DLV 1: smartphone usage, DLV
2: total app usage, DLV 3: categorical app usage, DLV 4: individual app usage, and DLV 5: within-app usage behavior.

Studies Smartphone Usage (duration time, frequency, typing) and Context Features DLV N Aged Duration Model Performance

[50] - Total touch/typing usage (e.g., key press, number of backspace/character)
- Location, weather 2 1 30s 2 weeks Personal 67.5% acc

[10] - Specific app usage (e.g., call, SMS)
- Bluetooth proximity, location 4 7 - 1 month Personal Avg. 53% acc

[104] - Device (e.g., screen on/off), app category, and specific app usage (e.g., call, SMS)
- Mic, physical activity, location 1, 3, 4 30 18-30 1 month Personal Avg. 63% acc

[99] - Device (e.g., screen on/off) and app category usage
- Location 1, 3 28 20-47 100 days Personal 59%–70% acc

[64] - Specific app category (e.g., social and system) and app usage (e.g., call, SMS)
- Mic, physical activity, location 3, 4 30 26-40 8 weeks Personal 67.6%–71.7 acc

[47] - Total app and app category usage
- Physiological/physical activity, location 2, 3 36 19-33 25 days Personal Avg. 61-68% acc

[34] - Total typing usage (e.g., typing duration,
number of backspaces/characters) 2 22 24-33 3 weeks Personal Avg. 78% AUC

[19]
- Device (e.g., screen on/off/unlock) and app category usage
- Total touch/typing usage (e.g., swipe, scroll, and text input)
- Physical activity

1–3 25 18-57 1 month Personal
Global

- 77-88% F1
- 63-83% F1

[85] - Device (e.g., screen on/off) and specific app usage (e.g., call, SMS)
- Physiological/physical activity 1, 4 18 28±7.8 5 days Global 75% acc

[84] - Device (e.g., screen on/off) and specific app usage (e.g., call, SMS, internet, email)
- Physiological/physical activity 1, 4 66 20.1±1.5 1 month Global 67-92% acc

[71] - Device (e.g., battery) and specific app usage (e.g., call, calendar)
- Mic, physiological/physical activity 1, 4 35 25-62 4 months Global 55% acc

[13] - Specific app usage (e.g., call, SMS)
- Bluetooth proximity, weather 4 117 - 5 months Global 72.3% acc

[42] - Device (e.g., screen on/off) and specific app usage (e.g., call, SMS)
- Physiological/physical activity, location 1, 4 20, 48 18-24 1 month Global 68.5% acc

[44]
- Device usage (e.g., screen on/off/unlock, battery, power, data traffic, network)
- Total app, app category, and specific app usage (e.g., call, SMS)
- Physiological/physical activity, location

1–4 77 17-38 1 week Global 66.6% acc

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:6 • Lee et al.

(2) Label shift, where the label distribution changes while the conditional feature distribution remains the same:

𝑝𝑌 (𝑦) ≠ 𝑓𝑌 (𝑦), 𝑝𝑋 |𝑌 (𝑥 | 𝑦) = 𝑓𝑋 |𝑌 (𝑥 | 𝑦)
(3) Concept drift, where the relationship between features and labels changes over time:

𝑝𝑌 |𝑋 (𝑦 | 𝑥) ≠ 𝑓𝑌 |𝑋 (𝑦 | 𝑥), 𝑝𝑋 (𝑥) = 𝑓𝑋 (𝑥)
These types of shifts are prevalent in smartphone interaction datasets [1, 65, 67]. In addition, smartphone logs
frequently experience feature evolution (also called schema drift), where existing features disappear or new
ones emerge due to app updates, UI/UX modifications, or event schema changes [39, 69, 86, 105]. Such structural
variations can affect feature extraction, alter feature importance, and reduce model reliability.

To address these issues, prior studies have adopted adaptive learning strategies, including online retraining,
incremental learning, and domain adaptation [30, 36, 65, 67]. For example, Meegahapola et al. [65] applied a
Domain-Adversarial Neural Network (DANN)-based Unsupervised Domain Adaptation (UDA) framework to
mitigate covariate shift between training and deployment domains in multimodal mobile sensing. Hao et al. [36]
proposed a self-supervised lightweight drift detection method that automatically identifies covariate shift on
mobile devices and adapts models through by-cause adaptation under resource constraints. Ferjani and Alsaif [30]
implemented incremental concept drift detection for smartphone accelerometer-based road anomaly detection.
Hou et al. [39] proposed a model-switching approach to recover missing features in streaming data, while Zhang et
al. [105] introduced an adaptive deep learning framework addressing both distribution drift and feature evolution
simultaneously.

Although these adaptivemethods effectively detect and respond to distribution shift or schema drift, they exhibit
several inherent limitations. First, they are reactive, updating models only after performance degradation occurs
due to drift. Second, adaptive learning methods incur significant computational and operational costs associated
with continuous monitoring, retraining, and maintaining ensemble models, challenges that are particularly
problematic in resource-limited mobile environments [67]. To overcome these challenges, we propose a proactive
feature design approach that ensures robustness against both covariate shift and feature evolution. Our proposed
SHIRBT features are derived from users’ repetitive daily routines, making them inherently stable across OS, app,
and contextual variations. These task-level features exhibit lower sensitivity to drift than conventional statistical
features, enabling our SHIRBT-based framework to maintain reliable performance without frequent retraining
and to offer a scalable, cost-efficient solution for real-world deployment.

2.3 Smartphone Interaction-based Human Behavior Mining
Prior studies have extracted smartphone interaction-based human behaviors using data mining techniques such as
Association Rule Mining (ARM) and Sequential Pattern Mining (SPM) [40, 59, 72, 90]. These studies demonstrated
that routine behaviors can be mined from passive smartphone sensing data combining contextual (e.g., time,
location) and behavioral (e.g., smartphone app usage) information. Mukherji et al. [72] presented a Mobile
Sequence Mining (MSM) engine that captures longitudinal on-device usage patterns while preserving privacy.
Srinivasan et al. [90] mined app and location-based behaviors to enhance personalization and user experience
through predictive shortcuts without significant battery drain. Lu et al. [59] introduced the MASP-Mine algorithm
to identify Mobile Application Sequential Patterns (MASPs) and Spatial-Temporal App Usage Paths (STAR), while
Hsu et al. [40] proposed a pattern-growth-based algorithm for mining time-constrained sequential patterns.
Collectively, these works showed that personalized app usage patterns or rules derived from SPM and ARM

improve behavior interpretability and can reduce data volume, mitigate privacy concerns, and minimize energy
consumption [40, 59, 72, 90]. However, these approaches only identified between-app usage patterns at DLV 4
(Figure 2) without offering interpretability for within-app UI state behaviors at DLV 5. They also failed to specify
the temporal granularity of extracted patterns, missing daily smartphone interaction routines. Moreover, the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:7

derived patterns were not modeled into user-understandable task forms nor extended to broader applications
such as mental health detection.

2.4 Smartphone-based Human Behavior Modeling for Mental Health Detection
Previous studies have detected stress and depression by leveraging smartphone multi-modal sensor data (e.g.,
location, physical activity, app usage) reflecting human routine behavior [12, 99–101]. Berrouiguet et al. [12]
applied unsupervised mining of smartphone usage data to identify mobility pattern changes in depressed patients,
while Xu et al. [100, 101] used ARM on context-filtered smartphone usage and contextual features to detect
depression. Similarly, Vildjiounaite et al. [99] employed an unsupervised long-term stress monitoring approach
using smartphone-based multimodal data (e.g., phone usage, physical activity) with Hiden Markov Model (HMM),
achieving accuracy comparable to supervised methods.
However, prior studies primarily identified inter-app association rules without analyzing within-app UI

trajectory (DLV 5 in Figure 2). They focused on combining multi-modal sensor features (e.g., location, action, and
smartphone usage) to derive behavior rules rather than modeling consistent daily routine tasks, thus failing to
effectively reduce data collection. In contrast, our study aims to enhance explainability and efficiency by modeling
SHIRBT through within-app UI trajectory mining. To derive sequential and frequent UI trajectories, we adopt the
SPM technique used in previous studies [40, 59, 72] for SHIRBT modeling.

2.5 Sequential Pattern Mining
Sequential Pattern Mining (SPM) discovers frequent subsequences and meaningful relationships in sequential data,
which consists of ordered events over time [4]. It has been applied in diverse domains such as web usage analysis,
scientific research, natural disaster tracking, customer behavior, protein structure, and disease treatment [31, 61].
With the expansion of e-commerce and the extensive potential of mobile apps, web/app usage mining has emerged
as an essential area of focus [58, 61, 77]. As a critical application of SPM, web/app usage mining centers on
extracting users’ navigation patterns from various web/app usage data [58, 61].

Depending on the database structure, it is categorized into page mining and content mining [61]. Page mining
identifies interaction sequences across screens (e.g., web access logs, clickstreams, traversals, mobile app usage)
using singleton item databases (DBs), where each item represents a screen transition such as wep page or UI
state event [28, 31, 54, 58, 77]. Content mining, by contrast, employs k-itemset DBs that record multiple items
(e.g., products a, b, and c) generated simultaneously from user interactions with specific content (e.g., add to
cart or purchase button) [29, 61]. In this study, we focus on page-level mining to derive SHIRBT by extracting
within-app UI state sequential patterns and defining them as tasks. For example, a sequential pattern composed
of within-app UI state events can represent a user’s behavior in a chat app, such as navigating from the main
screen (a) to the chatroom screen (b) and back, using a data structure like ⟨aba⟩.

In general, the key terms and elements (e.g., event set, sequence, sequence database, support, etc.) identified in
previous studies in the process of constructing a singleton itemset DB composed of web pages or within-app UI
states and performing SPM are as follows [28, 29, 53, 54, 61, 77]:

• Event: An event refers to a within-app UI state (e.g., activity, view, layout, dialog, etc.) that changes due to
specific inputs during a user’s interaction with a smartphone. For example, the main screen or a chatroom
screen in a chat app can be considered an event.
• Event set: Define 𝐸 as the set of all events.
• Sequence: A sequence S is a list of events arranged in order and is represented as 𝑆 = ⟨𝑒1𝑒2 . . . 𝑒𝑛⟩, where
𝑒𝑖 ∈ 𝐸 and 1 ≤ 𝑖 ≤ 𝑛.
• Sequence length: In the sequence 𝑆 = ⟨𝑒1𝑒2 . . . 𝑒𝑛⟩, 𝑛 denotes the length of sequence S. A sequence of
length 𝑛 is called an 𝑛-sequence.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:8 • Lee et al.

• Subsequence and supersequence: Given two sequences 𝑆𝑎 = ⟨𝑎1𝑎2 . . . 𝑎𝑛⟩ and 𝑆𝑏 = ⟨𝑏1𝑏2 . . . 𝑏𝑚⟩, if there
exist integers 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑚 ≤ 𝑛 such that 𝑏 𝑗 = 𝑎𝑖 𝑗 for 1 ≤ 𝑗 ≤ 𝑚, then 𝑆𝑏 is a subsequence of 𝑆𝑎 ,
and 𝑆𝑎 is a supersequence of 𝑆𝑏 . This relationship is simply denoted as 𝑆𝑏 ⊆ 𝑆𝑎 when 𝑆𝑏 is a subsequence
of 𝑆𝑎 .
• Sequence identification (Sid): A special value (e.g., timestamp, customer ID, user ID) used to identify
each sequence is defined as sequence identification or 𝑠𝑖𝑑 .

Table 2. Example of sequence database and sequential pattern mining

(a) Example of Sequence Database (Input)

SID Sequence
1 <acd>
2 <acbcabae>
3 <ecdabd>
4 <ac>
5 <abc>

(b) Example of Sequential Pattern Mining (Output)

No. Patterns (minsup: 3)
1 <a>(support: 5)
2 <c>(support: 5)
3 <ac>(support: 4)
4 (support: 3)
5 <ab>(support: 3)

• Sequence database (SDB): A 𝑆𝐷𝐵 is a set of tuples ⟨𝑠𝑖𝑑, 𝑆⟩, where S is a sequence and 𝑠𝑖𝑑 is its identifier.
• Support: The support of sequence 𝑆𝑎 in 𝑆𝐷𝐵 is the number of tuples that include 𝑆𝑎 . Here, “include” means
that 𝑆𝑎 is a subsequence of 𝑆 . The support of sequence 𝑆𝑎 in 𝑆𝐷𝐵 is defined as follows.

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝐷𝐵 (𝑆𝑎) = |{⟨𝑠𝑖𝑑, 𝑆⟩ | (⟨𝑠𝑖𝑑, 𝑆⟩ ∈ 𝑆𝐷𝐵 ∧ (𝑆𝑎 ⊆ 𝑆))}| (1)
If the 𝑆𝐷𝐵 is clear from context, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝐷𝐵 (𝑆𝑎) can be abbreviated as 𝑠𝑢𝑝 (𝑆𝑎).
• Sequential Pattern: A sequential pattern is defined as a sequence in 𝑆𝐷𝐵 that has support greater than
or equal to a minimum support threshold (minsup). The minsup is a user-defined integer greater than 0.
Formally, a sequence S is defined as a sequential pattern if the following condition is satisfied.

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝐷𝐵 (𝑆) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 (2)
For example, in the 𝑆𝐷𝐵 (Table 2), whereminsup = 3, the frequent patterns are ⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑎𝑏⟩, and ⟨𝑎𝑐⟩.
Importantly, this includes both contiguous subsequences (e.g., ⟨𝑎𝑏⟩) and non-contiguous subsequences
(e.g., ⟨𝑎𝑐⟩ when sid = 5) that meet the minimum support threshold.

3 METHODOLOGY: SHIRBT-MMF FRAMEWORK
We proposed a Smartphone Human Interaction-based Routine Behavior Task Mining, Modeling, and
Feature Extraction (SHIRBT-MMF) framework process consisting of four phases: Section 3.1.1 explains the
limitations of traditional SPM for SHIRBT mining and the need for a multi-level SPM approach. Section 3.1.2
and 3.1.3 presented the construction of a multi-level SDB and the process of multi-level SPM for SHIRBT mining.
Section 3.2 explained how the mined SHIRB patterns are modeled into SHIRBT using LLMs for interpretability,
and Section 3.3 described SHIRBT-based feature extraction for quantitative stress analysis.

3.1 Development of Multi-Level Sequential Pattern Mining Algorithm
3.1.1 Necessity of Multi-Level Sequential Pattern Mining. To mine and model SHIRBT, we constructed an
SDB and performed SPM by considering two dimensions: temporal context (e.g., time epoch) and in-app action
(e.g., sequential pattern based on within-app UI state events). Following previous studies [40, 59, 72, 90], human
routine behavior can be mined from user context (e.g., time) and in-app action (e.g., smartphone app usage)
domains. Thus, we defined the time epoch as a daily interval to mine within-app UI state events-based sequential

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:9

Within-app UI State

Event Data

Screen On/Off

Session
Day

caba16/14

cd26/14

dab36/15

cd46/15

abd56/16

Original Database

(a) within-app UI State Event-based DB

Sequences
SID

(Day)

cabacd6/14

dabcd6/15

abd6/16

SDB (Input)

Patterns

(Minsup: 3)
No.

a (sup: 3)1

b (sup: 3)2

d (sup: 3)3

ab (sup: 3)4

ad (sup: 3)5

bd (sup: 3)6

abd (sup: 3)7

SPM (Output)

SID = Sequence identification is a day

(b) Single-SID based SDB and SPM Outputs

Sequences
SID2

(Session)

SID1

(Day)

caba16/14

cd26/14

dab36/15

cd46/15

abd56/16

SDB (Input)

Patterns

(Minsup: 3)
No.

d (sup: 4)1

a (sup: 3)2

b (sup: 3)3

c (sup: 3)4

ab (sup: 3)5

SPM (Output)

Session = (Screen On/Off) Session

(c) Double-SID based SDB and SPM Outputs

Sequences
SID

Day, Session

cabaDay: 6/14, Session: 1

cdDay: 6/14, Session: 2

dabDay: 6/15, Session: 3

cdDay: 6/15, Session: 4

abdDay: 6/16, Session: 5

ML-SDB (Input)

Patterns

(Minsup: 3)
No.

a (sup: 3)1

b (sup: 3)2

d (sup: 3)3

ab (sup: 3)4

ML-SPM (Output)SPM (Output)

SID = Sequence identification is a tuple consisting of Day and (Screen

On/Off) Session

(d) Multi-Level-SID based ML-SDB and ML-SPM Output

Fig. 3. Limitations of sequential pattern mining based on existing sequence database structures and the proposed multi-level
sequence database and multi-level sequential pattern mining method

patterns that occur daily. Furthermore, to extract only the actions during smartphone interactions, we focused on
within-app UI state event data corresponding to app usage sequences between screen-on and screen-off events
(screen on/off session). Based on this, we constructed an SDB that incorporated three dimensions of data: day,
screen on/off session, and within-app UI state event.
We adopted the tuple structure ⟨sid,S⟩ commonly used in web log-based SPM studies [31, 38, 40, 61, 72, 77]

based on the SDB structure presented in Figure 3b. The 𝑠𝑖𝑑 represents the day for daily support counting, and
Sequence 𝑆 denotes the within-app UI state events occurring during the first screen on/off session of the day.
However, the single-𝑠𝑖𝑑 based SDB structure can consider one screen on/off session among multiple sessions
within a day, preventing the mining of sequential patterns for individual screen on/off sessions across the day. For
example, the sequence ⟨caba⟩ associated with 𝑠𝑖𝑑 (Day) for June 14 corresponds to the first screen on/off session
of that day, whereas the sequence ⟨cd⟩ from the second screen on/off session on the same day (June 14) could not
be included. Therefore, the single-𝑠𝑖𝑑-based SDB structure includes only sequences from specific sessions within
a day, excluding those from other same-day sessions and preventing a comprehensive analysis of the entire day.
To address this limitation, we defined 𝑠𝑖𝑑 as the day for daily support counting and 𝑆 as all within-app UI

state events occurring from the first screen-on to the last screen-off within that day. In this configuration, 𝑆
represents a continuous chronological sequence that ignores session boundaries, causing independent sessions
separated by hours to be mined as one. For instance, the sequence ⟨𝑐𝑎𝑏𝑎𝑐𝑑⟩ for June 14 combines two sessions,
allowing subsequences such as ⟨𝑎𝑐𝑑⟩, ⟨𝑎𝑐⟩, and ⟨𝑎𝑑⟩ to appear as a single pattern even though they originate
from different sessions. This highlights the need for an SDB structure and SPM method that accounts for multiple
screen on/off sessions within a day and extracts sequential patterns solely from within-session events.
To extract sequential patterns from within-app UI state events in each screen on/off session, we performed

SPM using Double-𝑠𝑖𝑑-based SDB containing two identifiers: 𝑠𝑖𝑑1 (day) and 𝑠𝑖𝑑2 (screen on/off), as illustrated in

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:10 • Lee et al.

Figure 3c. However, conventional SPM algorithms [31, 35, 61, 77] could not simultaneously process dual identifiers,
leading to support-counting inconsistencies. When considering 𝑠𝑖𝑑1 (day), extracting session-level sequential
patterns became difficult, whereas using 𝑠𝑖𝑑2 (screen on/off) prevented accurate daily support aggregation. For
instance, with a minimum support threshold (minsup) of 3, seven patterns (e.g., ⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑑⟩, ⟨𝑎𝑏⟩, ⟨𝑎𝑐⟩, ⟨𝑎𝑑⟩)
were mined. Yet, under 𝑠𝑖𝑑2, the pattern ⟨𝑑⟩ appeared across three days (June 14–16) and should have a support
of 3, but duplicate sessions on June 15 increased it to 4. Similarly, ⟨𝑐⟩ spanned two days (June 14–15) but was
redundantly counted due to multiple sessions on June 14, yielding a support of 3. To resolve these inconsistencies,
we proposed theMulti-Level Sequence Database (ML-SDB) andMulti-Level Sequential Pattern Mining
(ML-SPM) algorithm (Figure 3d), which accounts for the hierarchical relationship between day and session.
Detailed procedures for ML-SDB construction and ML-SPM were presented in Sections 3.1.2 and 3.1.3.

