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Simultaneous treatment effect estimation and variable selection 
for observational data

Eun-Yeol Maa, Uichin Leeb, and Heeyoung Kima 

aDepartment of Industrial and Systems Engineering, KAIST, Daejeon, South Korea; bSchool of Computing, KAIST, Daejeon, South Korea  

ABSTRACT 
Due to the difficulties inherent in conducting controlled experiments, recent causal inference stud
ies have focused on developing treatment effect estimation using observational data. One major 
difficulty in causal inference from observational data is that the underlying causal structure is 
unknown. This may result in the misidentification of potential sources of causal estimation bias, 
such as confounders, which must be controlled for accurate estimation. To consider all possible 
confounders and other relevant information, conventional methods predominantly use all 
observed covariates indiscriminately. However, previous studies have shown that including all 
covariates without considering their causal relationships may deteriorate the estimation perform
ance. Although several data-driven variable selection methods have been proposed for treatment 
effect estimation, they cannot distinguish the confounders from other outcome-related covariates 
and are limited to simple regression forms. In this study, we propose a method called the Variable 
Selection Causal Estimation Network (VSCEN) that performs treatment effect estimation and causal 
variable selection simultaneously. Through end-to-end differentiable training, the VSCEN selects 
only the covariates beneficial for effect estimation and uses only those selected for effect estima
tion. Experimental evaluations on fully synthetic, semi-synthetic, and real datasets demonstrate the 
VSCEN’s superior performance in conditional average treatment effect estimation and competitive 
performance in average treatment effect estimation along with its accurate variable selection 
capabilities.
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1. Introduction

Causal inference, in particular, estimation of treatment 
(causal) effects, has drawn great attention in recent years in 
various fields, including medicine, econometrics, and social 
sciences (Imbens and Rubin, 2015). Under the potential out
comes framework (Rubin, 2005), the treatment effect is 
defined as the difference between the potential outcomes of 
possible treatment values. Although experimental studies, 
such as Randomized Controlled Trials (RCTs) are the gold 
standard for treatment effect estimation, there are many 
cases where RCTs are often difficult to conduct, because of 
multiple practical issues (Frieden, 2017; Deaton and 
Cartwright, 2018; Goldstein et al., 2018). The increasingly 
available observational data, or data that were gathered with
out control for any factors, have served as an alternative to 
RCT data and have been utilized to explore various causal 
relationships in question. Beyond the classic methods that 
have focused on population-level or group-level Average 
Treatment Effect (ATE), the progressively increasing number 
of studies on observational data has led to advancements in 
individual-level treatment effect estimation (Guo et al., 
2020).

An essential problem in causal inference using observa
tional data is that the true underlying causal relationships 
between the observed variables are unknown. For instance, 
one central task in treatment effect estimation is to identify 
and control for confounders, which are variables causal of 
both the treatment and the outcome. Uncontrolled con
founders induce unwanted associations between treatment 
and outcome, leading to biased estimation of treatment 
effects. Although the backdoor criterion (Pearl, 2009) guar
antees a minimal sufficient adjustment set, a complete and 
accurate causal diagram of the data is unavailable in most 
cases, making it difficult to precisely specify the necessary 
variables in the analysis. Therefore, an easy option has been 
to include all the observed covariates in a causal model in a 
“throw-in-the-kitchen-sink” manner. However, some covari
ates in fact hinder the estimation process when they are 
included. For example, including covariates related to nei
ther the treatment nor the outcome (which we call spurious 
variables) and covariates predictive of only the treatment 
and not the outcome (instrumental variables) may decrease 
the estimation efficiency (Schisterman et al., 2009; De Luna 
et al., 2011; Rotnitzky and Smucler, 2020) while potentially 
increasing estimation bias (Myers et al., 2011). On the other 
hand, previous studies have shown that including covariates 
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associated solely with the outcome and not the treatment 
(outcome-predictors) and confounders may be beneficial in 
causal modeling (Brookhart et al., 2006; Rotnitzky and 
Smucler, 2020).

In addition to improving treatment effect estimation per
formance, the knowledge regarding the causal relationships 
between observed covariates and treatment/outcome can 
increase our understanding of the conclusions given by 
causal models, which is particularly important in real-world 
scenarios. For instance, in the field of healthcare, machine 
learning has experienced significant growth over the past 
years (Beaulieu-Jones et al., 2019). Although machine learn
ing models have achieved remarkable success in various 
clinical tasks, the lack of interpretability has raised skepti
cism among clinicians regarding the clinical conclusions 
derived from these approaches (Beam and Kohane, 2018). 
This issue becomes more pronounced when the question at 
hand requires causal knowledge, as spurious correlations 
induced by unintended causal relationships, such as con
founders, can lead to erroneous conclusions. Therefore, 
obtaining and incorporating the information about the 
potential causality of covariates while estimating the treat
ment effect in question is an advancement towards making 
interpretable decisions. Furthermore, such knowledge may 
also help highlight the covariates that should be considered 
with priority in future validatory experiments, in which their 
needs were emphasized by multiple previous studies 
(Gentzel et al., 2019; Gordon et al., 2019; Zhao et al., 2019).

