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ABSTRACT
Understanding how stress evolves over time is crucial for improving
stress detection research. This study examines temporal dependen-
cies in self-reported stress data. We analyzed three self-reported
stress datasets to explore how past and present stress levels cor-
relate, utilizing the autocorrelation function (ACF). Our finding
quantitatively showed that temporal dependencies in stress levels
vary across participants, and the degree of these dependencies dif-
fers across datasets collected in different contexts. We provide some
insights on how to consider temporal dependencies in self-reported
stress for stress detection models, taking into account individual
and contextual variations.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Applied computing → Health informatics.
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1 INTRODUCTION
Accumulated stress in everyday life can harm human physiological
and psychological health [1, 3]. Therefore, measuring stress in daily
life and providing timely stress-relief interventions can improve
well-being. Today, mobile and wearable sensors continuously col-
lect physiological, behavioral, and contextual information from
users [1], helping us indirectly understand their daily lives. This
opportunity has led to many studies that aim to detect stress in
human daily life in real-time based on sensor data [6, 8, 9, 13]. Ex-
isting research on stress detection mainly uses self-reported stress
as ground truth for measuring stress in daily life [8, 9]. The most
widely used method for collecting self-reported stress data is the
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“experience samplingmethod (ESM)” [9]. ESM is a technique that pe-
riodically sends a short questionnaire asking participants to report
their inner states of mind, such as mood and stress [10].

Depending on the assumption of how stress occurs over time,
self-reported stress data and sensor data can be utilized differently
in stress detection research. Several researchers assume that stress
occurs independently at any given time (or each two consecutive
stress self-reports are independent of one another) [2, 4]. These
studies built stress detection models that predict self-reported stress
labels based only on sensor data. In contrast, other studies suggest
that past and current stress levels may be interdependent, indicat-
ing the importance of using past self-reports to predict current
stress. For example, Toshnazarov et al. used the self-reported stress
data just before the current self-reported label as a predictor [13].
Additionally, Li et al. extracted temporal features from the wearable
sensor data collected over the 24 hours preceding the target stress
data as predictors [11].

Since the assumptions regarding the temporal dependency of
stress differ across studies, it is necessary to investigate how tem-
poral dependency occurs. In this paper, we analyze a self-reported
dataset about stress to quantify temporal dependency. Three datasets
of self-reported stress collected from daily lives were used for the
analysis. We utilized the autocorrelation function (ACF), which
measures the degree of correlation between current and past data.
Our results showed that various temporal dependencies are exhib-
ited among participants and datasets. Given these observations, we
discuss how temporal dependency within self-reported stress can
be taken into account in stress detection models.

2 DATA
We used self-reported stress labels from the three different datasets
collected in daily life. While two datasets were collected throughout
the entire day, the other dataset was collected exclusively from
the workplace (call center). The details about each dataset (i.e.,
participants, methods, and results) are described below.

Dataset 1: The first dataset is the K-EmoPhone dataset, which
collected daily stress from 77 university students (F: 24, M: 53; age:
Mean = 21.9, SD = 3.9) for a week [8].1 Participants received the
questions to assess their stress levels between 10 AM and 10 PM,
with an average interval of 45 minutes. They recorded their stress
level at the moment of response using a 7-point Likert scale. As
a result, participants provided an average of 10.4 of self-reported
data in a day, and the average interval between answers was 70.5
minutes (SD = 75.7 minutes).

1K-EmoPhone is available at https://zenodo.org/records/7606611
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Dataset 2: The second dataset is the DeepStress dataset, which
collected daily stress from 24 university students (F: 9, M: 15; age:
Mean = 21.3, SD = 2.1) for six weeks [7].2 Participants reported
their stress levels at any time during the day. They were restricted
from reporting their stress if the interval was shorter than 30 min-
utes, to prevent excessive repetition of self-reporting. Additionally,
reminders were sent if the participants did not respond within an
hour to collect enough data at appropriate intervals. As a result,
participants reported an average of 12.8 of self-reported data in a
day (SD = 3.0), and the average interval between answers was 93.5
minutes (SD = 108.5 minutes).

Dataset 3: The third is the dataset at work, which collected a
self-reported stress level after one call from 18 customer service
agents (F: 17, M: 1; age: Mean = 36.8, SD = 5.91) for four weeks.
Participants were asked to rate the stress level after each call, which
is the basic task unit in the call center, as a 5-point Likert scale. As
a result, participants answered an average of 37.2 of self-reported
data in a day (SD = 5.5), and the average interval between answers
was 13.2 minutes (SD = 15.7 minutes).

Time

𝒀𝒕𝒀𝒕−1𝒀𝒕-2
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Figure 1: Flow of using ACF.

3 IRREGULAR TIME SERIES ACF ANALYSIS
We analyze the temporal dependency among the self-reported stress
data utilizing autocorrelation function (ACF), which is widely used
for time series data analysis [5, 12]. The ACF measures the corre-
lation between present and past data within a single time series
sequence. ACF can be useful for time series data because such data
vary over time, and as a result, data points collected at adjacent
times may be correlated. Since self-reported stress data is collected
through ESM to capture people’s stress as it changes over time,
ACF can uncover hidden correlations within the data.

When calculating the ACF, lag indicates how far in the past it is
from the present. Lag values can be integer values, such as 0, which
is never lagged from the present (i.e., itself), 1, which is lagged 1
time from the current data (i.e., immediate past point), and 2, which
is lagged 2 times from the present. A large lag value represents a
more distant past, and the ACF values for it indicate a correlation
between current data and data from the distant past.