3.1.2 Multi-Level Sequence Database Construction. We preprocessed the within-app UI state event data
before constructing the ML-SDB (Figure 3d). To capture transitions within-app usage states during user–app inter-
actions within each screen on/off session, we logged WindowStateChanged events using Android’s built-in APIs:
Accessibility Event [21] and Accessibility Service [22], as recommended by recent Android sensing surveys [52].
These events indicate the app’s UI structure changes, such as transitions between activities, layouts, or dialogs
(Figure 4). Each WindowStateChanged event was recorded as a Fully Qualified Class Name (FQCN), for example,
com.kakao.talk.activity.main.MainActivity or com.kakao.talk.android.widget.FrameLayout, comprising the
package name (a unique app identifier, e.g., com.kakao.talk) and the class name (e.g., ChatRoomHolderActivity or
FrameLayout), which represent UI elements that users directly interact with.
To abbreviate WindowStateChanged events, we removed the top-level domain (e.g., com, org) and

used the first letter of the package name, which represents the company, app, or service, combined
with the initials of each word in the class name (e.g., com.kakao.talk.activity.main.MainActivity

→ KT.MA). In some cases, WindowStateChanged events contained two package names, such as
com.naver.whale.org.chromium.chrome.browser.ChromeTabbedActivity. This occurred when Android libraries
(e.g., Chromium) or modularized code were reused. For instance, a browser app (e.g., com.naver.whale) could use
APIs from an open-source library (e.g., org.chromium.chrome [93]), resulting in a combined structure of two pack-
age names and a class name (e.g., com.naver.whale.org.chromium.chrome.browser.ChromeTabbedActivity,
abbreviated as NW.CCB.CTA). We excluded events that were not generated during user interactions
within screen on/off sessions. Additionally, automatically generated system events within sessions (e.g.,
com.android.systemui.android.widget.FrameLayout) were also excluded.
We constructed an ML-SDB based on Multi-Level sequence identification (ML-sid) to perform Multi-Level

Sequential Pattern Mining (ML-SPM) using the preprocessed smartphone usage data, as shown in Figure 3d. The
definitions of ML-sid and ML-SDB are as follows.
• Multi-Level sequence identification: ML-sid is defined in the form of a tuple ⟨day, screen on/off session⟩
(e.g., ⟨June 14, 1⟩, ⟨June 14, 2⟩) to simultaneously account for the hierarchical structure between day and
screen on/off session during the support counting process.
• Multi-Level sequence database: The ML-SDB (Figure 3d) is defined as a set of tuples ⟨ML-sid, sequence⟩,
where each tuple consists of an ML-sid and a corresponding within-app UI state event-based sequence.

The ML-SDB constructed from preprocessed smartphone usage data to perform ML-SPM can be represented as
shown in the example in Figure 4. Specifically, in the example ML-SDB presented in Figure 4, the “→” symbol is
used to distinguish each WindowStateChanged event and clearly indicate the chronological order of within-app
UI state events.

3.1.3 Multi-Level Sequential Pattern Mining Algorithm. We proposed an ML-SPM algorithm to extract
within-app UI state events-based sequential patterns performed daily from the constructed ML-SDB. The existing

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:11

In-App UI State SequencesML-SID <Day, Session>

KT.MA→KT.CRHA→KT.MADay: 6/14, Session: 1

GM.MAG→GM.CAG→GM.MAGDay: 6/14, Session: 2

KT.MA→KT.CRHA→KT.MA→GM.MAGDay: 6/14, Session: 3

GM.MAG→KT.MA→KT.CRHA→KT.MADay: 6/15, Session: 4

KT.MA→KT.CRHA→KT.MA→GM.MAGDay: 6/16, Session: 5

GM.CAG→KT.MA→KT.CRHADay: 6/16, Session: 6

WC = WindowStateChanged Event

1. Preprocessed Smartphone Usage Data 2. ML-SPM (Input)

3. ML-SPM (Output)

Screen On/Off Session 1

AbbreviationEventTypeTime

Screen On6/14 16:12:43

KT.MAWC6/14 16:12:49

KT.CRHAWC6/14 16:12:53

KT.MAWC6/14 16:13:35

Screen Off6/14 16:21:26

KT.MA , KT.CRHA ,

KT.CRHA→KT.MA ,

KT.MA→KT.CRHA ,

KT.MA→KT.CRHA→

KT.MA ,

GM.MAG

Support: 2

KT.MA , KT.CRHA ,

KT.CRHA→KT.MA ,

KT.MA→KT.CRHA ,

KT.MA→KT.CRHA→

KT.MA ,

GM.MAG

Support: 1

(Count only

once per day)

In-App UI State Patterns (Minsup: 3 days)No.

KT.MA (support: 3)1

KT.CRHA (support: 3)2

GM.MAG (support: 3)3

KT.MA→KT.CRHA (support: 3)4

KT.CRHA→KT.MA (support: 3)5

KT.MA→KT.CRHA→KT.MA (support: 3)6

- Example of ML-SPM (Input) -

4. Filtered ML-SPM (Output)

Session = (Screen On/Off) Session

- Example of Preprocessed Smartphone Usage Data-

Screen On/Off Session 6

AbbreviationEventTypeTime

Screen On6/16 16:03:20

GM.MAGWC6/16 16:03:22

KT.MAWC6/16 16:07:15

KT.CRHAWC6/16 16:08:03

Screen Off6/16 16:19:21

16:12:53

KT.CRHA

16:12:49

KT.MA

16:12:43

ON

16:21:26

OFF

16:13:35

KT.MA

18:34:42

ON

18:41:26

OFF

17:12:43

ON

17:14:46

OFF

16:06:22

KT.CRHA

16:06:15

KT.MA

16:06:10

ON

16:07:15

KT.MA

16:09:21

OFF

17:14:03

KT.CRHA

17:13:59

KT.MA

17:14:45

KT.MA

17:12:48

GM.MAG

18:34:52

KT.CRHA

18:34:47

KT.MA

18:35:35

KT.MA

18:35:53

GM.MAG

16:07:53

GM.MAG

16:12:53

KT.CRHA

16:12:49

KT.MA

16:12:43

ON

16:21:26

OFF

16:13:35

KT.MA

18:34:42

ON

18:41:26

OFF

17:12:43

ON

17:14:46

OFF

16:06:22

KT.CRHA

16:06:15

KT.MA

16:06:10

ON

16:07:15

KT.MA

16:09:21

OFF

17:14:03

KT.CRHA

17:13:59

KT.MA

17:14:45

KT.MA

17:12:48

GM.MAG

18:34:52

KT.CRHA

18:34:47

KT.MA

18:35:35

KT.MA

18:35:53

GM.MAG

16:07:53

GM.MAG

6/14,1

6/14,3

6/15,4

6/16,5

6/14,1

6/14,3

6/15,4

6/16,5

- Example of ML-SPM (Output) -

GM.MAG

Multi-Level Supporting Count of

GM.MAG , KT.MA ,

KT.CRHA : 3

- Example of Filtered ML-SPM (Output) -

KT.CRHAKT.MA KT.MA

Multi-Level Supporting Count of

KT.MA→KT.CRHA→KT.MA ,

KT.MA→KT.CRHA ,

KT.CRHA→KT.MA : 3

The 1-length patterns GM.MAG , KT.MA and KT.CRHA were excluded.

The n-length (n ≥ 2) patterns KT.MA→KT.CRHA→KT.MA , KT.MA→KT.CRHA

and KT.CRHA→KT.MA were included.

KT.MA KT.MA KT.CRHAKT.MA

KT.CRHAKT.MA KT.MA

KT.CRHA KT.MA

KT.CRHAKT.MA

In-App UI State Patterns (Minsup: 3 days)No.

KT.MA (support: 3) è Excluded pattern1

KT.CRHA (support: 3) è Excluded pattern2

GM.MAG (support: 3) è Excluded pattern3

KT.MA→KT.CRHA (support: 3)4

KT.CRHA→KT.MA (support: 3)5

KT.MA→KT.CRHA→KT.MA (support: 3)6

KT.MA

Support: 3

KT.CRHA

Support: 3

GM.MAG

Support: 3

GM.MAG

KT.MA → KT.CRHA

Support: 3

KT.CRHA → KT.MA

Support: 3

KT.MA → KT.CRHA → KT.MA

Support: 3

Fig. 4. Example of smartphone usage data preprocessing and the input & output of multi-Level sequential pattern mining
Abbreviations:
KT.MA = com.kakao.talk.activity.main.MainActivity,
KT.CRHA = com.kakao.talk.activity.chatroom.ChatRoomHolderActivity,
GM.MAG = com.google.android.gm.ui.MailActivityGmail,
GM.CAG = com.google.android.gm.ui.ComposeActivityGmail

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:12 • Lee et al.

SPM method counts the support of identical subsequences across multiple screen on/off sessions on the same day
redundantly, and generates both non-contiguous and contiguous sequential patterns as explained in section 2.5
and 3.1.1. To count the support of subsequences appearing in multiple screen-on/off sessions on the same day
without redundancy and to reflect the continuity of users’ within-app usage behavior, we proposed a new support
counting method called multi-level support (ML-sup). The definitions were described as follows.
• Contiguous subsequence: When a sequence of within-app UI state 𝑆𝑏 = ⟨𝑏1, 𝑏2, . . . , 𝑏𝑚⟩ is a subsequence
of a sequence of within-app UI state 𝑆𝑎 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩, if integers 𝑖1, 𝑖2, . . . , 𝑖𝑚 satisfy 𝑖𝑘+1 − 𝑖𝑘 = 1 for
(1 ≤ 𝑘 < 𝑚), then 𝑆𝑏 is a contiguous subsequence of 𝑆𝑎 , denoted as 𝑆𝑎 ⪯ 𝑆𝑏 . For example, for the sequence
⟨abc⟩, the subsequences ⟨ab⟩ and ⟨bc⟩ are contiguous subsequences of ⟨abc⟩, while ⟨ac⟩ is not a contiguous
subsequence.
• Contiguous sequential pattern: A contiguous sequential pattern is a sequential pattern that qualifies as
a contiguous subsequence.
• Multi-Level support: Multi-Level support is a support counting method that counts the support of a
subsequence across multiple screen-on/off sessions on the same day without redundancy. To extract only
contiguous within-app UI state events-based sequential patterns from the constructed ML-SDB, we defined
Multi-Level supportML-SDB (ML-sup) as follows.

Multi-level supportML-SDB (𝑆𝑎) =
��{day | (⟨⟨day, screen on/off session⟩, 𝑆⟩ ∈ ML-SDB ∧ (𝑆𝑎 ⪯ 𝑆))}

��
For example, when ML-SPM is applied to the ML-SDB in Figure 4, the contiguous within-app UI state events-

based sequential patterns ⟨KT.MA⟩, 〈KT.CRHA〉⟨KT.CRHA⟩, and ⟨KT.MA→ KT.CRHA⟩ appear in 5 sequences
(i.e., session 1 & 3 on June 14, 4 on June 15, and 5 & 6 on June 16). Similarly, ⟨KT.CRHA→ KT.MA⟩ and ⟨KT.MA
→ KT.CRHA→ KT.MA⟩ appear in 4 sequences (i.e., session 1 & 3 on June 14, 4 on June 15, and 5 on June 16).
⟨GM.MAG⟩ appears in 4 sequences (i.e., session 2 & 3 on June 14, 3 on June 15, and 5 on June 16). For sequential
patterns ⟨KT.MA⟩, ⟨KT.CRHA⟩, ⟨KT.MA→ KT.CRHA⟩, and ⟨GM.MAG⟩ that appear in both session 1 & 3 or
2 & 3 on June 14, the ML-sup for June 14 is counted as 1 without redundant counting. Similarly, for sequential
patterns ⟨KT.MA⟩, ⟨KT.CRHA⟩, and ⟨KT.MA→ KT.CRHA⟩ that appear in both session 5 & 6 on June 16, the
ML-sup for June 16 is also counted as 1, not 2. To extract the SHIRB tasks from the mined contiguous within-app
UI state events-based sequential patterns, it is necessary to interpret the meaning of human routine tasks based
on both the within-app UI state events and their order. However, a sequence with a length of 1 (1-sequence) is
difficult to interpret as a human routine behavior based on the order of events. Therefore, sequential patterns
with a length of 1 were excluded from the extracted sequential patterns, such as ⟨GM.MAG⟩, ⟨KT.MA⟩, and
⟨KT.CRHA⟩, as shown in Figure 4.
Within-app UI state events-based sequential pattern data is characterized by a large number of sequences, the

presence of very long sequences, and a wide variety of events. Therefore, considering the nature of the data,
we applied a relatively effective pattern-growth method (e.g., PrefixSpan [35]) compared to traditional apriori
algorithms (e.g., Apriori All/Some, GSP, SPAM, SPADE [4, 8, 89, 102]). The pattern-growth approach eliminates
candidate generation and leverages database projection to efficiently reduce the search space and the number
of database scans, thereby minimizing memory consumption and improving processing speed. The detailed
implementation of the pattern-growth-based ML-SPM algorithm is described in Appendix A.

3.2 Development of LLM-based Automated SHIRBT Modeling System
We modeled sequential patterns derived from ML-SPM, which are composed of within-app UI state events,
as Smartphone Human Interaction–based Routine Behavior Tasks (SHIRBT). This modeling adopted
the concept of smartphone-based Activities of Daily Living (S-ADL) [51] to generate explainable and human-
interpretable features for users and service providers. Each within-app UI state event in the sequential patterns
consists of an app package and a class name. While some events can be intuitively understood from their names,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:13

many are unfamiliar to non-technical users or system operators. Furthermore, the large number of patterns and
events makes it impractical for service providers to manually assign heuristic SHIRBT labels. To address this
challenge, we developed an LLM-based SHIRBT annotation system that automatically maps the functional
meaning of event sequences to human-understandable SHIRBT.

<com.kakao.talk.activity.main.MainActivity →

→ com.kakao.talk.activity.main.MainActivity>

LLM Response Consistency Check Experts Review & Check

com.kakao.talk.activity.chatroom.ChatRoomHolderActivity

2. LLM-based Event

Interpretation

We requested the LLM to interpret

the functional meaning of the

WindowStateChanged event to

evaluate its ability to analyze and

interpret functional meanings.

3. LLM Accuracy Verification

We evaluated whether the LLM

correctly interpreted the functional

meaning behind the

WindowStateChanged event.

1. Sequential Pattern
Within-app UI state events in

sequential patterns may include

unfamiliar app package and class
names.

N-independent trials

M-events

= N x M validations

User

LLM

User

LLM

Describe the functionality of the following event, including its key

features and a brief description of the app.

com.kakao.talk.activity.main.MainActivity

com.kakao.talk.activity.main.MainActivity is the main activity of

KakaoTalk, a widely used messenger and social networking

application in South Korea that allows users to send messages

and connect with friends. This activity serves as the first

screen displayed when the app is launched and acts as the

central navigation hub. Its key features include providing access

to recent chat lists, friend lists, group chats, notifications,

and settings menus. Additionally, it manages the user

interface, integrates with backend systems for real-time

message updates, and handles user interactions such as taps

and swipes.

com.kakao.talk.activity.chatroom.ChatRoomHolderActivity is a

key activity in KakaoTalk, a widely used messenger and social

networking application in South Korea that allows users to

send messages and connect with others. This activity manages

the chat room screen, facilitating core messaging features

such as text, file sharing, emojis, and stickers, while handling

real-time updates like message delivery, reception, and read

status. Additionally, it provides access to essential chat room

functionalities, including notification settings, chat room

settings, and member lists, serving as the primary container

for all chat-related features in KakaoTalk.

Describe the functionality of the following event, including its key

features and a brief description of the app.

com.kakao.talk.activity.chatroom.ChatRoomHolderActivity

Screen & Event Log Alignment Check

KT.CRHA →<KT.MA → KT.MA>

Fig. 5. Validating LLM’s capability of understanding functional meaning of UI state events
Abbreviations:
KT.MA = com.kakao.talk.activity.main.MainActivity,
KT.CRHA = com.kakao.talk.activity.chatroom.ChatRoomHolderActivity

3.2.1 Validating LLM’s Capability of Understanding Functional Meaning of UI State Events. Before
performing clustering, we verified whether the LLM could accurately interpret the functional meaning of within-
app UI state events. Each event consisted of a package name and class name, and we used 20–30 representative
examples from the most frequently used apps among young adults in Korea (e.g., KakaoTalk, Chrome, Naver,
Gmail) [91, 92] (Figure 5). We used prompts related to interpreting the functional meaning of each event (e.g.,
KT.MA, KT.CRHA) corresponding to contiguous within-app UI state events-based sequential patterns (e.g.,
⟨KT.CRHA→ KT.MA⟩) derived through the ML-SPM process. These prompts were applied to the LLM (GPT-
4o [75]) to extract the characteristics of app package names and the functional meanings of class names within
the app, as shown in Figure 5.
We evaluated the LLM’s interpretive accuracy through three tests (Figure 5). First, we manually performed

various app tasks while logging events and recording screens to confirm that the LLM’s interpretations matched
the actual functions observed at the same timestamps. Second, we assessed consistency by reinterpreting 20
representative events per app five times, obtaining identical results in all cases (100% consistency). Third, three
experts—including app developers and researchers familiar with usage log analysis—verified the correctness
of the LLM’s interpretations. Finally, we confirmed that the model also accurately and consistently interpreted
events from both system apps (e.g., com.android.launcher3.proxy.ProxyActivityStarter) and sideloaded apps
not available in official app stores (e.g., com.example.speaker.controller.MainActivity).

3.2.2 Developing and Standardizing SHIRBT Naming Rules for LLM Training. We established standards
and rules for task labeling to derive human-understandable and consistent SHIRBTs from the sequential patterns
identified through ML-SPM using LLMs. We conducted a heuristic analysis based on expert and user evaluations

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:14 • Lee et al.

across various cases to develop these standards and rules. The expert and user evaluations for SHIRBT labeling
were conducted using eight evaluation criteria: Generality, Specificity, Comprehensibility, Accuracy, Comprehen-
siveness, Distinctiveness, Consistency, and Universality. Each criterion was rated on a 5-point Likert scale (with
higher scores indicating better compliance with the criteria). Detailed descriptions of the evaluation criteria for
SHIRBT modeling are as follows.
• Generality: How broadly a task name can be applied across various apps and services without being
restricted to specific apps or app services?
• Specificity: How precisely does a task name describe the function of a class name?
• Comprehensibility: How clear and understandable is the task name from the perspective of general
users?
• Accuracy: How accurately does the task name reflect the actual meaning of the function?
• Comprehensiveness: How well does the task name encompass the diverse functions or scenarios of a
class name within the app?
• Distinctiveness: How clearly can the task name be distinguished from those of class names with different
functions?
• Consistency: How consistently are naming conventions and classification standards applied throughout
the entire task framework?
• Universality:Whether the task name is commonly used to describe tasks in general smartphone usage.

We proposed three naming rule candidates for SHIRBT modeling based on eight evaluation criteria: (1) general
behavior-based tasks, (2) service-specific behavior-based tasks, and (3) app-specific behavior-based tasks. Through
evaluations by experts and general users, we selected the naming rule with the highest score, as shown in Table 3
and Appendix B.1. For example, as illustrated in Figure 5, the sequence ⟨KT.CRHA→ KT.MA⟩, interpreted by the
LLM, represents the action of chatting in a chatting room of the KakaoTalk app (com.kakao.talk), a messenger
service, followed by exiting the chatting room to navigate to the friends’ list screen. Based on the three naming
rules and considering a syntactic structure, this sequence can be labeled as chatting task, messenger chatting task,
or KakaoTalk chatting task in Table 3.

Table 3. The naming rule examples of smartphone human interaction routine behavior task

Naming Rules Syntactic Structures Task Naming (KT.CRHA→KT.MA)

General behavior-based task Behavior (gerund) + Task (noun) Chatting Task
Service-specific behavior-based task Service (noun) + Behavior (gerund) + Task (noun) Messenger Chatting Task
App-specific behavior-based task App name (noun) + Behavior (gerund) + Task (noun) Kakaotalk Chatting Task

As shown in Appendix B.1, a general behavior-based task naming rule (e.g., chatting task) received high scores
in consistency, universality, generality, comprehensibility, and comprehensiveness. This naming rule was concise
and encompasses all activities without being tied to specific platforms or apps. However, this rule scored relatively
low in specificity, distinctiveness, and accuracy (average total score: 32.7) because this rule did not indicate the
type of service in which the chatting occurs. In contrast, an app-specific behavior-based task naming rule (e.g.,
KakaoTalk chatting task) received high scores in specificity, accuracy, and distinctiveness as this rule provided
clear information about the app and highlighted app-specific differences. However, this rule received lower
scores in consistency, comprehensibility, generality, and universality (average total score: 29.3), as it was less
informative to users unfamiliar with the app and required that the app name be changed or replaced by another.
A service-specific behavior-based task naming rule (e.g., messenger chatting task) had scores similar to a general
behavior-based task naming rule in most criteria but achieved the highest scores in specificity, distinctiveness,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:15

and accuracy (average total score: 33.7). This was because it allowed user behavior to be contextualized based on
the characteristics of the app service and enabled more detailed analysis of user actions. Given these findings, the
service-specific naming rule was selected for SHIRBT modeling.