In this study, we propose the Variable Selection Causal 
Estimation Network (VSCEN), an end-to-end differentiable 
neural network model that selects the important causal vari
ables directly from the input data for more accurate estima
tion of the individual-level treatment effect and increased 
interpretability regarding the causal relationships within the 
data. We focus on selecting confounders and outcome- 
predictors, as these are the covariate subsets known to be 
beneficial in treatment effect estimation (Brookhart et al., 
2006; Rotnitzky and Smucler, 2020). The VSCEN selects the 
confounders and the outcome-predictors through two dis
joint Concrete selector layers (Balın et al., 2019), which are 
then used as inputs for treatment effect estimation through 
a neural network. Each selection layer is trained in a distinct 
manner suitable for selecting only the intended causal varia
bles. We tested VSCEN on fully synthetic data, semi- 
synthetic data, and real observational data to verify the 
model’s treatment effect estimation and variable selection 
capabilities. The results validate that VSCEN can select the 
intended causal variables and accurately estimate both indi
vidual-level and group-level treatment effects.

2. Related work

2.1. Causal models with variable selection

The full causal structure of data is needed to identify the 
covariates necessary for treatment effect estimation. 
However, defining the causal structure of the observed data 
based on domain knowledge is challenging, even with only a 
few covariates, as we need to handcraft the underlying 

causal relationships (Imbens, 2020; Butcher et al., 2021; 
Kyrimi et al., 2021). Alternatively, previous studies explored 
data-driven methods to select only the appropriate variables 
to be included in causal estimation models. Shortreed and 
Ertefaie (2017) proposed the outcome-adaptive lasso, which 
uses the adaptive lasso regularization to select only the con
founders and the outcome-predictors to be included in the 
treatment assignment model and estimate the average treat
ment effect using the obtained treatment model. Similarly, 
Koch et al. (2018) proposed using the group lasso to select 
only the confounders and outcome-predictors. The utiliza
tion of group sparsity for data-driven selection of outcome- 
predictors and confounders in causal modeling was also 
used in Greenewald et al. (2021). However, while these 
methods demonstrate the joint selection of confounders and 
outcome-predictors, they fail to distinguish between the two. 
Although Kuang et al. (2017) proposed an ATE estimation 
method capable of distinctly selecting confounders and out
come-predictors, the method overlooks the presence of 
instrumental variables. Furthermore, all of these methods 
focus on estimating the ATE only and have not been 
extended to estimate the Conditional Average Treatment 
Effect (CATE), which quantifies the individual-level treat
ment effect. On a different note, Makar et al. (2019) pro
posed a method for data-efficient treatment effect estimation 
based on input variable distillation, in which they discrimin
ate the confounders from other covariates predictive of the 
treatment effect during the estimation process. Although 
their work is capable of estimating the CATE, their method 
relies on regression trees for interpretability, which has lim
ited estimation capabilities.

2.2. CATE estimation using neural networks

Recent advances in deep learning have led to the develop
ment of causal inference methods that utilize neural net
works for accurate CATE estimation. Johansson et al. (2016) 
proposed using neural networks to estimate the treatment 
effect by first learning representations that ensure covariate 
distribution balance between treated samples and controlled 
samples and then using the representations to predict both 
potential outcomes. Shalit et al. (2017) built upon the work 
of Johansson et al. (2016) and proposed the counterfactual 
regression, in which the representations were learned by 
penalizing the integral probability metric between the treated 
and controlled representations. Shi et al. (2019) also pro
posed a neural network model for causal representation 
learning, named the Dragonnet, which utilizes propensity 
score estimation in building the representations. Du et al. 
(2021) integrated adversarial learning and a mutual informa
tion constraint to learn balanced representations. Other 
works that use neural networks include Alaa et al. (2017); 
Louizos et al. (2017); Yoon et al. (2018); Li and Yao (2022); 
Zhou et al. (2022). However, they focus on the expressivity 
of neural networks without considering the causal relation
ships between the covariates and treatment/outcome varia
bles. Hassanpour and Greiner (2019), Zhang et al. (2021), 
and Wu et al. (2022) proposed methods to decompose the 
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input data into latent representations that act as confound
ers, instrumental variables, and adjustment variables through 
neural networks for more accurate estimation of treatment 
effects. However, such latent representations generated via 
neural networks are unidentifiable in most cases (Roeder 
et al., 2021; Wu and Fukumizu, 2021). Thus, even if these 
methods can accurately estimate the CATE, every model 
specification and initialization may result in drastically dif
ferent latent representations, which may lead to a misinter
pretation of the underlying causality of the observed 
covariates. Furthermore, while the learned network weights 
are used to determine the causal contribution of the 
observed covariates to the latent variables (Hassanpour and 
Greiner, 2019; Wu et al., 2022), it is difficult to trust that 
these weights correctly reflect the true effect sizes, since 
multiple weight matrices may yield the same result (Roeder 
et al., 2021). Instead, this work aims to clearly highlight the 
causality of the observed covariates by identifying the con
founders and outcome-predictors directly from the input 
variables, and then using these selected covariates to esti
mate the CATE, which is the main departure from earlier 
studies (Johansson et al., 2016; Hassanpour and Greiner, 
2019; Zhang et al., 2021; Wu et al., 2022). On a separate 
note, similar to our work, Chu et al. (2020) proposed a 
method for simultaneous variable selection and treatment 
effect estimation entitled Feature Selection Representation 
Matching (FSRM), which employs a sparse one-to-one layer 
and incorporates sample matching inside a Wasserstein dis
tance-regulated representation space in a network that 
jointly estimates the potential outcomes and treatment 
assignment. However, their method relies on the elastic net 
regularization for variable selection (Zou and Hastie, 2005), 
limiting its ability to select variables based on the desired 
causal relationships between the observed covariates.