ACF value is between -1 and 1, with the large absolute values
indicating a higher correlation. For example, a positive autocorrela-
tion value for lag 1 suggests that the current self-reported stress
level is likely similar to the previous one. This can be interpreted
as indicating the possibility that past data may affect the current
stress level. In contrast, a negative autocorrelation value indicates
that the current self-reported stress level tends to be opposite to the
previous one. If the autocorrelation value nears zero, it indicates
2Deepstress dataset is available at https://github.com/Kaist-ICLab/DeepStress_Dataset

that the current self-reported stress level does not correlate with
past values. The formula of ACF is as shown in Equation 1, where
k is the lag and 𝑦𝑡 is the data point value at time 𝑡 ; the process of
using ACF is illustrated in Figure 1.

𝐴𝐶𝐹 (𝑘) =
∑𝑇
𝑡=𝑘+1 (𝑦𝑡 − 𝑦) (𝑦𝑡−𝑘 − 𝑦)∑𝑇

𝑡=1 (𝑦𝑡 − 𝑦)2
(1)

The results of ACF can be more accurate when the time intervals
are regular rather than irregular. However, it is inevitable to have
irregular time intervals due to the missing value inherent in the
nature of ESM [14]. In this paper, we used the original data without
additional data processing to regularize the intervals. Instead, to
minimize the influence of the irregular time interval on the value
of ACF, we only get the value of ACF on the same day, excluding
relatively long-term intervals such as sleep and getting off work.
Dataset 1 and 3 has a fixed time to collect the data in a day. However,
in Dataset 2, participants could respond at any time. This led to
some data points being collected during early morning hours (e.g.,
midnight, 1 AM). These times could be associated with the previous
day’s activities, making it challenging to categorize them as data
for the next day. Hence, we only used data collected from 10 AM
to 10 PM in Dataset 2. We used the day with more than 10 labeled
data [9] and set the maximum lag to 5 which is half of the 10. After
calculating the value of ACF, we aggregated the data per participant
and obtained the average value.

4 RESULTS
Figure 2 describes the average ACF per participant at each time lag.
The graphs on the left and center are the results of Datasets 1 and
2, which were collected in a similar data collection context. The
boxplots for these datasets show that the average ACF value tends
to be positive at lag 1, but becomes negative as the lag increases.
In particular, over 64% of participants in Dataset 1 and over 83%
in Dataset 2 exhibit positive ACF values at lag 1. In contrast, at
subsequent lags, at least 66% of participants in both datasets show
negative ACF values. This indicates that for a majority of partic-
ipants, the immediate past self-reported stress data is relatively
similar to the current self-reported stress data, while more older
past data tends to show negative autocorrelation. In addition, we
observed that, except for lag 1, the distributions of the boxplots at
other lags are quite similar. This can show that even at more distant
past points, there is a similar level of negative autocorrelation.

In Datasets 1 and 2, we identified that each participant has dif-
ferent average ACF values because the boxplots are spread up and
down based on correlation 0. For Dataset 1, the ranges of ACF
values (i.e., minimum and maximum values) were calculated as
follows: for lag 1, it was (-0.33, 0.38); for lag 2, it was (-0.36, 0.24);
for lag 3, it was (-0.46, 0.33); for lag 4, it was (-0.37, 0.23); and for
lag 5, it was (-0.33, 0.28). For Dataset 2, the ranges of ACF values
were as follows: for lag 1, it was (-0.03, 0.29); for lag 2, it was (-0.26,
0.11); for lag 3, it was (-0.19, 0.07); for lag 4, it was (-0.21, 0.01); and
for lag 5, it was (-0.19, -0.10). In Dataset 1 with larger participants,
the distribution of ACF values among participants is more widely
spread. This shows that the degree of temporal dependency can
vary between individuals.
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Figure 2: Results of ACF plots

The graphs on the right are the results of Dataset 3. All partici-
pants had weak correlations close to zero, ranging from a minimum
of -0.06 to a maximum of 0.09 across all lags. This indicates that the
self-reported stress data collected in Dataset 3 is relatively uncorre-
lated to each other compared to the other datasets.

5 DISCUSSION
We quantitatively assessed how dependent self-reported stress data
are on past time points utilizing ACF. Through this analysis, we
observed that in Datasets 1 and 2, a significant number of partici-
pants exhibited the highest similarity between current stress level
and immediate past stress level among the five past time points. In
contrast, Dataset 3 showed that there was almost no dependency on
past stress data for all participants. This observation highlights that
we can determine the optimal duration of past data to include when
building stress detection models for a general user population. For
example, for Datasets 1 and 2, using immediate past self-reported
stress data and sensor data collected approximately 60–90 minutes
earlier could be beneficial. In contrast, using older past data in
Dataset 3 could add noise to the stress detection model, and thus,
using a shorter period of historical data might be beneficial. Ad-
ditionally, we quantitatively identified the individual variation in
temporal dependency of self-reported stress data among partici-
pants in Datasets 1 and 2. This can help optimize the use of past
data for each individual when we build personalized stress detec-
tion models. For example, if a participant has a high ACF value,
current stress levels are highly dependent on past stress levels. In
such cases, it may be beneficial to include features related to past
data in the personalized model. Utilizing ACF can provide an oppor-
tunity to effectively incorporate the temporal dependency within
self-reported stress data into stress detection models.

Meanwhile, we observed that Dataset 3, which was collected in
the workplace, exhibited almost no temporal dependency when
compared to Datasets 1 and 2, which were collected over everyday
life contexts. This finding showed that temporal dependency can
vary depending on the context of data collection. Dataset 3 was
collected from call center workers about how stressed they were
about a past call event that happened just before. Since Dataset
3 only asked about stress for one target event, participants may

not have been influenced by distant past experiences. Therefore,
to appropriately consider temporal dependency in stress detection
models, it is necessary to assess temporal dependency under diverse
contexts, whenever self-reported stress data is collected.
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