3.2.3 Establishing SHIRBT Categorization and Labeling Criteria for LLM Training. Additionally, we
defined SHIRBT clustering labeling criteria to account for cases where sequential patterns are composed of
within-app UI state events with the same package and class names but differ in order or include repetitions.
According to case 1 in Figure 6, the sequential pattern ⟨KT.MA→ KT.CRHA⟩ represents the behavior task of
navigating from the main screen (i.e., friend list screen) to the chatting screen in the KakaoTalk app, which can
be labeled as the messenger browsing chat lists task. On the other hand, ⟨KT.CHRA→ KT.MA⟩ represents the
behavior task of exiting from the chatting screen to the main screen, which is labeled as the messenger chatting
task. As such, even when sequential patterns are composed of the same events, the performed task can differ
depending on the order of events. To reflect this distinction, we defined criteria to differentiate task names based
on the order of events, as shown in Figure 6.
In contrast, sequential patterns where the same event repeats at least once, such as ⟨KT.MA→ KT.CRHA→

KT.MA⟩, can be interpreted as a combination of the messenger browsing chat lists task and messenger chatting
task, which may be labeled as the messenger browsing chat list & chatting task. However, since the messenger
chatting task encompasses the meaning of themessenger browsing chat lists task in this case, it can be merged into
the broader messenger chatting task. Accordingly, we defined task labeling criteria that consolidate tasks into a
single representative name when one task meaningfully encompasses the others within a sequential pattern. On
the other hand, as shown in case 2 in Figure 6, sequential patterns like ⟨GAG.MAG→ GAG.CAG→ GAG.MGA⟩
can be labeled as email reading task and email composing task. However, one task cannot be interpreted as
encompassing the other in terms of behavioral semantics. In such cases, instead of selecting only one task, we
defined task labeling criteria to represent them as a combined label, such as email reading & composing task.
Furthermore, even when the package and class names of the events in a sequential pattern are not identical,

consistent task naming can be achieved if the app service domain is the same and the functional meaning of
the class names aligns. For instance, as illustrated in case 3 of Figure 6, apps like Google, Naver, Microsoft Bing,
and Daum differ in package names but share a common service domain as search engines and internet portals.
Although their class names vary slightly (e.g., main activity, search activity, and browser activity), they can be
consistently labeled as web search task or web browsing task. Additionally, since web search & browsing task can
be broadly categorized under web browsing task, all such patterns are ultimately labeled as web browsing task.
Therefore, we established task labeling criteria to consistently represent tasks when the functional meaning of
the class names and the app service domain are aligned, even if package and class names differ.

3.2.4 Few-shot Prompting and Chain-of-Thought (CoT) Reasoning for LLM Training. Based on the
previously defined task naming rules and labeling criteria, sequential patterns can be effectively modeled into
SHIRBTs that are understandable for both users and service providers. However, in real-world scenarios, it
is impractical to model all sequential patterns into SHIRBTs after model deployment manually. Therefore, we
developed a system that automates the modeling of sequential patterns into SHIRBTs through prompt engineering
by training an LLM on the task naming rules and labeling criteria, along with the examples previously used, as
detailed in Appendix B.2. Since SHIRBT modeling requires sufficient examples and contextual understanding to
correctly interpret the rules, we employed GPT-4o [75], which is known for its strong reasoning capabilities.
To further improve accuracy, we integrated few-shot prompting and Chain-of-Thought (CoT) reasoning. As

described in “4. Few-shot Prompting and Chain-of-Thought Reasoning in Applying Naming Rules and Labeling
Criteria” in Appendix B.2, we provided representative sequence patterns (e.g., ⟨KT.CHRA→ KT.MA⟩) along
with ground truth SHIRBT labels (e.g., messenger chatting task) that were defined by three domain experts in
accordance with the established rules and criteria. Each example also included information about which labeling

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:16 • Lee et al.

CHRM.SA

NA.SWSLA

CHRM.CTA

NA.MA NA.IABA

MS.AITSAMS.MSA MS.BA

DA.HA DA.BA

CHRM.FLKT.CRHAKT.MA

KT.CRHA KT.MA

KT.CRHAKT.MA KT.MA

KT.CRHA KT.MA KT.CRHA

Case 1 Case 3Case 2

GM.MGA GM.CAG

GM.CAG GM.CAG

GM.MGA GM.CAG GM.MGA

GM.MGA GM.CAGGM.CAG

MSG browsing chat lists

MSG

browsing

chat lists

& chatting

MSG

chatting &

browsing

chat lists

MSG

chatting

DA.SA

MSG chatting Email writing

Email reading

Email

reading &

writing

Email

writing &

reading

Email

reading &

browsing

Web

searching

&

browsing

Web

searching

&

browsing

Web

browsing

Web

searching

&

browsing

Web

browsing

Fig. 6. Smartphone human interaction-based routine behavior task labeling criteria (case 1: task naming based on event
order, case 2: merging tasks when one encompasses other tasks, case 3: unified task naming across apps based on equivalent
functionality)
Abbreviations:
KT.MA = com.kakao.talk.activity.main.MainActivity,
KT.CRHA = com.kakao.talk.activity.chatroom.ChatRoomHolderActivity,
CHRM.CTA = org.chromium.chrome.browser.ChromeTabbedActivity,
CHRM.SA = org.chromium.chrome.browser.searchwidget.SearchActivity,
CHRM.FL = com.android.chrome.android.widget.FrameLayout,
NA.MA = com.nhn.android.search.proto.MainActivity,
NA.SWSLA = com.nhn.android.search.browser.control.searchwindow.suggest.
SearchWindowSuggestListActivity,
NA.IABA = com.nhn.android.search.browser.InAppBrowserActivity

MS.MSA = com.microsoft.sapphire.app.main.MainSapphireActivity,
MS.AITSA = com.microsoft.sapphire.app.search.autosuggest.activity.
AIToolsSuggestActivity,
MS.BA = com.microsoft.bing.com.microsoft.sapphire.app.browser.
BrowserActivity,
DA.MA = net.daum.android.daum.ui.main.MainActivity,
DA.SA = net.daum.android.daum.features.entrypage.SearchActivity,
DA.BA = net.daum.android.daum.browser.BrowserActivity,
GM.MAG = com.google.android.gm.ui.MailActivityGmail,
GM.CAG = com.google.android.gm.ui.ComposeActivityGmail

criterion it corresponds to, as well as a CoT reasoning explanation (e.g., “Moving from the chatroom to the
main activity implies exiting a chat session”). This structure allows the model to learn not only surface-level
name mapping but also rule-based reasoning for task inference, thereby improving the interpretability and
generalizability of the automated SHIRBT modeling system.

3.2.5 Evaluating the Performance of the LLM-Based SHIRBT Modeling System. To comprehensively
and quantitatively evaluate the actual performance, reliability, robustness, and generalizability of the LLM-based
SHIRBT modeling system, we assessed whether the system maintains consistent performance across different
applications and within-app UI state events for the same SHIRBT tasks (e.g., chatting, chat list browsing, web
browsing, email reading, email writing, and email reading & writing). Additionally, we conducted an ablation
study to quantitatively analyze the impact of few-shot prompting and Chain of Thought (CoT) reasoning on the
system’s accuracy.

To evaluate the accuracy of the experimental results, we used Exact Match Accuracy (EMA) and Semantic Match
Accuracy (SMA). EMA measures whether the SHIRBT name inferred by the LLM exactly matches the ground
truth task name at the string level. In contrast, SMA considers cases where the inferred SHIRBT name satisfies
the naming rules and task labeling criteria, and conveys the same meaning despite differences in expression
(e.g., “Messaging chatting task” vs. “Messenger chatting task”) as semantically equivalent to the ground truth.
SMA is calculated based on the Semantic Textual Similarity (STS) between the LLM-generated SHIRBT name

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:17

Table 4. Few-shot prompting apps and test dataset apps used to evaluate the consistency of LLM-based task labeling across
diverse apps

SHIRBT Tasks Few-shot Apps Test Dataset Apps
Email reading, Email writing, Email reading & writing Gmail Daum Mail, Yahoo Email, Microsoft Outlook
Web browsing Naver, Chrome Daum, Microsoft Edge, Baidu
MSG chatting , MSG chat list browsing KakaoTalk WhatsApp, WeChat, Telegram, Naver Line, Signal, Facebook

(a) Email Apps (b) Browser Apps (c) Messenger Apps

Fig. 7. LLM’s task clustering and labeling performance evaluation for each apps measured by semantic match accuracy
(SMA) and exact match accuracy (EMA)

and the ground truth task name. To ensure precise STS measurement, we used OpenAI’s text-embedding-3-
large[76] model to generate embeddings for each SHIRBT name, and computed the cosine similarity between
these embeddings[81, 98]. For accurate evaluation, the LLM was independently run 200 times per SHIRBT task
for each app, and the inference accuracy was reported as a percentage (e.g., 190 correct out of 200 = 95%), as
shown in Figure 7 and Table 5.

As shown in Table 4, the test dataset was constructed using within-app UI state events from apps involved in
few-shot prompting and CoT reasoning, as well as from other apps performing functionally equivalent tasks
across three service types, such as email, web browser, and messenger (see Appendix B.3’s Table 15). As shown
in Figure 7, both EMA and SMA achieved high accuracy rates exceeding 95% (e.g., 190 correct out of 200 trials)
across all service types. Furthermore, the difference between EMA and SMA remained relatively small, ranging
from 0% to 3.5%. These results demonstrate that the LLM-based SHIRBT modeling system consistently delivers
strong performance in both naming and string-level accuracy across diverse sequence patterns of within-app UI
state events for apps performing the same tasks. The small gap between EMA and SMA indicates that the system
produces semantically consistent labeling results even when the inferred SHIRBT names differ in expression,
which supports the high reliability and robustness of the model. Detailed SHIRBT name inference results for
each sequence pattern in the test dataset, along with their corresponding EMA and SMA scores, are provided in
Appendix B.3’s Table 15.

Furthermore, to quantitatively analyze the impact of including few-shot prompting and Chain of Thought
(CoT) reasoning on SHIRBT-specific accuracy, we designed and conducted an ablation study. In addition to the
full prompt, which includes both few-shot prompting and CoT reasoning as described in “3. Few-shot Prompting
and Chain of Thought Reasoning in Applying Naming Rules and Labeling Criteria” of Appendix B.2, we also
evaluated two reduced variants, a few-shot only prompt that excludes CoT reasoning, and a rule only prompt
that excludes both few-shot examples and CoT reasoning. According to the ablation results presented in Table 5,
which report the average EMA and SMA accuracy (in percentages) across test dataset apps for each task, the
full prompt consistently achieved the highest accuracy for both metrics. The few-shot only prompt showed
only a slight decrease of 2.3% in both EMA and SMA for the web browsing task compared to the full prompt.
However, a substantial performance drop of 20.4% in EMA was observed for the email reading task. The rule
only prompt, which provides no examples for the LLM to learn from, produced significantly lower performance,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:18 • Lee et al.

Table 5. Ablation study of the LLM’s task clustering and labeling performance measured by exact match accuracy (EMA)
and semantic match accuracy (SMA)

Tasks Apps Full Prompt Few-shot Only Rule Only
Few-shot Test Dataset EMA SMA EMA SMA EMA SMA

Email reading
Gmail Daum Mail, Microsoft Outlook,

Yahoo Email

95.2±0.3 96.0±0.5 74.8±1.3 87.8±2.5 0.0±0.0 0.2±0.3
Email writing 95.7±0.3 96.5±0.5 81.5±3.1 89.2±0.8 0.0±0.0 1.2±0.3
Email reading & writing 97.0±2.2 99.3±0.3 88.1±4.3 94.9±2.5 0.0±0.0 0.3±0.6
Web browsing Chrome, Naver Daum, Microsoft Edge, Baidu 100.0±0.0 100.0±0.0 97.7±0.3 97.7±0.3 33.3±3.2 45.5±3.5
MSG chat list browsing KakaoTalk Naver Line, Whats App, WeChat,

Signal, Telegram, Facebook MSG
99.5±0.5 99.7±0.3 84.8±3.1 86.8±1.9 0.0±0.0 0.2±0.4

MSG chatting 99.8±0.4 99.9±0.2 93.1±5.4 94.8±4.2 0.0±0.0 1.9±1.3

EMA = Exact Match Accuracy, SMA = Semantic Match Accuracy, Few-shot Only = prompt without Chaint of Thoughts (CoT) but including few-shot prompting,
Rule Only = prompt excluding few-shot train dataset and CoT

with EMA ranging from 0 to 33% and SMA from 0.2 to 45.5%. These findings confirm that removing either few-
shot prompting or CoT reasoning leads to a notable decline in SHIRBT modeling performance. Moreover, they
quantitatively demonstrate that both few-shot prompting and CoT reasoning play important roles in improving
the generalization performance of the SHIRBT modeling system.

3.3 SHIRBT and Baseline Feature Extraction
We implemented the feature extraction pipeline to extract baseline features (DLV 1–3: general smartphone
usage and categorical app usage) and SHIRBT features (DLV 4–5: within app usage trajectories) for comparing
the performance of the stress detection model. These features are based on three metrics (i.e., usage duration,
usage frequency, and typing behavior) to quantify human behavior, deriving insights from previous research on
smartphone interaction-based digital phenotyping [34, 47, 51, 68, 83, 94] and prior stress monitoring research
(Table 1). The extracted SHIRBT features include SHIRBT completion time/frequency-related features and SHIRBT
generic/calculated typing features, as shown in Table 6. Baseline features (DLV 1–3) were derived from three
quantifiable metrics (i.e., usage duration/frequency, and typing behavior) as well, using prior stress detection
model studies in Table 1. In particular, general typing-related features are obtained by categorizing backspace,
characters, and keystroke typing, then counting their daily frequency or duration time for each SHIRBT, as
detailed in Table 6. Calculated typing features offer complex user typing behavior metrics to measure details such
as error rate, characters/keystrokes per time, and time per character/keystroke. While not used in existing stress
detection models, calculated typing features have been validated in studies on mobile typing measures [62] and
have proven useful in smartphone-based substance use disorder detection research (e.g., alcohol detection) [51].
Each DLV 1 to 5 stage measured these quantifiable metrics with five statistical measures (average, median, min,
max, sum) within daily time windows, as detailed processes are described in Appendix C.

4 DATA COLLECTION AND SHIRBT FEATURE EXTRACTION

4.1 Stress Label Data Collection
To evaluate the performance of the proposed SHIRBT-based stress model against baseline features from previous
smartphone interaction studies (Table 1), we conducted an in-the-wild data collection with stress labels. As shown
in Table 7, we recruited 40 young adults (23 males and 17 females) in their 20s and 30s, including university
students and workers. Data were collected over two periods: a short-term (about 1 month) and a long-term
(about 4–5 months) phase. This design allowed us to examine whether the influence of SHIRBT features on stress
varies by the duration of daily behavior. The number of participants and the study duration were comparable
to or greater than previous personal stress modeling research (Table 1), ensuring sufficient demographic and
behavioral diversity. Two types of stress measurements were collected: (1) a one-time pre-survey using the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:19

Table 6. Types of features in depth level of SHIRB

DLV of SUB Metrics Features

DLV 1: Overall Smartphone
Usage Behavior

Time • Smartphone usage duration time (SUD)
• Screen unlocking time (UKT)

Frequency • Smartphone usage frequency (SUF)
• Screen unlocking frequency (UKF)

Typing • None

DLV 2: Overall App
Usage Behavior

Time • App usage duration time (AUD)
• App noti response time (NRTA)

Frequency • Overall app usage frequency (AUF)

Typing • Generic typing: NTB, NTC, NTK, TDT
• Calculated typing: CPS, KPS, SPC, SPK, KSPC

DLV 3: Categorical App
Usage Behavior

Time • App usage duration time (AUD)
• App noti response time (NRTA)

Frequency • App usage frequency (AUF)

Typing • Generic typing: NTB, NTC, NTK, TDT
• Calculated typing: CPS, KPS, SPC, SPK, KSPC

DLV 4-5: Individual App and
Within App Usage Behavior
(Data Type Used in SHIRBT)

Time
• Task completion time (TCT)
• View transition time (VTT)
• App noti response time (NRTA)

Frequency • Task Frequency (TF)
• View transition frequency (VTF)

Typing • Generic typing: NTB, NTC, NTK, TDT
• Calculated typing: CPS, KPS, SPC, SPK, KSPC

– DLV of SUB: Depth Level of Smartphone Interaction Usage Behavior
– Generic typing: Number of typed backspaces (NTB), Number of typed characters (NTC), Number of typed
keystrokes (NTK), typing duration time (TDT)
– Calculated typing: Characters per second (CPS), keystrokes per second (KPS), seconds per character (SPC),
seconds per keystroke (SPK), keystrokes per character (KSPC)

10-item Perceived Stress Scale (PSS-10) [20] to assess baseline stress, and (2) repeated daily stress surveys using
Experience Sampling Method (ESM) triggers during the study. The mean PSS score was 21.15±6.70 out of 40 (0–13:
low, 14–26: moderate, 27–40: high), indicating that most participants experienced moderate to high stress [20].
Two participants (P35, P39) with very low stress scores were excluded during pre-screening.

Participants self-reported their daily stress through smartphone and smart-speaker ESM triggers [55]. We
adopted a micro-ESM design consisting of a single 5-point Likert item (“How was your overall stress level today?”)
to minimize burden [48, 66]. Daily stress ratings were binarized following Zhang et al. [103]: scores of 4–5 and
3 were labeled as “stress-positive,” while 1–2 were “non-stress.” This binarization method is commonly used
in long-term monitoring [45, 97, 103] to balance sensitivity and user compliance. Twelve of the remaining 38
participants were excluded: eight due to withdrawal or insufficient ESM data (≤10 valid days) and four due to
extreme label imbalance (≤1% positive samples). Such imbalance would require excessive augmentation (e.g.,
SMOTE) and risk model distortion. The final dataset included 26 participants, with 43.8±20.7% stress-positive and
56.2±20.7% non-stress samples (Table 7). Only days containing both valid stress labels and smartphone logs were
analyzed. The short-term group (n=16) provided an average of 30.5 days (range: 25–36), and the long-term group
(n=10) provided 105 days (range: 53–148). All procedures were approved by the Institutional Review Board (IRB).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:20 • Lee et al.

4.2 Smartphone Data Collection
To extract SHIRBT and baseline features, we collected smartphone interaction data using a custom logger based
on Android APIs [22–24, 26] during the same period with stress label collection in real life. The data include
three types (Figure 1): (1) DLV 1: smartphone usage behavior (e.g., screen on/off, unlock), (2) DLV 2–4: app usage
behavior (e.g., categories, total/individual app usage), and (3) DLV 5: within app usage behavior (within-app UI
state, including active events such asWindowStateChanged event, ViewTextChanged event, and passive events
such as NotificationStateChanged [21]). As a result, we collected an average of 132.35 app types (range: 69–340),
an average of 975.12 WindowStateChanged event types (range: 501–2,974), an average of 55.73 ViewTextChanged
event types (range: 23–156), and an average of 75.81 NotificationStateChanged event types (range: 48–145) per
participant. To address privacy concerns, sensitive personal data was hashed and stored an encrypted. For
example, app usage logs did not record specific characters typed, only whether typing occurred and the type of
input (e.g., character, backspace). Message or call sender/receiver information was also hashed for anonymity.
Sensitive information was excluded or encrypted, and the data collection methods were shared with participants,
ensuring transparency and obtaining consent under IRB approval.

4.3 SHIRBT Modeling and Feature Extraction Result
We utilized smartphone interaction data collected in the wild to derive individual SHIRBTs using the SHIRBT-MMF
framework (Section 3) and extracted both SHIRBT features and baseline features used in previous studies. First,
to compare SHIRBT features with traditional categorized app usage behavior (DLV 3 in Figure 2), we classified
the 132.35 apps that participants used daily on average into categories. Following the Google Play Store’s
categorization based on primary app functionality, we defined 42 app categories. However, since participants
performed an average of only seven SHIRBTs daily (range: 2–10) during the study, we merged the app categories
into 11 broader categories (Table 8) to ensure a fair comparison between the SHIRBT-based stress model and
the baseline model. As a result, participants engaged with an average of 6.5 app categories daily, corresponding
to an average of 145.3 apps per participant (Tables 10 and 11). Across all participants, 29 unique SHIRBTs were
identified through the SHIRBT-MMF framework, with individuals performing an average of seven tasks per day
(range: 2–10) (Table 9). Notably, the number of apps associated with these seven SHIRBT tasks averaged only
4.40 per participant, amounting to just 3–6% of the apps used in the categorized app features (Table A7 and A8 in
Supplement: D).