3. Background

3.1. Treatment effect estimation under the potential 
outcomes framework

We work under the Neyman–Rubin potential outcomes 
framework (Rubin, 2005) and assume binary treatment. Let 
Ya

i denote the potential outcome of subject i with observed 
treatment A ¼ a, that is, the outcome if the subject were to 
be given treatment value a. For binary treatment, the factual 
(observed) outcome can be defined as follows:

Y ¼ ð1 − aÞY0 þ aY1: (1) 

The potential outcome of the unobserved treatment 
assignment Y1−a is commonly referred to as the counterfac
tual outcome. Then, we can define the Individual Treatment 
Effect (ITE) as follows:

ITEi ¼ Y1
i − Y0

i : (2) 

However, because we do not have access to the true 
counterfactual outcome, we cannot calculate the ITE dir
ectly. Therefore, the individual-level treatment effect for sub
ject i characterized by covariates xi is instead estimated 
through the CATE:

CATEðxiÞ ¼ EðY1
i − Y0

i jXi ¼ xiÞ: (3) 

The ATE can then estimated via:

ATE ¼ EðCATEðxiÞÞ: (4) 

3.2. Causal inference with observational data

We consider the standard assumptions for treatment effect 
estimation under observational data.

� Consistency: For observed treatment A ¼ a, Y ¼ Ya:

� Overlap: If PðX ¼ xÞ > 0, then 0 < PðA ¼ ajX ¼ xÞ < 1 
for all possible values of a.

� Unconfoundedness: Ya??AjX, i.e., there are no unob
served confounders.

� Stable unit treatment value assumption: The potential 
outcomes of unit i do not vary with respect to the treat
ment assignment of any j 6¼ i:

These assumptions are sufficient conditions for causal 
identifiability (Rosenbaum and Rubin, 1983) with observa
tional data.

Further, we assume the causal structure in Figure 1, in 
which the observed covariates X can be partitioned into the 
following variable sets based on their relationship with the 
treatment A and outcome Y: confounders XC, outcome-pre
dictors XP, instrumental variables XI , and spurious varia
bles XN : The assumed causal graph is natural for 
observational data for which we do not know the true 
underlying causal relationships, as we consider all possible 
direct causes of the treatment and outcome.

Assuming such a causal structure, Greenewald et al. 
(2021) provide a proof for the c-equivalence (Pearl and Paz, 
2014) between the union set of confounders and outcome- 
predictors XC [ XP and the observed covariate set X: In 
other words, it is sufficient to control for only the covariate 
set XC [ XP from the full observed set X to make an 
unbiased estimation of the treatment effect.

3.3. End-to-end variable selection using concrete 
random-variable sampling

The proposed model incorporates the Concrete selector layer 
(Balın et al., 2019), which selects input variables through 
Concrete (Gumbel-softmax) random variable sampling (Jang 
et al., 2017; Maddison et al., 2017), for end-to-end selection 
of the intended causal variables. Concrete random variables 

Figure 1. Partitioning of observed covariates X based on its causal relationship 
to A and Y. Each subset of X must be discovered from the data. (A: treatment 
assignment, Y: outcome, XI : instrumental variables, XC : confounders, XP : out
come-predictors, XN : spurious variables.)
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are continuous relaxations of discrete random variables, in 
which a Concrete vector m is defined as:

m � Concreteða, TÞ, mj ¼
exp ðð log aj þ gjÞ=TÞ

PD
d¼1 exp ðð log ad þ gdÞ=TÞ

,

(5) 

where g is a D-dimensional vector of i.i.d. Gumbel samples. 
T is the temperature parameter determining the discreteness 
of the Concrete random variable. As T ! 0, m approaches 
a one-hot vector with Pðmj ¼ 1Þ ¼ aj=

P
d ad: Concrete ran

dom variables can be learned within an end-to-end differen
tiable framework through the reparameterization trick 
(Kingma and Welling, 2013), by learning the location par
ameter a and sampling g:

Variable selection in neural networks using the Concrete 
selector layer is performed by first sampling a Concrete random 
variable mðkÞ, and then taking its dot product with the input 
variables to obtain uðkÞ ¼ X �mðkÞ: These variables are then fed 
into further neural network layers for a downstream task (Doo 
and Kim, 2023), which is treatment effect estimation in our 
case. As T ! 0, uðkÞ becomes a single variable from the input 
variables as determined by the nonzero element of the one-hot 
vector m: We apply the exponential temperature annealing 
schedule presented in Balın et al. (2019) with the modifications 
described in Section 4. The annealing schedule sets T at epoch 
b as T0ðTB=T0Þ

b=B, where T0 and TB are the initial and final 
temperatures, respectively, and B is the total number of training 
epochs. By applying such an annealing schedule, the selector 
layers are trained to explore various variable combinations in 
the beginning but later exploit the selection of the variables 
most effective in minimizing the loss.