As shown in Table 9, SHIRBTs offer a more precise, consistent, and interpretable representation of smartphone
interaction behaviors compared to app categories (DLV 3) or individual apps (DLV 4). Unlike app-dependent
naming conventions, SHIRBTs are based on user behavior tasks, ensuring feature stability even when users switch
or adopt new apps. This characteristic helps mitigate covariate shift and schema drift. To further evaluate the
performance advantages of SHIRBT-based stress models over baseline models, we extracted a greater number of
features (averaging 195.3 vs. 151.8) (Tables 10 and 11). While feature count is adjustable, an excessive number of
features can negatively impact model performance. Therefore, we deliberately generated more SHIRBT features
than baseline features to test the model under less favorable conditions (Table A9 in Supplement: D). Conversely,

Table 7. Demographic information and stress label collection

Periods
Demographic Information Pre-survey Daily-survey (ESM)

Total
N

Selected
N

Avg.
Age Sex Avg. PSS

Score (1–40)
Avg. Samples

(day)
Avg. Stress

Level Score (1–5)
Avg. Proportion

Pos (%) Neg (%)
Short-term 20 16 27.4±4.2 M: 6, F: 10 23.4±4.7 30.5±3.3 2.8±0.8 45.9±20.4 54.1±20.4
Long-term 20 10 24.6±2.3 M: 9, F: 1 17.6±5.9 105.1±29.5 2.5±1.1 40.5±21.7 59.5±21.7

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:21

Table 8. Used app categories for each participant

App Categories
(DLV 3)

Short-Term Periods
(16 participants)

Long-Term Periods
(10 participants)

SOC & COMM All participants All participants
FIN All participants All participants
MM 15 participants (except P3) All participants
TL & SYS All participants All participants
ENT P2, P14, P18 P23, P24, P25, P30, P32, P37
HLTH & BEA P16, P19 P24, P28
SHOP & LIFEST All participants P24, P27, P29, P30, P32, P37
LOC & TRANS P9, P10, P11, P15, P18 P24, P27, P28, P29, P30
WRK & PROD P1, P2, P5, P6, P9, P11, P14, P15, P16, P19 8 participants (except P23, P40)
BKS & EDU P16, P19 None
Note: SOC & COMM = Social & Communication; FIN = Finance; MM = Multimedia; TL & SYS = Tools & System; ENT =
Entertainment; HLTH & BEA = Health & Beauty; SHOP & LIFEST = Shopping & Lifestyle; LOC & TRANS = Location &
Transportation; WRK & PROD = Work & Productivity; BKS & EDU = Books & Education. Values indicate the participants
who used apps in each category during the short-term and long-term logging periods.

to ensure that the superior performance was not merely due to the number of features, we also evaluated
models using only universally performed SHIRBTs, such as messenger chatting and finance paying, resulting in
fewer features than the baseline. Additionally, by leveraging these commonly performed SHIRBTs, we validated
personalized SHIRBT feature-based models and a global model to assess their effectiveness across participants.

5 MODEL EXPERIMENT SETUP

5.1 Comparison Methods
We evaluated the stress detection model’s performance using SHIRBT features compared with baseline features
in four conditions:
• Section 6.1. Personal SHIRBT vs. Baseline: How do personalized SHIRBT features compare to baseline
features in model performance?
• Section 6.2. Personal One/two SHIRBT vs. SHIRBTs vs. Baseline: How do the one or two SHIRBT
features most frequently and consistently used by each individual compare to baseline and the full set of
SHIRBT features? We aimed to verify that using only one or two SHIRBT features could achieve comparable
performance, even with fewer data and feature types than baseline features.
• Section 6.3. Feasibility of Global Model Can SHIRBT features be applied to global models as well as
personal models? If they can, how does their performance differ from baseline features?
• Section 6.4. Feature Importance in Personal ModelWhich feature types have the greater impact on
explaining the model among SHIRBT and Baseline?

5.2 Model Building
5.2.1 Ensemble ML Model. We built a binary stress classifier to validate the superiority of the proposed
SHIRBT features compared to existing baseline features in Table 6. While the model performance is crucial in
most prior mental health models, interpretability is emphasized, leading to a preference for traditional machine
learning models over deep learning models. Therefore, to compare and validate against existing research, we
utilized ensemble models such as Random Forest (RF) [14], Gradient Boosting Machine (GBM) [32], eXtreme
GBM (XGBM) [17], and Light GBM (LGBM) [46], which have shown superior performance in prior mental health
models [13, 47, 51, 94] as shown in Figure 2. Ensemble models can reduce bias and variance, thereby preventing

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:22 • Lee et al.

Table 9. Used SHIRBTs for each participant

App Categories
(DLV 3)

Types of Apps
(DLV 4)

Types of SHIRBT
(DLV 5)

Short-Term Periods
(16 participants)

Long-Term Periods
(10 participants)

SOC & COMM

KT MSG chat list browsing 15 participants (except P14) 9 participants (except P24)
KT MSG chatting All participants 8 participants (except P24, P40)
KT MSG profile viewing P9, P10, P11, P15, P18 None
KT MSG media viewing None P30
KT, SBI MSG unlocking P19 P25, P37
GCH, SIB, NA, GQS, FAB Web browsing 12 participants (except P1, P2, P6, P17, P19) P24, P27, P28, P29, P37
IN, TW SNS browsing P9, P10, P11, P15, P16, P18, P19, P20 P28
SM SMS messaging P3, P12, P17, P20 None
SIC, SPD, WW Call managing P5, P17, P19 None
ET Community browsing P14 P37
BD, VB Dating board browsing P3 None
BD Dating profile viewing P3 None
GM Email reading P6 None

FIN SP Finance paying 15 participants (except P16) 9 participants (except P40)
SC, TO Finance managing None P24

MM
YT Video browsing P2, P10, P12, P14, P16, P18 P23, P25, P28, P30
YT Video watching P2, P10, P12, P14, P16, P18 None
CA Camera shooting P12 None

TL & SYS

GF Device searching P3, P15 P27, P30
NS System noti checking P18 P32, P37
SCP System controlling P12 None
ZP Document reading P14 None
CL Clock time checking None P24

ENT NW Webtoon browsing None P32
KP Entertainments browsing None P23

HLTH & BEA CW, CHA Health tracking P19 P24, P28

SHOP & LIFEST DA Shoping None P29

WRK & PROD TS, SCA, GCA Time scheduling P2, P9, P16 None

BKS & EDU SID ID checking P6 None

Overall Categories Overall apps Overall tasks All participants All participants
Note: KakaoTalk (KT), Samsung Biometrics (SBI), Google Chrome (GCH), Samsung Internet Browser (SIB), Naver (NA), Google Quick Searchbox (GQS), Free AD Blockerbrowser (FAB), Samsung Messages (SM), Samsung In
Call (SIC), Samsung Phone Dialer (SPD), Who Who (WW), Every Time (ET), Blind Date (BD), Vanilla Bridge (VB), Gmail (GM), Instagram (IN), Twitter (TW), Samsung Card (SC), Toss (TO), YouTube (YT), Camera (CA), Galaxy
Finder (GF), NotiStar (NS), Samsung Control Panel (SCP), Zipper Plus (ZP), Clock (CL), Naver Webtoon (NW), Kakao Page (KP), Cash Walk (CW), Challengers (CHA), Danggeun (DA), Time Spread (TS), Samsung Calender (SCA),
Google Calnendar (GCA), Stuent ID card (SID)

over/underfitting, and outperform single classifier models (e.g., logistic regression, decision tree) [17, 32, 46]. In
the overall process, we derived results for both short-term and long-term models and adopted macro accuracy
and AUC-ROC, which were used with prior most stress model studies in Table 1 as ML performance metrics to
compare model performance.

5.2.2 TSNCV based Bayesian HPO and Feature Selection. To predict future data from past data in our
daily-sampled time-series dataset, we used time series nested cross-validation (TSNCV) as shown in Figure 2.
Most personal or global digital phenotyping-based mental health (e.g., stress) models used K-fold or leave-one-
subject-out (LOSO) cross-validation to address imbalanced label datasets and improve performance [6, 19, 64, 94].
However, these methods mix past and future data, leading to learning past data from future data. Our study
arranges training data chronologically to ensure learning occurs only from past data. We prevent complete
imbalance (e.g., 0% or 100% positive samples) in train and test folds by setting a minimum sample size. Considering
the amount of short-term (average of 30.5 days) and long-term (average of 105.1 days) samples, Each test fold has
at least three days of samples for short-term personal models and seven days (one week) samples for long-term
personal models in both outer and inner loops to maintain balance. The first training fold of the outer loop was

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:23

Table 10. Performance results of personal and global short-term stress detection models in SHIRBT vs. baseline

Average of 16 Personal Models Global Model
ML

Methods All SHIRBTs Two SHIRBTs
(Chatting & Paying)

One SHIRBT
(Chatting) Baseline Two SHIRBT

(Chatting & Paying)
Two Baseline
(SOC & FIN)

of Apps 5.3±1.6 2 1 89.4±18.7 2 119
of Features 209.4±52.2 60.3±14.7 49.8±14.3 150.3±7.4 67 69
ML Metrics ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

RF 72.4±10.5 63.0±10.6 66.2±14.2 57.1±7.9 68.3±13.6 60.0±10.0 67.8±11.6 57.0±8.5 50.1±7.8 48.3±6.9 48.8±10.2 50.1±8.5
GBM 75.9±8.7 66.8±10.1 73.2±8.8 63.4±9.6 73.5±13.9 64.3±10.3 70.4±11.5 62.5±8.5 54.2±8.6 52.4±8.4 47.5±7.6 46.7±9.4
XGBM 68.3±11.3 56.7±12.8 61.2±15.2 51.7±3.8 61.7±15.7 54.2±12.9 64.2±13.9 52.9±9.6 52.7±9.3 51.6±9.7 45.0±7.7 46.1±7.3
LGBM 56.6±13.8 52.6±5.8 58.8±16.0 51.0±3.3 58.3±13.3 51.8±4.3 56.6±13.8 50.0±0.0 53.8±10.3 52.1±9.4 46.0±9.8 46.4±9.5

Table 11. Performance results of personal and global long-term stress detection models in SHIRBT vs. baseline

Average of 10 Personal Models Global Model
ML

Methods All SHIRBTs Two SHIRBTs
(Chatting & Paying)

One SHIRBT
(Chatting) Baseline Two SHIRBTs

(Chatting & Paying)
Two Baseline
(SOC & FIN)

of App 4.4±1.7 2 1 145.3±72.0 2 117
of Features 182.6±57.2 66.4±1.7 55.4±1.7 154.2±10.5 67 69
ML Metrics ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

RF 69.7±6.4 60.8±9.8 67.2±9.0 62.2±8.1 66.0±6.5 60.2±9.8 68.1±8.2 59.3±9.6 59.1±7.0 51.7±4.4 54.9±11.4 49.1±4.0
GBM 73.8±5.0 70.0±8.1 73.8±7.5 69.0±10.0 72.1±6.3 67.5±7.5 70.3±6.7 65.1±8.4 53.1±8.5 48.4±3.2 53.3±10.6 48.6±3.2
XGBM 67.1±7.0 57.9±4.9 61.7±12.7 56.8±5.6 61.3±11.7 56.4±4.3 60.6±9.7 56.5±5.1 53.1±9.3 47.4±5.1 51.6±10.3 49.4±3.7
LGBM 60.4±6.5 53.3±4.7 55.8±6.6 51.1±3.2 56.2±6.5 52.8±2.9 56.6±5.3 52.1±4.1 50.7±10.2 45.3±3.8 55.2±12.0 51.1±3.5

set to a minimum of three days for short-term models and one week for long-term models, increasing the training
dataset by three days (short-term models) and one week (long-term models) per fold, respectively. On the other
hand, for the Global model, since it is difficult to follow the chronological order of the entire participants’ data,
we used LOSO cross-validation, where one participant is used as the training set, another participant as the
validation set, and the remaining participants as the test set.

To enhance model performance, we implemented TSNCV, with 400 iterations run in the inner loop to determine
the optimal hyperparameters and select the features for training in the outer loop in Figure 2. We used Bayesian
hyperparameter optimization with a tree-structured Parzen estimator (TPE), a state-of-the-art (SOTA) algorithm.
Unlike other black-box optimization methods (e.g., grid and random search), Bayesian-HPO creates a probabilistic
model mapping hyperparameters to the objective’s score probability function [11, 74]. Among Bayesian-HPO,
TPE is faster at identifying HPO than other methods (e.g., Gaussian processes and random forest) [11]. We used
the Optuna library, an advanced automatic HPO framework [5]. We used an ensemble model (RF) embedded
method for feature selection, selecting features with importance above the median value in Figure 2.

5.2.3 Running Environment. The experiment was run on a 64-bit machine with Ubuntu 22.04 LTS, AMD
Ryzen 96 5900X CPU, 64GB RAM, RTX3070Ti GPU, VRAM 8GB, Ubuntu 22.04 LTS operating systemwith installed
Python version 3.11.9, NumPy version 1.26.4, Pandas version 2.2.2, and Scikit-learn version 1.5.0.

6 RESULTS

6.1 Personal Model: SHIRBT vs. Baseline
Among four ensemble models, the GBM model achieved the best results in all conditions (total SHIRBT vs. two
SHIRBT vs. one SHIRBT vs. baseline). The average performance of personal SHIRBT models outperformed by
5.8% (short-term) and 3.9% (long-term) accuracy baseline models as shown in Table 10 and 11. The SHIRBT-based
models also showed an average AUC-ROC improvement of 4.6% (short-term) and 5.4% (long-term) over the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:24 • Lee et al.

baseline models. These results demonstrate that SHIRBT consistently outperforms the baseline model, regardless
of whether the data collection and SHIRBT modeling period was short or long. Additionally, these results verified
that extracted SHIRBT features can achieve better performance even though the app types required is only an
average of 5.0% (short-term: 3.2%, long-term: 6.1%) of that required for baseline features extraction across 26
participants as shown in Table 10, 11, and Table A7,A8 of Supplement: D. The performance results for each of the
26 personal stress models are presented in Figure 8.

6.2 Personal Model: One/Two SHIRBT(s) vs. All SHIRBTs vs. Baseline
The extracted SHIRBT features involve fewer app data volume than the baseline feature extraction process, but
the number of features was kept superior to compare model performance under the same conditions in the total
SHIRBT model in Section 6.1. However, as the feature count increases, users and service providers may find it
hard to understand their importance and incur higher time and costs for feature engineering and ML system
maintenance. Therefore, we controlled the number of features and validated whether extracted SHIRBT features
still show superior performance for stress modeling with fewer features than baseline features. To achieve a small
number of SHIRBT features, we developed the model using only the most frequently or extensively used SHIRBT
feature sets among all participants: the messenger chatting task (chat) and the mobile paying task (pay) features.
These one or two SHIRBTs-based extract input features account for between an average of 8.0% and 37.9% of the
baseline input features in both short- and long-term personal stress models, in Table 10, 11 and Supplement: D’s
Table A9. The detailed performance results for each of the 26 personal stress models are presented in Figure 8.

The two SHIRBTs (paying and chatting tasks) features showed an approximately average of 3% accuracy
performance improvement over the baseline model in both short and long-term personal models in Table 10, 11
and Figure 8. Moreover, single SHIRBT (chat) based features showed an even greater average of 2% and 3%
accuracy performance enhancement over the baseline model in both short and long-term models, respectively.
Additionally, one or two SHIRBT-based features showed a greater average of 1%–4% AUC-ROC performance
improved than baseline features in both short and long-term models, respectively. This shows that stress models
based on one or two frequently used SHIRBT features per participant can achieve similar or slightly higher
performance than baseline models, even with significantly fewer app data types (between the average of 0.6% and
2.2% compared to baseline features’ app data types per participant) and extracted number of features (between

(a) Short-term (b) Long-term (c) Short-term (d) Long-term

(A) Accuracy results (B) AUC-ROC results

Fig. 8. Accuracy and AUC-ROC performance of personal models: 16 short-term personal models and 10 long-term personal
models

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:25

(a) Short-term (b) Long-term (c) Short-term (d) Long-term

(A) SHIRBT vs. Baseline (B) Time vs. Frequency vs. Typing

Fig. 9. Comparison of feature importance: (A) comparison of selected SHIRBT vs. baseline features in best combined SHIRBT
and baseline features based 16 short-term and 10 long-term personal models, (B) comparison of selected time vs. frequency
vs. typing features in best SHIRBT features based 16 short-term and 10 long-term personal models

average of 34.1% and 41.7% compared to baseline features per participant). Therefore, utilizing one or two SHIRBT
features reduces the privacy burden of app data collection for users.

6.3 Global Model: SHIRBT vs. Baseline
We developed a global stress model for both short and long-term data to evaluate whether the SHIRBT-basedmodel
outperformed the baseline model. Using the most frequently used SHIRBT (messenger chatting task) features
(Table 9) among all participants, we built global stress models using demographic factors as the features (e.g., sex,
age, jobs). For comparison, the baseline features were derived from apps categorized as Social & Communication
(SOC & COMM) and Finance (FI), which correspond to matching messenger chatting task and finance paying
task. The SHIRBT-based global model outperformed the 5.4% (short-term) and 3.9% (long-term) accuracy of the
baseline model as shown in Table 10 and 11. Furthermore, the SHIRBT-based global model demonstrated 4%
and 5% AUC-ROC higher compared to the baseline model in both the short and long term. This indicated that
SHIRBT can enhance interpretability and performance while reducing app data collection and feature extraction
in the global model as well. Additionally, the frequent use of SHIRBT or app categories related to communication
likely reflects fundamental human routine tasks essential for social activities in both the short and long term.
However, the performance of the global model was significantly lower compared to the personal model. This is
likely because the personal model more precisely captures an individual’s unique smartphone usage patterns,
daily routines, and stress responses, leading to superior performance compared to the global model.

6.4 Selected Feature Importance of SHIRBT and Baseline
The proposed SHIRBT features are performed daily without exception for at least a month to several months as part
of an individual’s routine activities and social interactions, resulting in low feature variability. Additionally, all daily
tasks inherently have a significant impact on the model. Furthermore, the average number of SHIRBTs is relatively
small (mean: 7, range: 2–10), and their importance increases with more frequent and prolonged use throughout the
day. Therefore, it is unnecessary to separately determine which SHIRBTs are crucial for model performance using

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:26 • Lee et al.

feature importance analysis techniques such as SHapley Additive exPlanations (SHAP) [87], Local Interpretable
Model-agnostic Explanations (LIME) [82], or ensemble-based feature importance evaluation [96] [16, 18, 45].
However, the importance of time, frequency, and typing behavior-related features may vary within each SHIRBT.
Moreover, while the proposed SHIRBT features outperform baseline features, it is necessary to verify their
superiority by analyzing which specific features contribute most to improving model performance when SHIRBT
and baseline features are used together.
To compare the selected features’ impact on extracted SHIRBT and baseline features, we developed personal

stress models based on both SHIRBT and baseline features. The best short and long-term combined personal
models showed an average of 74.7% and 71.9% accuracy, respectively. The feature selection based on embedded
feature importance using a median threshold in the ensemble model resulted in an average of 25.0% of features
being selected (86.1±31.7) compared to the average input features per participant (351.74±57.57). Considering the
difference in the number of input features between SHIRBT and the baseline, we calculated the ratio of selected
features relative to the number of input features, rather than simply counting the number of selected features in
the best model. This ratio was normalized to 100% for the total selected SHIRBT and baseline features for each
fold, as shown in Figure 9a and 9b. For example, P40’s stress model used 32 SHIRBTs and 137 baseline input
features. In P40’s stress model, 31.70% of SHIRBT features and 34.72% of baseline features were selected from the
input features. After normalization, SHIRBT features accounted for 47.72% and baseline features for 52.28%. As
shown in Figure 9a and 9b, this method was used to compare the importance of SHIRBT and baseline features
across all 26 participants. As a result, in the top 26 models based on combined SHIRBT and baseline features,
SHIRBT features were selected on average 19% more (SHIRBT: 59.5%, baseline: 40.5%) than baseline features.
Additionally, we analyzed which selected total SHIRBT feature types among time, frequency, and typing

behavior metrics were most influential in 26 total SHIRBT-based personal models (see Section 6.1). We used the
same feature importance calculation method from the process of comparing SHIRBT and baseline features in
Figure 9a, 9b. Taking into account the difference in the number of input features among time, frequency, and
typing-related features, we calculated the proportion of selected features relative to the total number of input
features, instead of merely counting the selected features in the best model, and this ratio was normalized to
100% for the total selected SHIRBT’s time, frequency, and typing features for each fold, separately. As shown in
Figure 9c, 9d, the feature types most frequently selected in proportion to the number of input features
were time, frequency, and typing behavior, in order among most participants. After normalizing the
total number of selected feature types to 100%, the average selection rates in the short-term models were time
(36.8%±5.2%), frequency (32.6%±8.7%), and typing (30.6%±5.4%), while in the long-term models, they were time
(37.2%±4.4%), frequency (34.9%±5.9%), and typing (30.9%±1.6%).

7 Comparison of Covariate Shift and Schema Drift
We previously demonstrated through experiments that SHIRBT-based features outperformed baseline features
in explaining and predicting stress levels. This performance superiority is not merely due to differences in
model architecture or training methods, but it is also closely related to how robust the SHIRBT features are
against covariate shift and schema drift (i.e., feature evolution). In this section, we go beyond model performance
comparison and quantitatively compare the degree of input distributional change (covariate shift) and feature
structure change (schema drift) between SHIRBT and baseline features. We aim to examine whether SHIRBT’s
improved robustness arises from its greater distributional stability and structural persistence. To this end, we
utilized data from 10 long-term participants (P23–P40) whose data spans were sufficiently long to enable daily
routine mining (average collection period: 105.1 days). Each participant’s data was chronologically sorted and
split evenly into a training interval (source distribution) and a test interval (target distribution). Using the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:27

Table 12. Univariate and multivariate covariate shift evaluation metrics

Metric Explanation Formula Symbol Definitions

Kolmogorov–
Smirnov
Test
(KS Test)

Measures the maximum
difference between two
cumulative distribution
functions to test
distributional equality

p-value = # of permutations with 𝐷𝑛≥𝑑
(2𝑛𝑛)

- 𝐹𝑛 (𝑥),𝐺𝑛 (𝑥): Cumulative
distribution functions of two
different samples, each of size 𝑛
- 𝐷𝑛 : sup𝑥 |𝐹𝑛 (𝑥) −𝐺𝑛 (𝑥) |
- 𝑑 : Observed value of 𝐷𝑛

Probability
Stability
Index
(PSI)

Quantifies the shift in
feature distributions
by comparing binned
frequencies.

𝑃𝑆𝐼 =
∑𝑛
𝑖=1 (𝑟𝑖 −𝑚𝑖) · log

(
𝑟𝑖
𝑚𝑖

) - 𝑟𝑖 : # of reference data in i-th bin
of data points

-𝑚𝑖 : # of monitored data in i-th bin
#of data points

Jensen-
Shannon
Divergence
(JS)

Measures the similarity
between two probability
distributions in a
symmetric way.

𝐽𝑆 (𝑃 ∥ 𝑄) = 1
2𝐷𝐾𝐿 (𝑃 ∥ 𝑀) +

1
2𝐷𝐾𝐿 (𝑄 ∥ 𝑀)

- 𝑃,𝑄 : Two different probability
distributions
-𝑀 : 1

2 (𝑃 +𝑄)
- 𝐷𝐾𝐿 (𝑃 ∥ 𝑄):

∑
𝑖 𝑃 (𝑖) log

(
𝑃 (𝑖)
𝑄 (𝑖)

)
Maximum
Mean
Discrepancy
(MMD)

Compares distributions
by computing kernel-based
differences in mean
embeddings.

MMD2 = E𝑥,𝑥 ′ [𝑘 (𝑥, 𝑥 ′)] + E𝑦,𝑦′ [𝑘 (𝑦,𝑦′)]
− 2E𝑥,𝑦 [𝑘 (𝑥,𝑦)]

- 𝑥, 𝑥 ′ ∼ 𝑃 : Two samples from
train dataset
- 𝑦,𝑦′ ∼ 𝑄 : Two samples from
test dataset
- 𝑘 (𝑥,𝑦): Gaussian kernel function

Domain
Classifier
(DC)

Evaluates how well a
classifier distinguishes
source from target data
domains.

𝐴𝑈𝐶 =
∫ 1
0 𝑇𝑃𝑅(𝐹𝑃𝑅−1 (𝑡)) 𝑑𝑡 - 𝑇𝑃𝑅: 𝑇𝑃

𝑇𝑃+𝐹𝑁
- 𝐹𝑃𝑅: 𝐹𝑃

𝐹𝑃+𝑇𝑁

Data
Reconstruction
Error
(DRE)

Measures the squared
euclidean distance based
reconstruction error after
projecting and recovering
input data.

Error = ∥𝑋 − 𝑋 ∥22, 𝑋 =𝑊𝑘𝑊
𝑇
𝑘
𝑋

- 𝑋 : Input dataset of PCA
- 𝑋 : Reconstructed data
- ∥ · ∥22: Squared 𝐿2 distance
(squared euclidean distance)
-𝑊𝑘 : Top 𝑘 principal components

SHIRBT-MMF framework, we extracted SHIRBT and baseline features from each interval and compared the
robustness of the two feature types by measuring their respective degrees of covariate shift and schema drift.

7.1 Univariate & Multivariate Covariate Shift Comparison
As described in Section 2.2, covariate shift refers to changes in the distribution of input features between the
training and deployment environments. Because such distributional changes can lead to performance degradation
in deployed models, it is important to evaluate and anticipate them in advance. Covariate shift can be categorized
into two types of data distribution changes [79]. First, univariate covariate shift refers to changes in the marginal
distribution of individual features and is assessed through statistical hypothesis testing of each feature. Second,
multivariate covariate shift captures shifts in the joint distribution across features—cases in which no single
feature’s distribution changes significantly, but their interdependence does. This type requires more complex
metrics that consider feature relationships. To quantitatively measure both types of covariate shift, we employed
a set of evaluation metrics validated by recent covariate shift detection studies [49, 60, 65, 79, 88], as shown
in Table 12. For univariate covariate shift analysis, we used the two-sample Kolmogorov–Smirnov (KS) test,
the Population Stability Index (PSI), and the Jensen–Shannon (JS) divergence. For multivariate covariate shift
analysis, we used maximum mean discrepancy (MMD), domain classifier (DC), and data reconstruction error

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:28 • Lee et al.

Table 13. Definitions of abbreviations for SHIRBT and baseline feature subsets used for covariate shift comparison

Shift Type Abbreviation Full Name

Univariate

TCT|AUD Mean Statistic of TCT in One SHIRBT (Chatting) vs. AUD in One category (SOC & COMM)
TF|AUF Sum Statistic of TF in One SHIRBT (Chatting) vs. AUF in One category (SOC & COMM)
NTK Mean Statistic of NTK in One SHIRBT (Chatting) vs. NTK in One category (SOC & COMM)
KPS Mean Statistic of KPS in One SHIRBT (Chatting) vs. KPS in One category (SOC & COMM)
KSPC Mean Statistic of KSPC in One SHIRBT (Chatting) vs. KSPC in One category (SOC & COMM)

Multivariate

All All SHIRBTs (DLV 4–5) vs. all baseline (DLV 1–3) related features
One One SHIRBT (Chatting) vs. one app category (SOC & COMM) related features
Two Two SHIRBTs (Chatting and Paying) vs. Two categories (SOC & COMM and FIN) related features
One (TIM) One SHIRBT (Chatting) vs. One category (SOC & COMM) related time features
One (FRQ) One SHIRBT (Chatting) vs. One category (SOC & COMM) related frequency features
One (TYP) One SHIRBT (Chatting) vs. One category (SOC & COMM) related typing features

– Features: Task completion time (TCT), App usage duration time (AUD), Task frequency (TF), App usage frequency (AUF), Number of typed keystrokes (NTK), ‘KPS, KSPC
– Metrics: Time (TIM), Frequency (FRQ), Typing (TYP)

(DRE). For DRE, dimensionality reduction was performed using PCA to preserve 90–95% of the total variance
before calculating reconstruction error.

7.1.1 Univariate Covariate Shift Comparison. In the univariate covariate shift analysis, we compared five repre-
sentative features: time (TCT vs. AUD), frequency (TF vs. AUF), general typing (NTK), and calculated typing
(KPS and KSPC). To ensure consistent feature definitions across participants, we extracted the SHIRBT features
from a commonly used routine task (“Messenger chatting task”) and the baseline features from the “Social &
Communication category,” as shown in Table 13. To assess the statistical significance of feature distribution
changes, we applied the KS test at a threshold of 𝑝 = 0.05. The results showed that SHIRBT features yielded
statistically significant shifts in only 1–2 participants for most features, while baseline features exhibited more
widespread distributional shifts. For example, in the case of NTK, only two participants showed significant
changes in SHIRBT, whereas 5 participants showed such changes in baseline features, as detailed results in
Supplement: E.1’s Table A11. This trend was also evident in the numerical shift score analysis. JS divergence and
PSI were used to compute average participant shift scores. As illustrated in the radar chart (Figure 10), SHIRBT
exhibited lower average scores than baseline features across all five features. Participant-level comparisons in
Figure 11 show that SHIRBT features had lower shift scores than baseline features for almost all participants
(highlighted in red where SHIRBT had lower scores), as detailed in Supplement: E.1’s Table A12 and A13. These
findings suggest that SHIRBT features are more stable in terms of univariate distributional changes.

7.1.2 Multivariate Covariate Shift Comparison. In the multivariate analysis, we evaluated covariate shift across
six feature-set configurations used in the stress prediction model: All, One, Two, One with Time, One with
Frequency, and One with Typing, as shown in Table 13. For each configuration, we reconstructed both SHIRBT
and baseline feature sets for the training and test intervals, and applied the three multivariate covariate shift
metrics (MMD, DC, and DRE) to calculate shift scores. The radar chart in Figure 10 shows that SHIRBT features
yielded lower participant-averaged shift scores than baseline features across all six configurations. Figure 11
further shows that, except for 1–2 participants, SHIRBT consistently exhibited lower shift scores than baseline
features, as detailed in the results in Supplement: E.2’s Table A14, A15, and A16. These findings indicate that
SHIRBT features are more resilient to covariate shift across a range of feature combinations, which supports
their suitability for robust deployment in real-world settings.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:29

(a) PSI (b) JS

(A) Univariate

(c) MMD (d) DC (e) DRE

(B) Multivariate

Fig. 10. Comparison of average covariate shift detection scores across feature subsets of SHIRBT and baseline (see Table 13
for abbreviation definitions)

7.2 Schema Drift Comparison
Furthermore, we quantitatively analyzed the robustness of SHIRBT features against schema drift structural
changes (i.e., feature evolution) in feature composition over time compared to conventional baseline features.
This analysis addresses the issue of model performance degradation when the structure of input features changes
between the training and testing phases. To measure schema drift, we split the long-term participant data into
training (source) and testing (target) intervals, and quantitatively assessed the similarity and dissimilarity of the
feature sets generated in each interval. For similarity, we used the Jaccard Similarity (expressed as a percentage),
which measures the ratio of the intersection to the union of features between the two intervals; higher values
indicate more structural consistency and lower drift. For dissimilarity, we computed the Symmetric Difference
(in counts), representing the number of features that appear in only one of the two intervals, to quantify the
absolute magnitude of structural change.
To evaluate SHIRBT’s structural stability, we compared three conditions. First, following prior smartphone-

based stress detection studies (Table 1), we considered the set of all apps that were used at least once during each

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:30 • Lee et al.

Drift Score: SHIRBT < Baseline

Drift Score: SHIRBT > Baseline

TCT|AUD

TF|AUF

NTK

KPS

KSPC

P23 P25 P27 P28 P29 P30 P32 P37

(a) PSI

Drift Score: SHIRBT < Baseline

Drift Score: SHIRBT > Baseline

TCT|AUD

TF|AUF

NTK

KPS

KSPC

P23 P25 P27 P28 P29 P30 P32 P37

(b) JS

(A) Univariate

Drift Score: SHIRBT < Baseline

Drift Score: SHIRBT > Baseline

All

One

Two

One (TIM)

One (FRQ)

One (TYP)

P23 P24 P25 P27 P28 P29 P30 P32 P37 P40

(c) MMD

Drift Score: SHIRBT < Baseline

Drift Score: SHIRBT > Baseline

All

One

Two

One (TIM)

One (FRQ)

One (TYP)

P23 P24 P25 P27 P28 P29 P30 P32 P37 P40

(d) DC

Drift Score: SHIRBT < Baseline

Drift Score: SHIRBT > Baseline

All

One

Two

One (TIM)

One (FRQ)

One (TYP)

P23 P24 P25 P27 P28 P29 P30 P32 P37 P40

(e) DRE

(B) Multivariate

Fig. 11. Per-participant comparison of covariate shift detection results between SHIRBT and baseline features across 5
detection methods (red: drift score where SHIRBT < baseline, blue: drift score where SHIRBT > baseline, gray: participant not
available, see Table 13 for abbreviation definitions)

phase (“Apps ever used during each phase”). Second, following our baseline configuration, we considered only
the apps used daily in each phase (“Apps used daily throughout each phase”). Third, for SHIRBT, we included
only SHIRBT-based routine tasks that were observed daily in each phase (“SHIRBT’s used daily throughout each
phase”). The results of the Jaccard Similarity and Symmetric Difference comparisons across these three conditions
are summarized in Table 14. The analysis showed that, except for participants P28 and P30, SHIRBT consistently
exhibited higher Jaccard Similarity scores than both baseline conditions. For Symmetric Difference, SHIRBT
showed equal or fewer structural changes than the two baselines in all participants except P28. These findings
indicate that SHIRBT features undergo less structural variation over time and maintain greater consistency
between training and testing phases. In conclusion, SHIRBT demonstrates superior robustness to structural drift
compared to baseline features.

8 DISCUSSION

8.1 Summary of Major Contributions
This study developed Smartphone Human Interaction-based Routine Behavior Task Mining, Modeling, and
Feature extraction (SHIRBT-MMF) framework (Figure 2) to build a robust stress monitoring model based on
daily smartphone usage patterns. This approach detects stress by deriving features from sequential interaction
routine behaviors performed daily. While traditional stress models detect stress based on general smartphone

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:31

Table 14. Schema drift detection results on long-term users

Schema Drift Metrics Used Apps or SHIRBTs P23 P24 P25 P27 P28 P29 P30 P32 P37 P40

Jaccard Similarity (%)
Apps ever used during each phase 62.1 57.5 59.8 53.3 58.8 50.0 60.7 62.4 53.8 59.3
Apps used daily throughout each phase 44.4 75.0 66.7 50.0 100.0 57.1 80.0 66.7 100.0 16.7
SHIRBTs used daily throughout each phase 71.4 71.4 71.4 83.3 87.5 71.4 75.0 71.4 100.0 66.7

Symmetric Difference
(# of apps or SHIRBTs)

Apps ever used during each phase 53 107 45 78 56 80 59 59 157 48
Apps used daily throughout each phase 5 2 2 4 0 3 1 2 0 5
SHIRBTs used daily throughout each phase 2 2 2 1 1 2 1 2 0 1

usage, overall app usage, and app category usage statistics captured over a specific period, SHIRBT-MMF extracts
smartphone within-app behavioral sequential patterns that individuals perform daily. These patterns or routines
are structured into a Smartphone Human Interaction Routine Behavior Task (SHIRBT), which is both consistent
and easily interpretable. By quantifying these behaviors, SHIRBT-MMF enhances the explainability of daily stress
monitoring from the perspectives of both users and service providers.

To achieve this, we developed a Multi-Level Sequential Pattern Mining technique to more accurately mine
sequential patterns composed of within-app UI state events based on smartphone user interactions and daily
routines. Additionally, we introduced an LLM-based automated SHIRBT modeling approach. To implement
this effectively, we established naming, classification, and labeling criteria for automatic labeling by evaluating
whether tasks met eight key criteria: Generality, Specificity, Comprehensibility, Accuracy, Comprehensiveness,
Distinctiveness, Consistency, and Universality. Furthermore, to validate the high consistency and reproducibility
of the LLM-based SHIRBT automation system, we conducted 200 repeated evaluations of the auto-labeling
performance across different apps and their within-app UI sequences corresponding to the same task types in
three major service categories (messaging, search, and email). When compared against ground truth labels, the
system achieved reliable accuracy ranging from 95% to 100% based on both EMA and SMA criteria.

The extracted SHIRBT tasks were used to derive features through time, frequency, and typing behavior-related
metrics, enabling a more quantitative assessment of stress. This approach improved stress detection accuracy
compared to existing baseline models (accuracy 75.0% vs. 70.0%). Moreover, traditional stress models statistically
capture app usage, app category usage, and overall smartphone usage over a specific period. As a result, the
importance of learned features may change over time, leading to potential instability. In contrast, the proposed
SHIRBT approach leverages task-based features that reflect users’ daily and social routine activities, and was
quantitatively shown through shift score analysis to more effectively mitigate covariate shift and feature evolution
(especially schema drift) compared to baseline features, without requiring additional feature reconstruction
or adaptive learning. In particular, SHIRBT features exhibit minimal structural change and high distributional
consistency, thereby reducing the resource costs associated with data recollection, repeated model retraining,
and feature selection, while enabling more stable and long-term operation in real-world service environments.

Additionally, the SHIRBT-based model offers interpretability. While traditional models rely on simple app usage
statistics or category-based features, SHIRBT considers the context of user routine behavior, enabling a clearer
understanding of its relationship with stress. For example, a user experiencing stress in a work environment may
exhibit delays in composing emails or responding to messages, while a student preparing for exams may frequently
switch between study-related apps. By analyzing such behaviors through SHIRBT, stress can be detected with
greater precision, offering valuable insights for interpreting the user’s state.

8.2 Possibility of Reducing Model Complexity and Addressing Privacy Concerns
The SHIRBT-MMF framework-based model offers privacy benefits by reducing the types and volume of data
and model complexity without requiring feature selection or dimensionality reduction. Prior app-based stress

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:32 • Lee et al.

detection studies have mainly relied on features derived from overall app usage or app category usage (Table 1),
and even apps used only once during the training or evaluation period were often included as features. As a result,
despite the reduced number of features, thousands of app usage logs still had to be collected, and continuous
data collection was required even after model deployment. This increases the privacy burden on users, raises
the likelihood of distribution shift or schema drift (i.e., feature evolution), and necessitates repeated retraining,
leading to high resource and maintenance costs [3, 27, 39, 65].
We propose SHIRBT features, grounded in users’ everyday and social routine tasks. SHIRBT reduces both

the type and amount of data required without additional feature selection or dimensionality reduction, thereby
alleviating model complexity and privacy concerns. On average, SHIRBT relies on only 5.0±1.63 app types,
significantly fewer than the 110.9±53.4 apps used in baseline models (Table 10, 11). While diverse data are
needed during initial model training, only a small set of frequently performed tasks needs to be monitored after
deployment. We observed that the apps involved in SHIRBT remained largely unchanged over several months.
Even when new apps were introduced, the underlying routines persisted, naturally mitigating covariate shift and
feature evolution. Our shift score analysis confirms that SHIRBT is more robust than baseline features, and even
a small number of core SHIRBT tasks can maintain high predictive performance.
SHIRBT features are generated by an LLM-based labeling system that automatically clusters sequential UI

interaction patterns into task-level SHIRBTs, independent of app names or UI identifiers. This task-centric
approach protects user privacy by avoiding the collection of sensitive UI elements (e.g., passwords) and enhances
users’ data literacy and trust in digital mental health tools. The compact structure of SHIRBT is well-suited for
on-device and adaptive learning, reducing computational and transmission costs while improving privacy and
scalability. In particular, when SHIRBT is configured based on globally shared tasks (e.g., messenger chatting)
rather than personalized routines, the processes of data collection and preprocessing can be simplified. This
enables interpretable behavior modeling without repeated data collection, supporting more efficient service
deployment and maintenance. These characteristics greatly enhance the practicality and scalability of data-driven
mental health care systems.

8.3 Robustness of Data Collection: Empirical Analysis across Devices, OS Version, and App Types
While the SHIRBT framework proposed in this study relies on Android accessibility events, various real-world
deployment challenges—such as device- and OS-specific customization, app-level data collection restrictions, and
diverse UI architectures—can potentially hinder consistent data acquisition [25, 33]. To address these concerns,
we empirically evaluated the robustness and generalizability of SHIRBT across multiple device and application
environments, as detailed in Supplement: A and B. First, we analyzed the devices and OS versions used by
26 participants, all of whom used Samsung Galaxy smartphones running Android OS versions 9–13. We con-
firmed that the key accessibility events required to construct SHIRBT—namely, TYPE_WINDOW_STATE_CHANGED;
WC, TYPE_VIEW_FOCUSED; VF, TYPE_VIEW_TEXT_CHANGED; TC, and TYPE_VIEW_TEXT_SELECTION_CHANGED;
TS—were consistently captured across all devices and OS versions without structural variation (Supplement: A).

We conducted experiments under four scenarios known to potentially restrict accessibility logging: (1) security-
sensitive apps (e.g., Pay, Card, Bank), (2) pre-installed system apps (e.g., Phone, Gallery, Settings, Clock), (3)
progressive web apps (PWAs, e.g., Pinterest, Flipboard), and (4) custom launchers and UIs (e.g., One UI, Nova,
Microsoft Launcher). These experiments were carried out on a Galaxy S21 (Android 13) using a custom logger
while recording the task execution on screen (see Supplement: B.1 and B.2). For security-sensitive apps, text input
events were partially restricted for password fields, but task-level events (WC, VF) were consistently logged. In
pre-installed apps, all key events were reliably recorded, and previously reported logging failures [33] were not
observed. For PWAs, key events were captured; however, only the search engine domain was logged, not the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:33

actual services used. Under custom UI environments, event structures were consistently recorded across both
system and third-party apps, indicating that SHIRBT construction was not affected.

The SHIRBT approach is practical and robust across various Android devices, operating systems, custom UIs,
and even apps with restricted logging capabilities. For example, while sensitive apps may not log detailed inputs
such as account numbers or passwords, high-level task behaviors like “money transfer attempt,” “mobile payment,”
or “search” can still be reliably inferred via window state change events. Similarly, in PWA environments, although
URLs or specific content are not logged, SHIRBT focuses on extracting task-level behaviors such as “web browsing,”
which not only reduces the impact of missing data but also enhances user privacy. We also empirically confirmed
that the LLM can reliably interpret UI state events even for system apps or privately distributed apps with limited
public documentation. Most participants regularly used fewer than five apps, which were typically well-known,
minimizing the risk of unrecognized apps. However, in cases where the LLM might struggle with unfamiliar
apps, we propose leveraging contextual UI information, offering user validation prompts, or temporarily labeling
such instances as “unknown” for future refinement via active learning. Finally, although not observed in our
experiments, certain devices (e.g., Xiaomi) may block accessibility logs entirely. In such cases, fallback strategies
involving auxiliary sensors, APIs, or user-reported data may serve as effective alternatives.