4. Proposed model

Our goal is to estimate the CATE of the supposed treatment by 
predicting each counterfactual outcome using only observa
tional data. Because the exact causal relationships among the 

observed variables are unknown in observational data, we aim 
to select only the covariates that are helpful in accurate estima
tion of potential outcomes, namely the confounders and the 
outcome-predictors, and use only those covariates for treat
ment effect estimation. We propose to achieve both tasks (treat
ment effect estimation and causal variable selection) 
simultaneously through an end-to-end differentiable training 
method using neural networks. The VSCEN distinctively selects 
confounders and outcome-predictors through its respective 
Concrete selector layers specifically designed to select only the 
intended covariate sets. This design ensures a clear and 
straightforward interpretation of the selected covariates. 
Furthermore, this separate selection process ensures the use of 
both intended covariate sets in the treatment effect estimation.

4.1. Overall architecture

Figure 2 shows the overall architecture of the VSCEN. Let 
Xi 2 RD be the input covariates. For notational simplicity, 
we hereafter omit the subscript i unless necessary. The 
VSCEN first takes the input covariates and selects KC poten
tial confounders and KP potential outcome-predictors 
through two separate Concrete selector layers. Each variable 
selected by the Concrete selector layer ~uðk1Þ, k1 ¼ 1, :::, KC, 
and ~vðk2Þ, k2 ¼ 1, :::, KP, is initially a weighted linear com
bination of x1, :::, xD, and approaches a one-hot vector as 
training progresses. Then, at test time, the arguments of the 
maxima are taken to obtain U, which consists of the 
observed covariates assumed to be confounders XC, and V, 
which consists of the observed covariates assumed to be out
come-predictors XP :

U ¼ uð1Þ, :::, uðKCÞ
� �

, uðkÞ ¼ Xargmaxj ~u
ðkÞ
j , (6) 

V ¼ vð1Þ, :::, vðKPÞ
� �

, vðkÞ ¼ Xargmaxj~v
ðkÞ
j : (7) 

On one side of the architecture, the selected variables U 
and V are concatenated and fed into the further layers to 

Figure 2. Network structure of the proposed VSCEN.
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obtain the estimated potential outcomes Ŷ ð1Þ and Ŷ ð0Þ: The 
estimated potential outcomes are then used to calculate the 
estimated factual outcome Ŷ using the observed binary 
treatment assignment a through (1). On the other side of 
the architecture, V goes through the gradient reversal layer 
(Ganin and Lempitsky, 2015) in predicting the treatment 
assignment Â:

4.2. Training the outcome-predictor selector layer

Each selector layer is trained in a distinct manner such that 
one layer prefers the selection of confounders XC and the 
other layer prefers the selection of outcome-predictors XP:

This means that the instrumental variables XI and spurious 
variables XN will not be selected by these selector layers. To 
train the outcome-predictor selector layer to select outcome- 
predictors as V as intended, we leverage the fact that among 
confounders, outcome-predictors, and instrumental varia
bles, only the outcome-predictors are not predictive of the 
treatment assignment (see Figure 1); the other two subsets 
of covariates (i.e., confounders and instrumental variables) 
are directly causal of the treatment assignment, as indicated 
by the edges going into A from XC and XI : This observation 
hints that the gradient reversal layer (Ganin and Lempitsky, 
2015) can be placed on the network head that predicts A 
using only the supposed outcome-predictors to enforce the 
selector layer to select variables that are least predictive of 
the treatment assignment while most predictive of the out
come. That is, for every epoch, the network is optimized in 
the direction opposite of minimizing the treatment assign
ment prediction error, resulting in the exclusion of instru
mental variables and confounders for V: Because we use V 
in estimating an outcome, spurious variables that are causal 
of neither the outcome nor the treatment are naturally 
excluded, resulting in the selection of only the outcome-pre
dictors as V:

4.3. Training the confounder selector layer

The confounder selector layer is trained by discriminating 
the confounders from XC [ XP as the training progresses. 
As the network is trained to estimate the outcome, the con
founder selector layer is likely to select either confounders 
or outcome-predictors, although it has no knowledge of 
whether the selected covariate is a confounder or an out
come-predictor. Assuming that the network has already 
trained to select outcome-related covariates with some train
ing, we then force the confounder selector layer to prefer 
the selection of confounders over outcome-predictors as U 
through the use of covariate-treatment correlation. As shown 
in Figure 1, there exists an edge from the confounders XC 

to treatment A, whereas no edge exists between outcome- 
predictors XP and A. Hence, it is likely that the confounders 
are more strongly associated with the treatment than the 
outcome-predictors, making the covariate-treatment correl
ation an obvious criterion that distinguishes the two.

Assuming we train the model for a total of B epochs, we 
first train the confounder selector layer with the standard 

exponential temperature annealing schedule for B0 epochs 
(e.g., B0 ¼ B=2). We then incorporate the covariate-treat
ment correlation into the Concrete random variable sam
pling scheme at epoch b � B0 as follows:

mjðbÞ ¼
exp ðð log aj � exp ðbjqjjÞ þ gjÞ=TðbÞÞ

PD
d¼1 exp ðð log ad � exp ðbjqdjÞ þ gdÞ=TðbÞÞ

,

where

qk ¼
CorrðXðkÞ, AÞ if XðkÞ 2 X̂Cat epoch ðb − 1Þ,
0, otherwise:

(

(8) 

The hyperparameter b controls the extent to which the cor
relation is considered. Such adjustments inflate the location 
parameter a for only the covariates correlated with treat
ment assignment. Therefore, with the confounder selector 
already trained to select some covariates predictive of the 
outcome, the incorporation of covariate-treatment correl
ation q encourages the confounder selector layer to select 
confounders over outcome-predictors. This additional 
inclination towards confounders using q is important for 
confounder selection regardless of what variables are 
selected by the outcome-predictor selector layer. In essence, 
q reduces the chances of only outcome-predictors being 
selected by both selector layers when selection is solely based 
on prediction. The incorporation of q can also improve 
training efficiency by guiding the confounder selector to 
restrict searches on irrelevant variables. Note that while 
increasing the number of training epochs may help the con
founder selector prefer the desired covariates through 
enhanced prediction in general, a mere increase in training 
epochs may not be enough, as there always remains the pos
sibility of selecting outcome-predictors over confounders 
when selection is solely driven by prediction. Although 
instrumental variables may also be associated with the out
come as they are connected in the assumed causal structure 
(Figure 1), we expect their effects to be negligible in predict
ing the outcome since the observed treatment value A ¼ a is 
included in the estimation process. Hence, it is unlikely that 
the confounder selector layer would select instrumental vari
ables over confounders as U: Similar to the outcome-pre
dictor selector layer, spurious variables are naturally 
excluded because they are not causal of the outcome.

4.4. End-to-end training of VSCEN

The VSCEN is trained by minimizing the following loss:

L ¼
1
N

XN

i¼1
Loutðyi, f ðU, V, aÞÞ þ cLtreatðai, hðVÞÞ, (9) 

where Lout is set as the mean squared error loss of the fac
tual outcome estimation and Ltreat is set as the binary cross- 
entropy loss of the treatment assignment prediction. Here, f 
and h are neural network functions that estimate the out
come and treatment, respectively. Note that Lout is calcu
lated using both selected covariate sets, whereas Ltreat is 
calculated using only the selected outcome-predictor set. At 
every epoch of training, the network trains to minimize the 
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total loss L and is optimized in the direction of minimizing 
the factual outcome estimation error while maximizing the 
treatment assignment prediction error, resulting in the 
desired selection of confounders and outcome-predictors. 
Training of all network parameters, including both the neural 
network parameters and variable selection location parame
ters, is performed through standard backpropagation using 
gradient descent, allowing fully differentiable end-to-end 
training for simultaneous estimation of the treatment effect 
and selection of causal variables. The training algorithm is 
detailed in Section 1 in the Supplementary Materials.

5. Experiments

To test the abilities for treatment effect estimation and 
causal variable selection, we conducted experiments on three 
types of data: fully synthetic data, semi-synthetic data, and 
real data. For each dataset, we aim to answer the following 
evaluation questions:

� Fully synthetic data: How precisely can VSCEN estimate 
the individual and population-level treatment effect? 
How correctly can VSCEN identify the true confounders 
and outcome-predictors?

� Semi-synthetic data: How precisely can VSCEN estimate 
the treatment effect on popular benchmark data com
pared to other methods? How correctly can VSCEN 
identify the true outcome-generating covariates?

� Real data: Can VSCEN suggest reasonable effect size and 
confounders/outcome-predictors on real-world data?

We relied on fully synthetic and semi-synthetic data due 
to the innate difficulties of evaluating causal estimation 
models on real-world observational data, in which neither 
the true treatment effect nor the true causality between 
observed variables is known for real data (Holland, 1986; 
Shalit et al., 2017). We also conducted experiments on real 
data to investigate the model’s ability to discover meaningful 
causal covariates while estimating treatment effects.

We compared our method with previous methods for 
treatment effect estimation, including linear regression with 
Lasso Regularization (LR lasso), Causal Forest (CF) (Wager 
and Athey, 2018), Orthogonal Random Forest (ORF) 
(Oprescu et al., 2019), Outcome-Adaptive Lasso (OAL)1

(Shortreed and Ertefaie, 2017), Group Lasso and Doubly 
robust estimation (GLiDer) (Koch et al., 2018), Data-driven 
Variable Decomposition (D2VD)2 (Kuang et al., 2017, 
Kuang et al., 2022), Treatment-Agnostic Representation net
work (TARnet), CounterFactual Regression network (CFR) 
(Shalit et al., 2017), DragonNet (Shi et al., 2019), Treatment 
Effect by Disentangled Variational AutoEncoder (TEDVAE) 
(Zhang et al., 2021), Adversarial Balancing-based representa
tion learning for Causal Effect Inference (ABCEI) (Du et al., 

2021), and Feature Selection Representation Matching 
(FSRM) (Chu et al., 2020). Details on hyperparameter ranges 
and implementation are provided in Section 2 in the 
Supplementary Materials.

For the fully synthetic and semi-synthetic data, we eval
uated the methods primarily on two treatment effect estima
tion metrics:

� Root Precision in the Estimation of Heterogeneous 
Effects (PEHE)

� ffiffiffiffiffiffiffiffiffiPEHE
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ððŶ ð1Þ − Ŷ ð0ÞÞ − ðYð1Þ − Yð0ÞÞÞ2

s

, (10) 

� Absolute ATE error

�ATE ¼ dATE − ATEj:
�
�
� (11) 

where Ŷ ðaÞ is the estimated potential outcome for treatment 
value a and dATE is the estimated ATE. The PEHE measures 
the individual-level effect estimation error, and the ATE 
error measures the population-level effect estimation error.