8.4 Battery Consumption and User Behavior Implications of SHIRBT Derivation
SHIRBTs derivation require continuous collection of UI state events. This raises potential concerns about battery
consumption and its impact on users’ daily interaction patterns. Prior research has shown that continuous
smartphone sensor logging can lead to significant battery drain, which in turn may cause cognitive and privacy
burdens, behavioral distortions, increased charging frequency, and strategic user adaptations [37, 56, 73, 80].
However, these studies typically involved high-frequency sensor data collection (e.g., GPS, accelerometers,
Bluetooth) in addition to app usage logs, which fundamentally differs from the logging strategy used for SHIRBT
derivation. Our framework adopts an event-driven logging approach, in which logs are only recorded when user
interaction occurs, such as changes in foreground activity or UI state events. It avoids real-time sensor sampling
or continuous streaming, thereby minimizing resource consumption and improving energy efficiency.
To empirically validate this energy efficiency, we conducted a battery consumption experiment under three

logging conditions: (1) logging disabled, (2) logging of app usage and accessibility events required for SHIRBT
derivation, and (3) logging of app usage along with high-frequency sensor data (e.g., GPS, accelerometer),
commonly used in prior behavioral monitoring studies. For each condition, three user scenarios—YouTube
viewing, automated 5-minute app switching (via macro), and idle state—were executed for 4 hours on the same
device and configuration, repeated three times (Supplement: C.1). Results showed no significant difference in
battery usage between conditions (1) and (2), while condition (3) exhibited a slight increase in consumption
(Supplement: C.2). These findings suggest that SHIRBT-related logging incurs virtually no additional battery
cost compared to a non-logging baseline, indicating that it is a sustainable framework unlikely to distort user
behavior in real-world settings. Furthermore, once SHIRBT routines are mined, there is no need to continuously
collect all app usage data. Instead, selective logging of a small number of core apps (typically fewer than five)
is sufficient to support the service. This design offers significant benefits in terms of energy efficiency and
privacy preservation, and is well-suited for integration with on-device learning models. If future extensions of the
SHIRBT framework involve additional sensor data, strategies such as context-aware adaptive logging, on-demand
logging, and optimized sampling based on user context (e.g., time of day, battery level) can be employed to further
minimize battery consumption.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:34 • Lee et al.

8.5 Limitation and Future Works
8.5.1 Need for Diverse Demographics. This study primarily focuses on young adults (in their 20s and 30s). Future
research should expand a more diverse range of age groups, occupations, cultural backgrounds, and smartphone
operating system users (iOS vs. Android). This approach will allow for an analysis of how cultural and national
differences influence stress prediction based on SHIRBT and account for variations in smartphone usage patterns
across demographic factors. Furthermore, it is essential to examine the applicability of SHIRBT across different
operating systems to ensure cross-platform consistency.

8.5.2 Long-Term Study and Routine Change Detection. While the SHIRBT feature-based model has been empir-
ically shown to be more robust to covariate shift and feature evolution compared to baseline feature models,
adapting to long-term changes in user behavior remains important. Although this study was conducted over a
relatively long period (e.g., 4–5 months), a long-term study (over one year) may be necessary to fully validate
SHIRBT’s long-term stability. Such a study would enable us to assess how SHIRBT’s performance evolves and
detect distribution shifts caused by life events (e.g., job changes, seasonal factors, relocation, or marriage). As daily
routines naturally evolve, future work investigates mechanisms that automatically detect new behavior patterns
and incorporate them into the SHIRBT model. These needs could be addressed using lightweight distribution
shift detection or anomaly detection techniques, enabling adaptive learning strategies such as online retraining,
incremental learning, or domain adaptation [30, 36, 65, 67]. Although our study achieved strong performance
without such adaptation by leveraging robust features, we plan to further investigate concept drift i.e., changes
in the relationship between features and labels over time due to evolving routines in future work.

8.5.3 Potential for Expansion to Overall Mental Health. Although this study focuses on stress detection, SHIRBT-
MMF can also be applied to other mental health issues such as depression, anxiety, and cognitive decline. For
example, behavioral patterns associated with depression may manifest as reduced routine variability, decreased
app-switching frequency, and increased passive content consumption, such as scrolling through social media. In
the case of anxiety, it is likely to be characterized by increased irregular app switching and frequent notification-
checking behaviors. For cognitive decline (e.g., dementia), long-term tracking of SHIRBT features should be
conducted on a weekly or monthly basis rather than a daily basis to detect gradual pattern changes. Considering
the older age demographic in this context, it is necessary to design a user interface and SHIRBT types (e.g.,
physical activity or mobility routine) that accommodate their needs.

8.5.4 Causal Analysis of SHIRBT and Stress. To clarify the causal relationship between SHIRBT and stress, future
research should incorporate causal inference techniques [43]. For example, applying a pseudo-experiment design
would enable the analysis of SHIRBT’s direct impact on stress levels. Additionally, utilizing counterfactual analysis
would allow for the evaluation of how hypothetical behavioral changes affect stress levels. For instance, by
simulating a scenario in which a user reduces smartphone app-based social activities and work-related tasks (e.g.,
messenger chatting tasks and email reading tasks) before bedtime, it would be possible to determine whether
specific SHIRBT patterns contribute to stress alleviation or exacerbation.

9 CONCLUSION
The SHIRBT-MMF framework provides a scalable, interpretable, and robust digital stress monitoring approach.
While traditional stress models have limitations due to the instability and low interpretability of features, SHIRBT-
based features improve reliability and interpretability through routine-based behavior modeling. Future research
can advance this framework by expanding the user population, conducting long-term studies, broadening its
application to various mental health issues, and incorporating causal inference techniques to enhance the
explanatory power of stress prediction. Through these advancements, the SHIRBT-MMF framework has the
potential to serve as a foundation for developing personalized mental healthcare solutions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:35

Acknowledgments
This research was supported by the Institute of Information & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korean government (MSIT) (RS-2025-02305705) and by the National Research
Foundation (NRF) funded by the Korean government (MSIT) (RS-2022-NR068758, RS-2025-00559234).

References
[1] Zahraa S Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, and Shonali Krishnaswamy. 2018. Activity recognition with evolving

data streams: A review. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–36.
[2] Samuel Ackerman, Parijat Dube, Eitan Farchi, Orna Raz, and Marcel Zalmanovici. 2021. Machine learning model drift detection via

weak data slices. In 2021 IEEE/ACM Third International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest).
IEEE, 1–8.

[3] Samuel Ackerman, Eitan Farchi, Orna Raz, Marcel Zalmanovici, and Parijat Dube. 2020. Detection of data drift and outliers affecting
machine learning model performance over time. arXiv preprint arXiv:2012.09258 (2020).

[4] Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In Proceedings of the eleventh international conference on
data engineering. IEEE, 3–14.

[5] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining.
2623–2631.

[6] Joost Asselbergs, Jeroen Ruwaard, Michal Ejdys, Niels Schrader, Marit Sijbrandij, Heleen Riper, et al. 2016. Mobile phone-based
unobtrusive ecological momentary assessment of day-to-day mood: an explorative study. Journal of medical Internet research 18, 3
(2016), e5505.

[7] American Psychological Association et al. 2019. Stress in America, United States, 2007-2018. (2019).
[8] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. 2002. Sequential pattern mining using a bitmap representation. In Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. 429–435.
[9] Joanne Banks and Emer Smyth. 2015. ‘Your whole life depends on it’: Academic stress and high-stakes testing in Ireland. Journal of

youth studies 18, 5 (2015), 598–616.
[10] Gerald Bauer and Paul Lukowicz. 2012. Can smartphones detect stress-related changes in the behaviour of individuals?. In 2012 IEEE

international conference on pervasive computing and communications workshops. IEEE, 423–426.
[11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms for hyper-parameter optimization. In 25th annual

conference on neural information processing systems (NIPS 2011), Vol. 24. Neural Information Processing Systems Foundation.
[12] Sofian Berrouiguet, David Ramírez, María Luisa Barrigón, Pablo Moreno-Muñoz, Rodrigo Carmona Camacho, Enrique Baca-García,

Antonio Artés-Rodríguez, et al. 2018. Combining continuous smartphone native sensors data capture and unsupervised data mining
techniques for behavioral changes detection: a case series of the evidence-based behavior (eB2) study. JMIR mHealth and uHealth 6, 12
(2018), e9472.

[13] Andrey Bogomolov, Bruno Lepri, Michela Ferron, Fabio Pianesi, and Alex Pentland. 2014. Daily stress recognition from mobile phone
data, weather conditions and individual traits. In Proceedings of the 22nd ACM international conference on Multimedia. 477–486.

[14] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5–32.
[15] Alison Brunier. 2016. Investing in treatment for depression and anxiety leads to fourfold return. Retrieved August 1, 2025 from

https://www.who.int/news/item/13-04-2016-investing-in-treatment-for-depression-and-anxiety-leads-to-fourfold-return
[16] Richard Chen, Filip Jankovic, Nikki Marinsek, Luca Foschini, Lampros Kourtis, Alessio Signorini, Melissa Pugh, Jie Shen, Roy Yaari,

Vera Maljkovic, et al. 2019. Developing measures of cognitive impairment in the real world from consumer-grade multimodal sensor
streams. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2145–2155.

[17] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining. 785–794.

[18] Prerna Chikersal, Afsaneh Doryab, Michael Tumminia, Daniella K Villalba, Janine M Dutcher, Xinwen Liu, Sheldon Cohen, Kasey G
Creswell, Jennifer Mankoff, J David Creswell, et al. 2021. Detecting depression and predicting its onset using longitudinal symptoms
captured by passive sensing: a machine learning approach with robust feature selection. ACM Transactions on Computer-Human
Interaction (TOCHI) 28, 1 (2021), 1–41.

[19] Matteo Ciman and KatarzynaWac. 2016. Individuals’ stress assessment using human-smartphone interaction analysis. IEEE Transactions
on Affective Computing 9, 1 (2016), 51–65.

[20] Sheldon Cohen. 1988. Perceived stress in a probability sample of the United States. (1988).
[21] Android Developer. 2025. AccessibilityEvent. Retrieved August 1, 2025 from https://developer.android.com/reference/android/view/

accessibility/AccessibilityEvent

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

https://www.who.int/news/item/13-04-2016-investing-in-treatment-for-depression-and-anxiety-leads-to-fourfold-return
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent

187:36 • Lee et al.

[22] Android Developer. 2025. AccessibilityService. Retrieved August 1, 2025 from https://developer.android.com/reference/android/
accessibilityservice/AccessibilityService

[23] Android Developer. 2025. NotificationListenerService. Retrieved August 1, 2025 from https://developer.android.com/reference/android/
location/LocationListener

[24] Android Developer. 2025. NotificationManager. Retrieved August 1, 2025 from https://developer.android.com/reference/android/app/
NotificationManager

[25] Android Developer. 2025. Understand the UI Layer. Retrieved August 1, 2025 from https://developer.android.com/topic/architecture/ui-
layer

[26] Android Developer. 2025. UsageStatsManager. Retrieved August 1, 2025 from https://developer.android.com/reference/android/app/
usage/UsageStatsManager#constants_1

[27] Sijie Dong, Qitong Wang, Soror Sahri, Themis Palpanas, and Divesh Srivastava. 2024. Efficiently Mitigating the Impact of Data Drift on
Machine Learning Pipelines. Proceedings of the VLDB Endowment 17, 11 (2024), 3072–3081.

[28] Maged El-Sayed, Carolina Ruiz, and Elke A Rundensteiner. 2004. FS-Miner: efficient and incremental mining of frequent sequence
patterns in web logs. In Proceedings of the 6th annual ACM international workshop on web information and data management. 128–135.

[29] Christie I Ezeife, Yi Lu, and Yi Liu. 2005. PLWAP sequential mining: open source code. In Proceedings of the 1st international workshop
on open source data mining: frequent pattern mining implementations. 26–35.

[30] Imen Ferjani and Suleiman Ali Alsaif. 2024. Dynamic road anomaly detection: Harnessing smartphone accelerometer data with
incremental concept drift detection and classification. Sensors 24, 24 (2024), 8112.

[31] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing Koh, and Rincy Thomas. 2017. A survey of sequential pattern
mining. Data Science and Pattern Recognition 1, 1 (2017), 54–77.

[32] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics (2001), 1189–1232.
[33] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and Narseo Vallina-Rodriguez. 2020. An analysis of pre-installed

android software. In 2020 IEEE symposium on security and privacy (SP). IEEE, 1039–1055.
[34] Surjya Ghosh, Sumit Sahu, Niloy Ganguly, Bivas Mitra, and Pradipta De. 2019. EmoKey: An emotion-aware smartphone keyboard for

mental health monitoring. In 2019 11th international conference on communication systems & networks (COMSNETS). IEEE, 496–499.
[35] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, and Meichun Hsu. 2001. Prefixspan: Mining

sequential patterns efficiently by prefix-projected pattern growth. In proceedings of the 17th international conference on data engineering.
IEEE Piscataway, NJ, USA, 215–224.

[36] Wei Hao, Zixi Wang, Lauren Hong, Lingxiao Li, Nader Karayanni, AnMei Dasbach-Prisk, Chengzhi Mao, Junfeng Yang, and Asaf Cidon.
2025. Nazar: Monitoring and Adapting ML Models on Mobile Devices. In Proceedings of the 30th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 1. 746–761.

[37] Gabriel M Harari, Nicholas D Lane, RuiWang, Benjamin S Crosier, Andrew T Campbell, and Samuel D Gosling. 2016. Using smartphones
to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspectives on Psychological
Science 11, 6 (2016), 838–854.

[38] Marwan Hassani and Thomas Seidl. 2011. Towards a mobile health context prediction: Sequential pattern mining in multiple streams.
In 2011 IEEE 12th International Conference on Mobile Data Management, Vol. 2. IEEE, 55–57.

[39] Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. 2017. Learning with feature evolvable streams. Advances in Neural Information Processing
Systems 30 (2017).

[40] Kuo-Wei Hsu. 2017. Effectively mining time-constrained sequential patterns of smartphone application usage. In Proceedings of the
11th International Conference on Ubiquitous Information Management and Communication. 1–8.

[41] Emma C Hurley, Ian R Williams, Adrian J Tomyn, and Lena Sanci. 2024. Social media use among Australian university students:
Understanding links with stress and mental health. Computers in Human Behavior Reports 14 (2024), 100398.

[42] Natasha Jaques, Sara Taylor, Asaph Azaria, Asma Ghandeharioun, Akane Sano, and Rosalind Picard. 2015. Predicting students’
happiness from physiology, phone, mobility, and behavioral data. In 2015 International Conference on Affective Computing and Intelligent
Interaction (ACII). IEEE, 222–228.

[43] Gyuwon Jung, Sangjun Park, and Uichin Lee. 2024. DeepStress: Supporting Stressful Context Sensemaking in Personal Informatics
Systems Using a Quasi-experimental Approach. In Proceedings of the CHI Conference on Human Factors in Computing Systems. 1–18.

[44] Soowon Kang, Woohyeok Choi, Cheul Young Park, Narae Cha, Auk Kim, Ahsan Habib Khandoker, Leontios Hadjileontiadis, Heepyung
Kim, Yong Jeong, and Uichin Lee. 2023. K-emophone: A mobile and wearable dataset with in-situ emotion, stress, and attention labels.
Scientific data 10, 1 (2023), 351.

[45] Soowon Kang, Cheul Young Park, Auk Kim, Narae Cha, and Uichin Lee. 2022. Understanding emotion changes in mobile experience
sampling. In Proceedings of the 2022 Chi conference on human factors in computing systems. 1–14.

[46] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly
efficient gradient boosting decision tree. Advances in neural information processing systems 30 (2017), 3146–3154.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/app/NotificationManager
https://developer.android.com/reference/android/app/NotificationManager
https://developer.android.com/topic/architecture/ui-layer
https://developer.android.com/topic/architecture/ui-layer
https://developer.android.com/reference/android/app/usage/UsageStatsManager#constants_1
https://developer.android.com/reference/android/app/usage/UsageStatsManager#constants_1

SHIRBT-MMF • 187:37

[47] Taewan Kim, Haesoo Kim, Ha Yeon Lee, Hwarang Goh, Shakhboz Abdigapporov, Mingon Jeong, Hyunsung Cho, Kyungsik Han,
Youngtae Noh, Sung-Ju Lee, et al. 2022. Prediction for retrospection: Integrating algorithmic stress prediction into personal informatics
systems for college students’ mental health. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 1–20.

[48] Zachary D King, Judith Moskowitz, Begum Egilmez, Shibo Zhang, Lida Zhang, Michael Bass, John Rogers, Roozbeh Ghaffari, Laurie
Wakschlag, and Nabil Alshurafa. 2019. Micro-stress EMA: A passive sensing framework for detecting in-the-wild stress in pregnant
mothers. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies 3, 3 (2019), 1–22.

[49] Jeomoan Francis Kurian and Mohamed Allali. 2024. Detecting drifts in data streams using Kullback-Leibler (KL) divergence measure
for data engineering applications. Journal of Data, Information and Management 6, 3 (2024), 207–216.

[50] Hosub Lee, Young Sang Choi, Sunjae Lee, and IP Park. 2012. Towards unobtrusive emotion recognition for affective social communication.
In 2012 IEEE Consumer Communications and Networking Conference (CCNC). IEEE, 260–264.

[51] Hansoo Lee, Auk Kim, SangWon Bae, and Uichin Lee. 2024. S-ADL: Exploring Smartphone-based Activities of Daily Living to Detect
Blood Alcohol Concentration in a Controlled Environment. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. 1–25.

[52] Hansoo Lee, Joonyoung Park, and Uichin Lee. 2022. A systematic survey on android api usage for data-driven analytics with
smartphones. Comput. Surveys 55, 5 (2022), 1–38.

[53] Yue-Shi Lee and Show-Jane Yen. 2008. Incremental and interactive mining of web traversal patterns. Information Sciences 178, 2 (2008),
287–306.

[54] Florian Lettner, Christian Grossauer, and Clemens Holzmann. 2014. Mobile interaction analysis: towards a novel concept for interaction
sequence mining. In Proceedings of the 16th international conference on Human-computer interaction with mobile devices & services.
359–368.

[55] Jieun Lim, Youngji Koh, Auk Kim, and Uichin Lee. 2024. Exploring Context-Aware Mental Health Self-Tracking Using Multimodal
Smart Speakers in Home Environments. In Proceedings of the CHI Conference on Human Factors in Computing Systems. 1–18.

[56] Jason I Lin, Julie Liu, Nicholas D Lane, Fan Chen, Tanzeem Choudhury, and Andrew T Campbell. 2012. Expectation and purpose:
Understanding users’ mental models of mobile app privacy through crowdsourcing. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing. ACM, 501–510.

[57] Jake Linardon, Joseph Firth, John Torous, Mariel Messer, and Matthew Fuller-Tyszkiewicz. 2024. Efficacy of mental health smartphone
apps on stress levels: a meta-analysis of randomised controlled trials. Health psychology review 18, 4 (2024), 839–852.

[58] Eric Hsueh-Chan Lu, Yi-Wei Lin, and Jing-Bin Ciou. 2014. Mining mobile application sequential patterns for usage prediction. In 2014
IEEE International Conference on Granular Computing (GrC). IEEE, 185–190.

[59] Eric Hsueh-Chan Lu and Ya-Wen Yang. 2018. Mining mobile application usage pattern for demand prediction by considering spatial
and temporal relations. GeoInformatica 22 (2018), 693–721.

[60] Sheng-Chieh Lu, Wenye Song, Andre Pfob, and Chris Gibbons. 2025. Assessing the representativeness of large medical data using
population stability index. BMC Medical Research Methodology 25, 1 (2025), 44.

[61] Nizar R Mabroukeh and Christie I Ezeife. 2010. A taxonomy of sequential pattern mining algorithms. ACM Computing Surveys (CSUR)
43, 1 (2010), 1–41.

[62] I Scott MacKenzie and Kumiko Tanaka-Ishii. 2010. Text entry systems: Mobility, accessibility, universality. Elsevier.
[63] Stephanie Marken. 2024. Mental Health, Stress Top Reasons Students Consider Leaving. Retrieved August 1, 2025 from https:

//news.gallup.com/poll/644645/mental-health-stress-top-reasons-students-consider-leaving.aspx
[64] Alban Maxhuni, Pablo Hernandez-Leal, Eduardo F Morales, L Enrique Sucar, Venet Osmani, and Oscar Mayora. 2020. Unobtrusive

stress assessment using smartphones. IEEE Transactions on Mobile Computing 20, 6 (2020), 2313–2325.
[65] Lakmal Meegahapola, Hamza Hassoune, and Daniel Gatica-Perez. 2024. M3BAT: Unsupervised domain adaptation for multimodal

mobile sensing with multi-branch adversarial training. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 8, 2 (2024), 1–30.