Furthermore, the variable selection results are presented 
through the False Discovery Rate (FDR), which measures 
the proportion of falsely selected variables:

FDR ¼ E
jŜ \ Sc

0j

Ŝ
�
�
�
�

" #

, (12) 

where Ŝ is the set of selected variables, S0 is the true set, 
and j � j is the cardinality of the set. For the fully synthetic 
and semi-synthetic data, we report the results for both in- 
samples (training samples) and out-samples (test samples). 
Note that in-sample estimation is still a meaningful task for 
causal inference because the counterfactual outcomes remain 
unknown to the model during training. For the real data, 
we report the estimated treatment effect size and qualita
tively assess the selected covariates based on well-known 
domain knowledge. However, the true treatment effect in 
real data is unknown because the counterfactual outcomes 
are unavailable.

5.1. Fully synthetic data-based evaluation

First, we conducted experiments on a fully synthetic dataset, 
in which the full data generation scheme including all coun
terfactual outcomes is known completely. This allows us to 
evaluate the methods for treatment effect estimation since the 
ground-truth effect sizes are known, both individual-wise and 
population-wise. It also allows us to evaluate the methods for 
variable selection, because the true confounder and outcome- 
predictors in the data-generating process are known.

5.1.1. Data generation
We model after Zigler and Dominici (2014) and Shortreed 
and Ertefaie (2017) for the fully synthetic data generation. 
For each sample, we sampled the covariates X from a 100- 
dimensional multivariate standard Gaussian distribution. For 
interpretational simplicity, we fixed covariates fX1, :::, X5g as 

1Because OAL was originally presented with an ATE estimator and not an 
outcome-model, we used the OAL to calculate the Inverse Probability of 
Treatment Weights (IPTW) but fit a separate linear outcome model.
2We only present the ATE error for D2VD as it is unsuitable for CATE 
estimation.
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the set of confounders, fX6, :::, X10g as the set of outcome- 
predictors, and fX11, :::, X15g as the set of treatment-predic
tors. The remaining covariates fX16, :::, X100g are spurious 
variables. Note that the results are general regardless of the 
fixed covariate indices, since all covariates are generated via 
the standard Gaussian distribution.

We next set two coefficient vectors co and ct for outcome 
generation and treatment assignment, respectively, in which 
their elements were set as 0.5 if the corresponding covariate 
is causal and zero otherwise (i.e., c1

o ¼ ::: ¼ c10
o ¼ 0:5, c11

o ¼

::: ¼ c100
o ¼ 0 and c1

t ¼ ::: ¼ c5
t ¼ c11

t ¼ ::: ¼ c15
t ¼ 0:5, 

c6
t , :::, c10

t ¼ c16
t , :::, c100

t ¼ 0). We sampled binary treatment 
assignment from a Bernoulli distribution with p ¼
rð
PD

d¼1 ctXÞ, where r is the sigmoid function. Outcomes 
were generated using a linear model Ya ¼

P
d cd

oXd þ 4aþ
�, where � � Nð0, 1Þ: As seen in the outcome generation 
model, the treatment effect size was set to four. For the 
experiments on the fully synthetic dataset, we report the 
mean (standard error) of the mentioned performance met
rics over 100 replications of data generation, each with N ¼
2000: We report the mean (standard error) FDR for only 
the VSCEN and D2VD, as the other methods cannot distin
guish the selected covariates and thus cannot calculate the 
FDR of confounders and outcome-predictors separately.

5.1.2. Exploring the behaviors of VSCEN
We begin our analysis of the VSCEN by conducting an 
ablation study. In this study, we conducted experiments on 
the fully synthetic dataset, disabling specific components of 
the VSCEN to clearly highlight its behaviors. Given the 
known ground-truth data generation process, this ablation 
study enables us to understand the functionality of each 
suggested component. Specifically, we tested the impact of 
each component introduced for variable selection on the 
estimation and variable selection performance. To achieve 
this, we performed experiments using the following four 
models:

1. Full VSCEN with all proposed components.
2. VSCEN without the use of the gradient reversal layer in 

outcome-predictor selection (i.e., utilizing only covari
ate-treatment correlation in Concrete random sampling 
for confounder selection).

3. VSCEN without the use of covariate-treatment correl
ation (i.e., employing only the gradient reversal layer).

4. VSCEN without both. These two components were 
incorporated into the VSCEN to train the selector 
layers, guiding them to select the desired covariates of 
outcome-predictors and confounders.

Figure 3 summarizes the results from the ablation study, 
with the evaluation metrics (PEHE, ATE error, FDR for 
confounder selection, and FDR for outcome-predictor selec
tion) shown for all four models tested. We present the aver
age performance and the corresponding standard error over 
100 replications. As shown in Figure 3(a)-(d), the estimation 
error was the lowest for the VSCEN with all model compo
nents (i.e., gradient reversal layer and the covariate- 

treatment correlation). Furthermore, removing the gradient 
reversal layer for outcome-predictor selection decreased the 
ability of both variable selectors and resulted in the worst 
FDRs. Similarly, without using the covariate-treatment cor
relation in selecting the confounders, the treatment effect 
estimation performance decreased, and higher PEHE and 
ATE error resulted.

Figure 3(e) and (f) shows the proportion of specific 
covariates selected by the models considered in the abla
tion study as confounders and outcome-predictors, respect
ively. Examining the covariates selected by the models in 
depth, the models without the use of the gradient reversal 
layer for outcome-predictors selection (cyan: w/o GRL & 
Corr., red: w/o GRL) often resulted in mixing up the con
founders and the outcome-predictors, as they are both pre
dictive of the factual outcome. The high confusion in 
variable selection was still evident for the model without 
the gradient reversal layer but with the use of the covari
ate-treatment correlation (red: w/o GRL), although the dif
ference in effect estimation performance was less 
pronounced than the difference in variable selection per
formance (Figure 3). We speculate that this model dis
played good estimation in spite of poor variable selection 
because it actually uses the same covariates as the full 
VSCEN in place to estimate the outcome, as confounders 
are identified as outcome-predictors and vice versa. 
Furthermore, the models without the gradient reversal 
layer occasionally selected treatment-predictors as outcome- 
predictors, which rarely happened for the models with the 
gradient reversal layer used (orange: w/o Corr., purple: 
Full VSCEN). Therefore, we conclude that both compo
nents used to train the selector layers help not only vari
able selection but also estimation.

5.1.3. Comparative results
Table 1 shows the estimation performance on the synthetic 
dataset of all models considered. The VSCEN had the low
est root PEHE among all contending models, showing its 
ability to accurately estimate the CATE. In addition, the 
VSCEN performed comparably with other methods in 
terms of ATE estimation. Compared to the D2VD (Kuang 
et al., 2017), which was the only baseline method capable 
of distinctively selecting confounders and outcome-predic
tors, the VSCEN exhibited superior variable selection per
formance for both covariate sets. In particular, the VSCEN 
outperformed the D2VD significantly in confounder selec
tion. This is expected, as the assumed causal structure for 
the D2VD does not consider instrumental variables, unlike 
the VSCEN.

We also examined which covariates were selected as 
confounders and outcome-predictors using the VSCEN 
(Figure 4). The left green bars represent the proportion of 
covariates selected as confounders and the right blue bars 
represent the proportion of covariates selected as outcome- 
predictors. As intended, X1, :::, X5 are generally selected as 
confounders, and X6, :::, X10 are generally selected as out
come-predictors. As seen in Figure 4, there were occasions 
when the confounders and outcome-predictors were 
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confused with each other, as both selections were trained to 
estimate the factual outcome well. However, instrumental 
variables (treatment-predictors), which we want to exclude 
deliberately, were not selected by the model. Therefore, we 
can see that each of the selectors was mostly able to select 
only the intended covariates.

5.2. Semi-synthetic data-based evaluation

Similar to experiments on the fully synthetic data, we con
ducted experiments on a popular benchmark dataset used to 
evaluate treatment effect estimation models. In specific, we 
used the Infant Health and Development Program (IHDP) 

Figure 3. Treatment effect estimation error and variable selection performance of the models in the ablation study. (a) PEHE, (b) ATE error, (c) FDR for confounder 
selection, (d) FDR for outcome-predictor selection, (e) Proportion of times each covariate was selected as a confounder by the models in the ablation study, 
(f) Proportion of times each covariate was selected as an outcome-predictor by the models in the ablation study (GRL: gradient reversal layer, Corr: covariate-treatment 
correlation).
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dataset (Hill, 2011). The IHDP is a suitable benchmark data
set for our purpose because we can identify both potential 
outcomes and which covariates were used to generate 
outcome.

5.2.1. Data generation
The IHDP dataset is originally from a real RCT on the 
effects of home visits by trained experts on child develop
ment. Hill (2011) derandomized this dataset by removing 
treated samples with non-white mothers, resulting in a data
set composed of 747 samples (139 treated and 608 control), 
with 25 real covariates regarding the child or the mother, 

such as the child’s birth weight and the mother’s age. In 
addition, using these real covariates and treatment values, 
Hill (2011) devised synthetic outcome generation schemes in 
which the outcome is generated using a randomly sampled 
subset of the observed covariates, allowing identification of 
the true outcome-generating covariates at each replication of 
outcome generation. We generated the outcomes using the 
nonlinear generation procedure of Hill (2011).3 Such a 

Table 1. Results on fully synthetic data.

In-sample Out-sample Variable selection

� ffiffiffiffiffiffiffiffiffiPEHE
p �ATE � ffiffiffiffiffiffiffiffiffiPEHE

p �ATE FDRC FDRP

LR lasso 1.95 (0.02) 1.33 (0.08) 1.96 (0.08) 1.34 (0.10)
CF 1.03 (0.04) 0.20 (0.08) 1.07 (0.06) 0.22 (0.08)
ORF 1.01 (0.04) 0.24 (0.09) 0.81 (0.05) 0.26 (0.10)
OAL 1.18 (0.01) 0.05 (0.04) 1.19 (0.03) 0.84 (0.19)
GLiDer 1.73 (0.01) 2.66 (0.03) 1.74 (0.02) 2.67 (0.08)
D2VD 0.25 (0.07) 0.25 (0.07) 0.94 (0.12) 0.32 (0.15)
TARnet 0.74 (0.06) 0.16 (0.08) 0.76 (0.07) 0.17 (0.09)
CFR 0.73 (0.07) 0.16 (0.08) 0.73 (0.07) 0.16 (0.08)
Dragonnet 0.73 (0.06) 0.15 (0.08) 0.76 (0.06) 0.16 (0.09)
TEDVAE 1.37 (0.15) 0.15 (0.09) 1.37 (0.15) 0.15 (0.10)
ABCEI 1.41 (0.03) 0.11 (0.06) 1.48 (0.09) 0.14 (0.10)
FSRM 0.55 (0.07) 0.27 (0.10) 0.53 (0.07) 0.25 (0.11)
VSCEN 0.36 (0.08) 0.15 (0.11) 0.36 (0.08) 0.16 (0.11) 0.19 (0.13) 0.24 (0.14)
�FDRC : FDR for confounder selection, FDRP : FDR for outcome-predictor selection. A lower value is better for all metrics presented.