[66] Abhinav Mehrotra, Fani Tsapeli, Robert Hendley, and Mirco Musolesi. 2017. MyTraces: Investigating correlation and causation
between users’ emotional states and mobile phone interaction. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1, 3 (2017), 1–21.

[67] Shikha Mehta et al. 2017. Concept drift in streaming data classification: algorithms, platforms and issues. Procedia computer science 122
(2017), 804–811.

[68] Jennifer Melcher, Ryan Hays, and John Torous. 2020. Digital phenotyping for mental health of college students: a clinical review. BMJ
Ment Health 23, 4 (2020), 161–166.

[69] Microsoft. 2025. How to handle schema drift in Azure Data Factory Data Flow. Retrieved August 1, 2025 from https://learn.microsoft.
com/en-us/azure/data-factory/concepts-data-flow-schema-drift

[70] Ivan Moura, Ariel Teles, Davi Viana, Jean Marques, Luciano Coutinho, and Francisco Silva. 2022. Digital phenotyping of mental health
using multimodal sensing of multiple situations of interest: A systematic literature review. Journal of Biomedical Informatics (2022),
104278.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

https://news.gallup.com/poll/644645/mental-health-stress-top-reasons-students-consider-leaving.aspx
https://news.gallup.com/poll/644645/mental-health-stress-top-reasons-students-consider-leaving.aspx
https://learn.microsoft.com/en-us/azure/data-factory/concepts-data-flow-schema-drift
https://learn.microsoft.com/en-us/azure/data-factory/concepts-data-flow-schema-drift

187:38 • Lee et al.

[71] Amir Muaremi, Bert Arnrich, and Gerhard Tröster. 2013. Towards measuring stress with smartphones and wearable devices during
workday and sleep. BioNanoScience 3 (2013), 172–183.

[72] Abhishek Mukherji, Vijay Srinivasan, and Evan Welbourne. 2014. Adding intelligence to your mobile device via on-device sequential
pattern mining. In Proceedings of the 2014 acm international joint conference on pervasive and ubiquitous computing: Adjunct publication.
1005–1014.

[73] Elizabeth L Murnane, Dan Cosley, Patrick Chang, Shion Guha, Ellen Frank, Geri Gay, and Mark Matthews. 2016. Self-monitoring
practices, attitudes, and needs of individuals with bipolar disorder: Implications for the design of technologies to manage mental health.
Journal of the American Medical Informatics Association 23, 3 (2016), 477–484.

[74] Skogby Steinholtz Olof. 2018. A comparative study of black-box optimization algorithms for tuning of hyper-parameters in deep neural
networks.

[75] OpenAI. 2024. GPT-4o. Retrieved August 1, 2025 from https://openai.com/index/hello-gpt-4o/
[76] OpenAI. 2024. text-embedding-3-large. Retrieved August 1, 2025 from https://platform.openai.com/docs/models/text-embedding-3-

large
[77] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, and Hua Zhu. 2000. Mining access patterns efficiently from web logs. In Pacific-Asia

conference on knowledge discovery and data mining. Springer, 396–407.
[78] Andrew K Przybylski, Kou Murayama, Cody R DeHaan, and Valerie Gladwell. 2013. Motivational, emotional, and behavioral correlates

of fear of missing out. Computers in human behavior 29, 4 (2013), 1841–1848.
[79] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. 2019. Failing loudly: An empirical study of methods for detecting dataset

shift. Advances in Neural Information Processing Systems 32 (2019).
[80] Mashfiqui Rabbi, Myok Ko Aung, Ming Zhang, and Tanzeem Choudhury. 2015. MyBehavior: Automatic personalized health feedback

from user behaviors and preferences using smartphones. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 707–718.

[81] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084 (2019).

[82] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i trust you?" Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 1135–1144.

[83] John Rooksby, Alistair Morrison, and Dave Murray-Rust. 2019. Student perspectives on digital phenotyping: The acceptability of using
smartphone data to assess mental health. In Proceedings of the 2019 CHI conference on human factors in computing systems. 1–14.

[84] Akane Sano, Andrew J Phillips, Z Yu Amy, Andrew W McHill, Sara Taylor, Natasha Jaques, Charles A Czeisler, Elizabeth B Klerman,
and Rosalind W Picard. 2015. Recognizing academic performance, sleep quality, stress level, and mental health using personality traits,
wearable sensors and mobile phones. In 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN).
IEEE, 1–6.

[85] Akane Sano and Rosalind W Picard. 2013. Stress recognition using wearable sensors and mobile phones. In 2013 Humaine association
conference on affective computing and intelligent interaction. IEEE, 671–676.

[86] Stefanie Scherzinger, Meike Klettke, and Uta Störl. 2013. Managing schema evolution in NoSQL data stores. arXiv preprint arXiv:1308.0514
(2013).

[87] M Scott, Lee Su-In, et al. 2017. A unified approach to interpreting model predictions. Advances in neural information processing systems
30 (2017), 4765–4774.

[88] Jaime Cespedes Sisniega, Vicente Rodríguez, German Molto, and Álvaro López García. 2024. Efficient and scalable covariate drift
detection in machine learning systems with serverless computing. Future Generation Computer Systems 161 (2024), 174–188.

[89] Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining sequential patterns: Generalizations and performance improvements. In
International conference on extending database technology. Springer, 1–17.

[90] Vijay Srinivasan, Saeed Moghaddam, Abhishek Mukherji, Kiran K. Rachuri, Chenren Xu, and Emmanuel Munguia Tapia. 2014.
MobileMiner: Mining Your Frequent Patterns on Your Phone. In Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (Seattle, Washington) (UbiComp ’14). Association for Computing Machinery, New York, NY, USA, 389–400.

[91] Statista. 2020. Most frequently used smartphone apps in South Korea as of September 2020, by category. Retrieved August 1, 2025
from https://www.statista.com/statistics/897227/south-korea-frequently-used-smartphone-apps-by-category/

[92] Statista. 2020. Most used smartphone functions in South Korea from 2014 to 2017. Retrieved August 1, 2025 from https://www.statista.
com/statistics/953819/south-korea-mainly-used-smartphone-functions/

[93] The Chromium Projects. 2008. The Chromium Projects. Retrieved August 1, 2025 from https://www.chromium.org/chromium-projects/
[94] Anja Thieme, Danielle Belgrave, and Gavin Doherty. 2020. Machine learning in mental health: A systematic review of the HCI literature

to support the development of effective and implementable ML systems. ACM Transactions on Computer-Human Interaction (TOCHI)
27, 5 (2020), 1–53.

[95] John Torous, Mathew V Kiang, Jeanette Lorme, Jukka-Pekka Onnela, et al. 2016. New tools for new research in psychiatry: a scalable
and customizable platform to empower data driven smartphone research. JMIR mental health 3, 2 (2016), e5165.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

https://openai.com/index/hello-gpt-4o/
https://platform.openai.com/docs/models/text-embedding-3-large
https://platform.openai.com/docs/models/text-embedding-3-large
https://www.statista.com/statistics/897227/south-korea-frequently-used-smartphone-apps-by-category/
https://www.statista.com/statistics/953819/south-korea-mainly-used-smartphone-functions/
https://www.statista.com/statistics/953819/south-korea-mainly-used-smartphone-functions/
https://www.chromium.org/chromium-projects/

SHIRBT-MMF • 187:39

[96] Eugene Tuv, Alexander Borisov, George Runger, and Kari Torkkola. 2009. Feature selection with ensembles, artificial variables, and
redundancy elimination. The Journal of Machine Learning Research 10 (2009), 1341–1366.

[97] Niels Van Berkel, Denzil Ferreira, and Vassilis Kostakos. 2017. The experience sampling method on mobile devices. ACM Computing
Surveys (CSUR) 50, 6 (2017), 1–40.

[98] Dilip Venkatesh and Sundaresan Raman. 2024. Bits pilani at semeval-2024 task 1: Using text-embedding-3-large and labse embeddings
for semantic textual relatedness. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024). 865–868.

[99] Elena Vildjiounaite, Johanna Kallio, Vesa Kyllönen, Mikko Nieminen, Ilmari Määttänen, Mikko Lindholm, Jani Mäntyjärvi, and Georgy
Gimel’farb. 2018. Unobtrusive stress detection on the basis of smartphone usage data. Personal and Ubiquitous Computing 22 (2018),
671–688.

[100] Xuhai Xu, Prerna Chikersal, Afsaneh Doryab, Daniella K Villalba, Janine M Dutcher, Michael J Tumminia, Tim Althoff, Sheldon Cohen,
Kasey G Creswell, J David Creswell, et al. 2019. Leveraging routine behavior and contextually-filtered features for depression detection
among college students. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 3 (2019), 1–33.

[101] Xuhai Xu, Prerna Chikersal, Janine M Dutcher, Yasaman S Sefidgar, Woosuk Seo, Michael J Tumminia, Daniella K Villalba, Sheldon
Cohen, Kasey G Creswell, J David Creswell, et al. 2021. Leveraging collaborative-filtering for personalized behavior modeling: a
case study of depression detection among college students. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 5, 1 (2021), 1–27.

[102] Mohammed J Zaki. 2001. SPADE: An efficient algorithm for mining frequent sequences. Machine learning 42 (2001), 31–60.
[103] Panyu Zhang, Gyuwon Jung, Jumabek Alikhanov, Uzair Ahmed, and Uichin Lee. 2024. A reproducible stress prediction pipeline with

mobile sensor data. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies 8, 3 (2024), 1–35.
[104] Xiao Zhang, Wenzhong Li, Xu Chen, and Sanglu Lu. 2018. Moodexplorer: Towards compound emotion detection via smartphone

sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 4 (2018), 1–30.
[105] Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. 2020. Learning with feature and distribution evolvable streams. In

International Conference on Machine Learning. PMLR, 11317–11327.

A Multi-Level Sequential Pattern Mining Algorithm: Implementation

Algorithm 1 Multi-Level Sequential Pattern Mining Algorithm

Notation
• 𝑒 : Within-app UI state event
• 𝑆 : Within-app UI state event-based sequence
• SessionID: Screen on/off session ID

• 𝑆prefix : Prefix sequence
• 𝑆suffix : Suffix sequence
• ML-SDB |𝑆prefix : 𝑆prefix-projected ML-SDB

Procedure: ML-SPM
Input: ML-SDB
Output: PatternSet // A set of output sequential patterns

1: /*Identifies daily frequent events*/
2: SupportDict← Empty Multi-Level Support Dictionary
3: for all Day, SessionID, S 𝑖𝑛 ML-SDB do
4: for all 𝑒 𝑖𝑛 S do
5: SupportDict[𝑒]← SupportDict[𝑒] ∪Day
6: end for
7: end for
8: EventSet← {𝑒 | 𝑒 |SupportDict[𝑒] |/TotalNumerOfDates = 1.0}
9: /*Mines contiguous sequential patterns*/
10: PatternSet←Empty Set // Initialize output sequential pattern set
11: for all 𝑒 𝑖𝑛 EventSet do
12: 𝑆prefix ← ⟨𝑒 ⟩ // Create prefix sequence
13: ML-SDB |𝑆prefix ← Empty Set // Initialize new projected database
14: PatternSet← PatternSet ∪ 𝑆prefix
15: // Below codes project ML-SDB by every frequent event
16: for all Day, SessionID, S ∈ ML-SDB do
17: 𝑆suffix ← S[𝑗 + 1 :] if S[𝑗] = 𝑒 else ⟨⟩
18: ML-SDB |𝑆prefix ← ML-SDB |𝑆prefix ∪ ⟨⟨Day, SessionID⟩, 𝑆suffix ⟩
19: end for
20: ML-SPM_sub(ML-SDB |𝑆prefix , 𝑆prefix) // Call subroutine function ▶

21: end for

Function:ML-SPM_sub(ML-SDB |𝑆prefix , 𝑆prefix)

1: /*Finds and extends contiguous sequential patterns*/
2: SupportDict← Empty Multi-Level Support Dictionary
3: for all Day, SessionID, S ∈ ML-SDB |𝑆prefix do
4: FirstEvent← S[1]
5: SupportDict[FirstEvent]← SupportDict[FirstEvent] ∪Day
6: end for
7: EventSet← {𝑒 | 𝑒 |SupportDict[𝑒] |/TotalNumerOfDates = 1.0}
8: for all 𝑒 𝑖𝑛 EventSet do
9: 𝑆 ′prefix ← Extend(𝑆prefix, 𝑒) // Create extended sequential pattern
10: PatternSet← PatternSet ∪ 𝑆 ′prefix // Add new sequential pattern
11: ML-SDB |𝑆′prefix ← Empty Set // Initialize new projected database

12: for all Day, SessionID, S ∈ ML-SDB |𝑆prefix do
13: 𝑆suffix ← 𝑆 [2 :] if 𝑆 [1] = 𝑒 else ⟨⟩
14: ML-SDB |𝑆′prefix ← ML-SDB |𝑆′prefix ∪ ⟨⟨Day, SessionID⟩, 𝑆suffix ⟩
15: end for
16: ML-SPM_sub(ML-SDB |𝑆′prefix , 𝑆

′
prefix) // Call subroutine recursively

17: end for

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:40 • Lee et al.

We developed the Multi-Level Sequential Pattern Mining (ML-SPM) Algorithm based on the pattern-growth
method (i.e., PrefixSpan [35]) to mine only daily frequent contiguous sequential patterns. The ML-SPM algorithm
first finds all frequent event 𝑒 such that ML-sup(⟨𝑒⟩)/|𝑑𝑡𝑜𝑡𝑎𝑙 | = 1.0 fromMulti-Level Sequence Database (ML-SDB)
as shown in lines 1–8 of the procedure ML-SPM in Algorithm 1. Then, the algorithm projects ML-SDB using the
frequent event 𝑒 to create an ⟨𝑒⟩-projected ML-SDB (denoted as ML-SDB|⟨𝑒 ⟩) and calls the subroutine function
ML-SPM_sub(ML-SDB|⟨𝑒 ⟩, ⟨𝑒⟩) to find and extract sequential patterns as shown in lines 9–21 of the procedure
ML-SPM in Algorithm 1. In sequential pattern mining, a prefix sequence refers to the initial subsequence of a
given sequence, which serves as the basis for projected databases. Here, the sequence ⟨𝑒⟩ is called the prefix
sequence of the ⟨𝑒⟩-projected ML-SDB, and the prefix sequence 𝑆 can be denoted as 𝑆prefix. Similarly, the remaining
sequence after removing the prefix sequence is called the suffix sequence of the ⟨𝑒⟩-projected ML-SDB, and
the suffix sequence 𝑆 can be denoted as 𝑆suffix. The suffix sequence consists of all events that follow the prefix
sequence within the same projected sequence, preserving their original order. To formally define these sequences,
let 𝑆 = ⟨𝑒1𝑒2 . . . 𝑒𝑛⟩ be a sequence of events. The notation 𝑆 [𝑖] represents the event at index 𝑖 within sequence
𝑆 , where 𝑆 [1] denotes the first event and 𝑆 [𝑛] denotes the last event. When a prefix sequence 𝑆prefix of length
𝑘 is given, the corresponding suffix sequence 𝑆suffix is defined as 𝑆 [𝑘 + 1 :], which consists of all events from
index 𝑘 + 1 to 𝑛, preserving their original order. If 𝑘 = 𝑛, meaning the prefix sequence includes all events, then
𝑆 [𝑘 + 1 :] is an empty sequence (i.e., ⟨⟩). The detailed process of mining sequential patterns by calling ML-
SPM_sub(ML-SDB|⟨𝑒 ⟩, ⟨𝑒⟩) is detailed in lines 1-17 of the Function: ML-SPM_sub(ML-SDB|𝑆prefix) in Algorithm 1.
The function ML-SPM_sub(ML-SDB|𝑆prefix , 𝑆prefix) takes the 𝑆prefix-projected ML-SDB ML-SDB|𝑆prefix and the prefix
sequence 𝑆prefix as input parameters. The ML-SPM algorithm recursively repeats the process of finding new
sequential patterns and creating new projected ML-SDB.

B LLM-based Automated SHIRBT Modeling System
We evaluated multiple naming rule candidates through user assessments to generate optimized SHIRBT names
that are easily understandable by humans and developed an LLM-based automated SHIRBT modeling system as
mentioned in Section 3.2. This appendix provides additional details on the naming rule candidates evaluation and
prompt engineering process in system development, expanding on the information introduced in Section 3.2. We
provided the user evaluation process for selecting the optimal naming rule in Section B.1, the prompt engineering
approach for training the LLM-based automated SHIRBT modeling system in Section B.2, and Section B.3 reports
the system’s detailed performance in task clustering and labeling.

B.1 Generating Optimized Task Name via User Evaluation
We interviewed three researchers with experience in app development and smartphone usage to evaluate three
SHIRBT naming rule candidates: (1) general behavior-based tasks, (2) service-specific behavior-based tasks, and
(3) app-specific behavior-based tasks, as shown in Figure 12. General behavior-based tasks are not limited to

Fig. 12. Evaluation of task naming rule candidates

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:41

specific services or apps, offering high versatility. For example, chatting on Messenger or SNS can be simply
modeled as a "Chatting" task. This type scored highest in Generality, Comprehensiveness, and Universality,
but due to the lack of contextual information, it was rated lower in Specificity, Accuracy, and Distinctiveness.
Service-specific behavior-based tasks reflect the context of a particular service, allowing for more accurate
meaning delivery. For instance, listening to music on a streaming service can be expressed as a "Music streaming
listening" task. This approach scored higher in Specificity, Comprehensibility, Accuracy, and Distinctiveness,
but since it requires familiarity with the service, it received lower scores in Generality, Comprehensiveness,
Consistency, and Universality as shown in Figure 12. App-specific behavior-based tasks include app names in
SHIRBT names, requiring a specific user experience. For example, "Apple Music listening" or "Spotify listening"
are easily understood by many due to their global popularity. However, apps used mostly in specific regions,
like Korea’s Melon, may not be as widely recognized. This type scored low in Generality, Comprehensiveness,
Consistency, and Universality, but achieved the highest scores in Specificity, Accuracy, and Distinctiveness.
The average total scores were 33.67±0.47 for service-specific behavior-based tasks, 32.67±0.47 for general

behavior-based tasks, and 29.33±0.94 for app-specific behavior-based tasks. Service-specific behavior-based tasks
achieved the highest overall score by balancing across all evaluation criteria. General behavior-based tasks were
too broad, leading to ambiguity, while app-specific tasks lacked universality and scored the lowest. Therefore, we
generated SHIRBT names based on service-specific behavior-based tasks.

B.2 Building LLM-based Automated SHIRBT Modeling System via Prompt Engineering
As explained in Section 3.2, we developed an automated system that models sequential patterns into SHIRBTs in
compliance with task labeling evaluation criteria, naming rules and labeling criteria through prompt engineering
for LLM. To ensure that the LLM accurately models SHIRBTs while adhering to task labeling evaluation criteria,
naming rules and labeling criteria through, we designed the prompt shown in LLM-based Automated SHIRBT
Modeling System. 1. Task Naming Rule outlines the rules for generating SHIRBT names in a standardized
and easily understandable by human. 2. Task Categorization & Labeling Criteria specifies the categorization and
labeling criteria for SHIRBTs based on the different order, repetition, representativeness, and functional similarity
of events composing the sequential pattern. Additionally, to enhance the accuracy of the LLM-based automated
SHIRBT modeling system, we applied 3. Few-shot Prompting and Chain-of-Thought Reasoning in Applying Naming
Rules & Labeling Criteria in our system.

LLM-based Automated SHIRBT Modeling System

This machine classifies sequential patterns composed of package name and class name events based on click streams
into smartphone human interaction behavior tasks and assigns names to make them easier for humans to un-
derstand. In this process, the sequential patterns are composed of fully qualified class names, which are com-
posed of an app package name (e.g., com.kakao.talk) and a class name (e.g., activity.main.MainActivity), such as
com.kakao.talk.activity.main.MainActivity. The criteria and rules for naming, categorizing and labeling smartphone
human interaction behavior tasks based on sequential patterns are as follows.
1. Task Naming Rule
Naming Rule 1: Considering the eight evaluation criteria above, a smartphone human interaction behavior task name
should maintain consistency and follow one of these formats.
(1) If the verb describing human behavior is intransitive, the task name should follow “A noun representing the app
service’s characteristic, not a specific app name” + “A gerund describing the human action” + task.
(2) If the verb describing human behavior is transitive, the task name should follow “A noun representing the app
service’s characteristic, not a specific app name” + “A noun describing the object of the action” + “A gerund describing the
human action” + “task”.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:42 • Lee et al.

Naming Rule 2: If the sequential pattern is ⟨A→B⟩, the task name is assigned based on the representative action that
the user can typically perform in activity A.
2. Task Categorization & Labeling Criteria
When you have various sequential patterns composed of two or more events, and their sequences or repetitions differ,
the task labeling criteria are as follows.
• Criteria 1: If the events composing two sequential patterns are the same but occur in a different order, the resulting
smartphone human interaction behavior task should also differ accordingly.
• Criteria 2: If the same events make up a sequential pattern and occur two or more times, multiple actions may
appear within one sequential pattern. In that case, if one representative task encompasses all actions, unify them
into one. Also, if the same event pair (e.g., ⟨A→B⟩) is repeated (e.g., ⟨A→B→A→B⟩), do not repeat the task name
but represent it once.
• Criteria 3: If the same events are repeated two or more times within a sequential pattern and multiple distinct tasks
appear—yet no single task can comprehensively cover the others—do not unify them but instead express them as a
combined form.
• Criteria 4: When there are two or more sequential patterns, if the app package name and class name differ but they
share similar app service characteristics and the functional meanings of the class names are similar, they can be
labeled under the same smartphone human interaction behavior task.

3. Few-shot Prompting and Chain-of-Thought Reasoning in Applying Naming Rules & Labeling Criteria
Given Sequential Pattern Task Name Criteria CoT Reasoning
⟨KT.MA→KT.CRHA⟩ Messenger chat

list browsing
task

1 Moving from the main activity to the chat list implies browsing the chat list.

⟨KT.CRHA→KT.MA⟩ Messenger
chatting task

1 Returning from a chat room implies the user was chatting.

⟨KT.MA→KT.CRHA→KT.MA⟩
⟨KT.CRHA→KT.MA→KT.CRHA⟩
⟨KT.MA→KT.CRHA→KT.MA→KT.CRHA⟩

Messenger
chatting task 2

Include chat list browsing and chatting, but chatting is primary. Repeated main-chat transitions
make chatting the representative behavior. To avoid redundancy, these patterns are unified as
Messenger chatting task.

⟨GM.MAG→GM.CAG⟩ Email reading
task

1 Transitioning from mail activity to compose suggests reading an email before replying.

⟨GM.CAG→GM.MAG⟩ Email writing
task

1 Switching from compose activity back to mail suggests writing an email.

⟨GM.MAG→GM.CAG→GM.MAG⟩
⟨GM.CAG→GM.MAG→GM.CAG⟩

Email reading
&writing task 3 Include email reading and writing in different orders. As they are distinct actions, they cannot be

merged. Thus, the task is Email reading & writing task, regardless of sequence.
⟨CHRM.CTA→CHRM.SA→AC.FL⟩
⟨NAS.MA→NAS.SWSLA→NAS.IABA⟩

Web browsing
task 4 Involve web searching and browsing in Chrome & Naver. Since searching serves as a means for

browsing, they merge into Web browsing task. Similar behaviors fall into the same task.
Abbreviations:
KT.MA = com.kakao.talk.activity.main.MainActivity,
KT.CRHA = com.kakao.talk.activity.chatroom.
ChatRoomHolderActivity,
CHRM.CTA = com.android.chrome.org.chromium.chrome.
browser.ChromeTabbedActivity,
CHRM.SA = com.android.chrome.org.chromium.chrome.
browser.searchwidget.SearchActivity,
AC.FL = com.android.chrome.android.widget.
FrameLayout,

GM.MAG = com.google.android.gm.ui.
MailActivityGmail,
GM.CAG = com.google.android.gm.ui.
ComposeActivityGmail,
NAS.MA = com.nhn.android.search.proto.
MainActivity,
NAS.SWSLA = com.nhn.android.search.browser.
control.searchwindow.suggest.
SearchWindowSuggestListActivity,
NAS.IABA = com.nhn.android.search.browser.
InAppBrowserActivity

B.3 Evaluation of LLM-Based SHIRBT Modeling Performance Measurement
Table 15 shows the test dataset (i.e., Given Sequential Patterns) and the system’s corresponding output (i.e.,
LLM-generated Task Names), as well as its performance measured by Exact Match Accuracy (EMA) and Semantic
Match Accuracy (SMA).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:43

Table 15. LLM’s task clustering and labeling performance for diverse apps measured by exact match accuracy (EMA) and
semantic match accuracy (SMA)

Apps Given Sequential Patterns Ground Truth Task Names LLM-generated Task Names EMA SMA

Daum mail

⟨DM.MA→DM.WA⟩ Email reading task Email reading task, Mail reading task 95.0 96.5
⟨DM.WA→DM.MA⟩ Email writing task Email writing task, Mail writing task 95.5 96.0
⟨DM.MA→DM.WA→DM.MA⟩ Email reading & writing task Email reading & writing task, Mail reading & writing task 98.0 99.5
⟨DM.WA→DM.MA→DM.WA⟩ Email reading & writing task Email reading & writing task, Mail reading & writing task 94.0 99.5

Microsoft Outlook

⟨OL.CA→OL.CAWF⟩ Email reading task Email reading task, Mail reading task 95.0 95.5
⟨OL.CAWF→OL.CA⟩ Email writing task Email writing task, Mail writing task 95.5 96.5
⟨OL.CA→OL.CAWF→OL.CA⟩ Email reading & writing task Email reading & writing task, Mail reading & writing task 99.0 99.0
⟨OL.CAWF→OL.CA→OL.CAWF⟩ Email reading & writing task Email reading & writing task, Mail reading & writing task 95.5 99.0

Yahoo email

⟨YH.MPPA→YH.MCA⟩ Email reading task Email reading task, Mail reading task 95.5 96.0
⟨YH.MCA→YH.MPPA⟩ Email writing task Email writing task, Mail writing task 96.0 97.0
⟨YH.MPPA→YH.MCA→YH.MPPA⟩ Email reading & writing task Email reading & writing task, Mail reading & writing task 99.5 99.5
⟨YH.MCA→YH.MPPA→YH.MCA⟩ Email reading & writing task Email reading & writing task, Mail reading & writing task 96.0 99.5

Daum ⟨DA.MA→DA.SA→DA.BA⟩ Web browsing task Web browsing task 100.0 100.0
Microsoft Edge ⟨MS.MSA→MS.AITSA→MS.BA⟩ Web browsing task Web browsing task 100.0 100.0
Baidu ⟨BD.MA→BD.LSA→BD.WV⟩ Web browsing task Web browsing task 100.0 100.0

Naver Line

⟨NL.MA→NL.CHA⟩ Messenger chat list browsing task Messenger chat list browsing task, Messaging chat list browsing task 100.0 100.0
⟨NL.CHA→NL.MA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨NL.MA→NL.CHA→NL.MA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨NL.CHA→NL.MA→NL.CHA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0

Whats app

⟨WA.HA→WA.C⟩ Messenger chat list browsing task Messenger chat list browsing task, Messaging chat list browsing task 100.0 100.0
⟨WA.C→WA.HA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨WA.HA→WA.C→WA.HA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨WA.C→WA.HA→WA.C⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0

WeChat

⟨WC.LUI→WC.CUI⟩ Messenger chat list browsing task Messenger chat list browsing task, Messaging chat list browsing task 99.5 99.5
⟨WC.CUI→WC.LUI⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨WC.LUI→WC.CUI→WC.LUI⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨WC.CUI→WC.LUI→WC.CUI⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0

Signal

⟨SG.MA→SG.CA⟩ Messenger chat list browsing task Messenger chat list browsing task, Messaging chat list browsing task 98.5 99.5
⟨SG.CA→SG.MA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 99.0 99.5
⟨SG.MA→SG.CA→SG.MA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 99.0 99.5
⟨SG.CA→SG.MA→SG.CA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 99.0 99.5

Telegram

⟨TG.LA→TG.CA⟩ Messenger chat list browsing task Messenger chat list browsing task, Messaging chat list browsing task 99.5 99.5
⟨TG.CA→TG.LA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨TG.LA→TG.CA→TG.LA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨TG.CA→TG.LA→TG.CA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0

Facebook MSG

⟨FB.MA→FB.TVA⟩ Messenger chat list browsing task Messenger chat list browsing task, Messaging chat list browsing task 99.5 99.5
⟨FB.TVA→FB.MA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨FB.MA→FB.TVA→FB.MA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0
⟨FB.TVA→FB.MA→FB.TVA⟩ Messenger chatting task Messenger chatting task, Messaging chatting task 100.0 100.0

Abbreviations:
EMA = Exact Match Accuracy,
DM.MA = net.daum.android.mail.list.MailListActivity,
DM.WA = net.daum.android.mail.write.WriteActivity,
OL.CA = com.acompli.acompli.CentralActivity,
OL.CAWF = com.microsoft.office.outlook.compose.
ComposeActivityWithFragment,
YH.MPPA = com.yahoo.mail.ui.activities.MailPlusPlusActivity,
YH.MCA = com.yahoo.mail.flux.ui.MailComposeActivity,
GM.MAG = com.google.android.gm.ui.MailActivityGmail,
GM.CAG = com.google.android.gm.ui.ComposeActivityGmail,
BD.MA = com.baidu.searchbox.MainActivity,
BD.LSA = com.baidu.browser.search.LightSearchActivity,
BD.WV = com.baidu.webkit.sdk.WebView,
MS.MSA = com.microsoft.sapphire.app.main.MainSapphireActivity,
MS.AITSA = com.microsoft.sapphire.app.search.autosuggest.activity.
AIToolsSuggestActivity,
MS.BA = com.microsoft.bing.com.microsoft.sapphire.app.browser.
BrowserActivity,

SMA = Semantic Match Accuracy,
DA.MA = net.daum.android.daum.ui.main.MainActivity,
DA.SA = net.daum.android.daum.features.entrypage.
SearchActivity,
DA.BA = net.daum.android.daum.browser.BrowserActivity,
NL.MA = jp.naver.line.android.activity.main.MainActivity,
NL.CHA = jp.naver.line.android.activity.chathistory.
ChatHistoryActivity,
WA.HA = com.whatsapp.home.ui.HomeActivity,
WA.C = com.whatsapp.Conversation,
WC.LUI = com.tencent.mm.ui.LauncherUI,
WC.CUI = com.tencent.mm.ui.chatting.ChattingUI,
SG.MA = org.thoughtcrime.securesms.MainActivity,
SG.CA = org.thoughtcrime.securesms.conversation.v2.
ConversationActivity,
TG.LA = org.telegram.ui.LaunchActivity,
TG.CA = org.telegram.ui.ChatActivity,
FB.MA = com.facebook.messenger.neue.MainActivity,
FB.TVA = com.facebook.messenger.threadview.
ThreadViewActivity

C SHIRBT-MMF: Feature Extraction Process
We extracted usage time, usage frequency, and typing behavior metrics from SHIRBT, total app usage, and
categorized app usage within DLV 2–5 as shown in Figure 1. Since app units were not considered in DLV 1

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

187:44 • Lee et al.

in Table 1, which pertains to smartphone usage, specific typing behavior within a particular app could not be
captured; therefore, only usage time and usage frequency were extracted. In the ML-SPM process, we used
only the WindowStateChanged event (i.e., within-app UI state elements such as activity, view, layout, dialog)
to extract SHIRBT as shown in Section 3.1. In the feature extraction process, we additionally incorporated
the NotificationStateChanged event and ViewTextChanged event to extract quantitative metrics related to reaction
time to notifications and typing behavior as explained in Section 3.3. To distinguish each event instance type, we
representedWindowStateChanged, NotificationStateChanged, and ViewTextChanged as 𝑒𝑤𝑐 , 𝑒𝑛𝑡 , and 𝑒𝑡𝑐 , respec-
tively. In DLV 2–3, we defined the start events of categorized and overall foreground app usage as 𝑒𝑐𝑎 and 𝑒𝑜𝑎 ,
respectively. In DLV 1, we defined the events of the screen on/off sessions as the screen on (i.e., start event) 𝑒𝑠𝑜 ,
screen unlock (i.e., end event) 𝑒𝑠𝑢 , and screen off (i.e., end event) 𝑒𝑠 𝑓 . To explain the detailed feature extraction
process, we defined the timestamp of an event instance 𝑒 as 𝑡 . For example, the timestamp of 𝑒𝑤𝑐 can be denoted
as 𝑡𝑤𝑐 .

C.1 Usage Time Metrics Extraction
As shown in Table 9, we extracted Task Completion Time (TCT), View Transition Time (VTT), and Notification
Response Time after App launching (NRTA) from WindowStateChanged events (i.e., 𝑒𝑤𝑐) composing the SHIRBT,
App Usage Duration Time (AUD) and NRTA from overall/categorized foreground app usage start events (i.e., 𝑒𝑜𝑎 ,
𝑒𝑐𝑎), and Smartphone Usage Duration Time (SUD) and Screen Unlocking Time (UKT) from smartphone usage
events (i.e., 𝑒𝑠𝑜 , 𝑒𝑠 𝑓 , 𝑒𝑠𝑢). The formulas for calculating duration time (TCT, AUD, SUD, UKT), VTT, and NRTA
from these events are as follows.

Duration Time = 𝑡end − 𝑡 start (3)

VTT =

𝑛∑︁
𝑗=1
(𝑡wc𝑗+1 − 𝑡wc𝑗), NRTA = 𝑡 start − 𝑡nt (5)

Where 𝑡 start and 𝑡end refer to the start and end timestamp of the events, respectively, and 𝑡nt refers to the
timestamp of 𝑒nt immediately preceding 𝑒start.

C.2 Usage Frequency Metrics Extraction
We extracted Task Frequency (TF) and View Transition Frequency (VTF) from 𝑒𝑤𝑐 , App Usage Frequency (AUF)
from 𝑒𝑜𝑎 and 𝑒𝑐𝑎 , and Smartphone Usage Frequency (SUF) and Screen Unlocking Frequency (UKF) from 𝑒𝑠𝑜 , 𝑒𝑠 𝑓 ,
and 𝑒𝑠𝑢 , as shown in Table 9. The usage frequency (TF, AUF, SUF, UKF) is the number of start events (i.e., 𝑒𝑤𝑐1 , 𝑒𝑐𝑎1 ,
𝑒𝑜𝑎1 , 𝑒𝑠𝑜) and 𝑒𝑠𝑢 that occurred in a day. VTF is the product of the length of the sequential pattern that constitutes
the extracted SHIRBT and the total number of sequential patterns in a day.

C.3 Typing Behavior Metrics Extraction
As shown in Table 9, we extracted generic typing such as Number of Typed Characters (NTC), Number of
Typed Backspaces (NTB), Number of Typed Keystrokes (NTK), Typing Duration Time (TDT) and calculated
typing such as Keystrokes per Character (KSPC), Characters per Second (CPS), Keystrokes per Second (KPS),
Seconds per Character (SPC), and Second per Keystroke (SPK) from ViewTextChanged event within DLV 2–5. The
ViewTextChanged event 𝑒𝑡𝑐 , representing user interactions, consists of three types of key events: 𝑏𝑎 representing
backspace, 𝑐ℎ representing all characters entered except backspace, and 𝑘𝑒 representing all keystrokes, including
backspace. We extracted only 𝑒𝑡𝑐 (i.e., 𝑏𝑎, 𝑐ℎ, and 𝑘𝑒) that are located between 𝑒𝑜𝑎 and 𝑒𝑐𝑎 until their next event, as
well as 𝑏𝑎, 𝑐ℎ, and 𝑘𝑒 events that are positioned between the start event (i.e., 𝑒𝑤𝑐1) and end event (i.e., 𝑒𝑤𝑐𝑛) of the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

SHIRBT-MMF • 187:45

sequential pattern. Among the extracted 𝑒𝑡𝑐 events, the 𝑖-th event can be represented as 𝑒𝑡𝑐𝑖 , and its corresponding
timestamp can be denoted as 𝑡𝑡𝑐𝑖 .
The generic and calculated typing metrics are calculated as follows.

Generic Typing =


𝑒𝑤𝑐

𝑒𝑐𝑎

𝑒𝑜𝑎

 ·
[
𝑛∑︁
𝑗=1

𝑏𝑎 𝑗 ,

𝑛∑︁
𝑗=1

𝑐ℎ 𝑗 ,

𝑛∑︁
𝑗=1

𝑘𝑒 𝑗 , 𝑡
𝑡𝑐
𝑛 − 𝑡𝑡𝑐1

]
(6)

KSPC =


𝑒𝑤𝑐

𝑒𝑐𝑎

𝑒𝑜𝑎

 ·
[∑𝑛

𝑗=1 𝑘𝑒 𝑗∑𝑛
𝑗=1 𝑐ℎ 𝑗

]
(7)

CPS,KPS =


𝑒𝑤𝑐

𝑒𝑐𝑎

𝑒𝑜𝑎

 ·
[∑𝑛

𝑗=1 𝑐ℎ 𝑗

𝑡𝑡𝑐𝑛 − 𝑡𝑡𝑐1
,

∑𝑛
𝑗=1 𝑘𝑒 𝑗

𝑡𝑡𝑐𝑛 − 𝑡𝑡𝑐1

]
(8)

SPC, SPK =


𝑒𝑤𝑐

𝑒𝑐𝑎

𝑒𝑜𝑎

 ·
[
𝑡𝑡𝑐𝑛 − 𝑡𝑡𝑐1∑𝑛
𝑗=1 𝑐ℎ 𝑗

,
𝑡𝑡𝑐𝑛 − 𝑡𝑡𝑐1∑𝑛
𝑗=1 𝑘𝑒 𝑗

]
(9)

Where each 𝑛 represent the total number of each 𝑒𝑡𝑐 (i.e., 𝑏𝑎 𝑗 , 𝑐ℎ 𝑗 , and 𝑘𝑒 𝑗) events corresponding to 𝑒𝑤𝑐 ,
𝑒𝑐𝑎 , and 𝑒𝑜𝑎 that enclose the entire 𝑒𝑡𝑐 , respectively. 𝑡𝑡𝑐1 and 𝑡𝑡𝑐𝑛 represent the timestamp of start and end 𝑒𝑡𝑐 ,
respectively.

C.4 Statistics Calculation
Since usage frequency serves as a daily feature sample by itself, we calculated statistics (e.g., average, median,
min, max, sum) from other metrics to derive 4–5 daily feature samples each. From duration time, NRTA, and
generic typing, we calculated five statistics, while from VTT and calculated typing, we calculated four statistics
excluding the sum. The formulas below describe how to calculate statistics from multiple instances of the derived
metric𝑚𝑖 , where 𝑖 represents the index of each extracted instance within a day.

Average =
1
𝑘

𝑘∑︁
𝑖=1

𝑚𝑖 , Sum =

𝑘∑︁
𝑖=1

𝑚𝑖 (11)

Min = min{𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑘}, Max = max{𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑘} (13)

Median =
1
2

(
𝑚(𝑘2) +𝑚(𝑘2 +1)

)
if 𝑘 is even, else𝑚(𝑘+12) (14)

Where 𝑘 is the total number of𝑚𝑖 extracted per day for each SHIRBT, app category, overall category, or screen
on/off session.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 187. Publication date: December 2025.

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORK
	2.1 Smartphone Interaction Sensing-based Stress Models
	2.2 Distribution Shift in Smartphone Interaction Sensing
	2.3 Smartphone Interaction-based Human Behavior Mining
	2.4 Smartphone-based Human Behavior Modeling for Mental Health Detection
	2.5 Sequential Pattern Mining

	3 METHODOLOGY: SHIRBT-MMF FRAMEWORK
	3.1 Development of Multi-Level Sequential Pattern Mining Algorithm
	3.2 Development of LLM-based Automated SHIRBT Modeling System
	3.3 SHIRBT and Baseline Feature Extraction

	4 DATA COLLECTION AND SHIRBT FEATURE EXTRACTION
	4.1 Stress Label Data Collection
	4.2 Smartphone Data Collection
	4.3 SHIRBT Modeling and Feature Extraction Result

	5 MODEL EXPERIMENT SETUP
	5.1 Comparison Methods
	5.2 Model Building

	6 RESULTS
	6.1 Personal Model: SHIRBT vs. Baseline
	6.2 Personal Model: One/Two SHIRBT(s) vs. All SHIRBTs vs. Baseline
	6.3 Global Model: SHIRBT vs. Baseline
	6.4 Selected Feature Importance of SHIRBT and Baseline

	7 Comparison of Covariate Shift and Schema Drift
	7.1 Univariate & Multivariate Covariate Shift Comparison
	7.2 Schema Drift Comparison

	8 DISCUSSION
	8.1 Summary of Major Contributions
	8.2 Possibility of Reducing Model Complexity and Addressing Privacy Concerns
	8.3 Robustness of Data Collection: Empirical Analysis across Devices, OS Version, and App Types
	8.4 Battery Consumption and User Behavior Implications of SHIRBT Derivation
	8.5 Limitation and Future Works

	9 CONCLUSION
	Acknowledgments
	References
	A Multi-Level Sequential Pattern Mining Algorithm: Implementation
	B LLM-based Automated SHIRBT Modeling System
	B.1 Generating Optimized Task Name via User Evaluation
	B.2 Building LLM-based Automated SHIRBT Modeling System via Prompt Engineering
	B.3 Evaluation of LLM-Based SHIRBT Modeling Performance Measurement

	C SHIRBT-MMF: Feature Extraction Process
	C.1 Usage Time Metrics Extraction
	C.2 Usage Frequency Metrics Extraction
	C.3 Typing Behavior Metrics Extraction
	C.4 Statistics Calculation