Table 2. Results on semi-synthetic (IHDP) data.

In-sample Out-sample

� ffiffiffiffiffiffiffiffiffiPEHE
p �ATE � ffiffiffiffiffiffiffiffiffiPEHE

p �ATE FDRC[P

LR lasso 2.15 (0.12) 3.36 (0.29) 2.15 (0.13) 3.37 (0.41) 0.82 (0.23)
CF 1.23 (0.22) 0.33 (0.21) 1.30 (0.25) 0.36 (0.27)
ORF 1.04 (0.25) 0.39 (0.19) 1.06 (0.31) 0.40 (0.27)
OAL 1.47 (0.25) 0.25 (0.21) 1.47 (0.26) 0.50 (0.43) 0.61 (0.14)
GLiDer 1.88 (0.15) 2.77 (0.29) 1.88 (0.16) 2.78 (0.41) 0.60 (0.19)
D2VD 0.22 (0.16) 0.25 (0.20) 0.70 (0.16)
TARnet 1.09 (0.19) 0.16 (0.13) 1.17 (0.23) 0.19 (0.15)
CFR 0.98 (0.17) 0.16 (0.13) 1.07 (0.19) 0.19 (0.14)
Dragonnet 0.82 (0.11) 0.16 (0.13) 0.87 (0.15) 0.19 (0.14)
TEDVAE 0.66 (0.13) 0.14 (0.11) 0.66 (0.16) 0.15 (0.12)
ABCEI 1.58 (0.11) 0.22 (0.11) 1.61 (0.17) 0.23 (0.15)
FSRM 0.92 (0.32) 0.40 (0.33) 0.99 (0.33) 0.42 (0.34) 0.60 (0.31)
VSCEN 0.60 (0.20) 0.14 (0.10) 0.58 (0.19) 0.16 (0.12) 0.10 (0.10)
�FDRC[P : FDR for the union of confounders and outcome-predictors.

Figure 4. Proportion of times each covariate was selected as a confounder or an outcome predictor over 100 replications of the fully synthetic data.

3We generated our own version of the IHDP data in order to identify the 
outcome-generating (causal) covariates. This is because the publicly available 
version provided in Johansson et al. (2016) does not specify the outcome- 
generating covariates.
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semi-synthetic dataset allows the evaluation of treatment 
effect estimation models based on the assumed treatment 
effect size. The IHDP dataset is a well-known benchmark 
dataset used to evaluate treatment effect estimation models.

We again report the mean (standard error) of the perform
ance metrics over 100 replications of outcome generation 
using 25 real input covariate values and treatment assignment 
for 747 samples. Because the treatment assignment is taken 
from the original experimental data, we cannot distinguish 
the confounders from the outcome-predictors. Therefore, we 
report the mean (standard error) FDR for the selection of out
come-generating variables as either confounders or outcome- 
predictors (FDRC[P) for the applicable models.

5.2.2. Comparative results
Table 2 shows the estimation performance on the IHDP 
data. Similar to the fully synthetic data experiments, the 
VSCEN outperformed all contending methods in terms of 
root PEHE. Compared with the shallow models (LR Lasso, 
CF, ORF, OAL, GLiDer), the VSCEN achieved an improve
ment of at least 40%. Compared with TARNet, CFR, and 
Dragonnet, which are neural network methods that indis
criminately use all input variables, the VSCEN achieved 
improvements of approximately 20% to 30%. The VSCEN 
also outperformed the FSRM, which is a neural network 
method that incorporates variable selection. The ATE esti
mation performance was also the best among the contending 
models. The results provide evidence that incorporating the 
causal structure regarding the outcome and the treatment 
may improve estimation performance. Specifically, we find 
that recovering only the confounders and the outcome-pre
dictors from the data is sufficient for treatment effect esti
mation, which is the key task of this work. Furthermore, the 
VSCEN accurately selected the covariates used for outcome 
generation as either confounders or outcome-predictors 
whereas the previous variable selection models, both shallow 
and deep, performed poorly (Table 2). This indicates that 
the VSCEN is useful in distinguishing the variables that also 
need to be collected for future effect prediction.

5.3. Real data-based evaluation

Finally, we conducted experiments on real patient data to 
verify the effectiveness of the model in identifying true 
causal covariates in real causal situations.

We used the data from MIMIC-III (Johnson et al., 2016), 
which is a clinical database containing comprehensive dei
dentified data of approximately 50,000 Intensive Care Unit 
(ICU) patients from the Beth Israel Deaconess Medical 
Center in Boston, Massachusetts, to investigate the effect of 
antibiotics, which is a common treatment option for sepsis, 
on the 30-day mortality of septic patients.4 We extracted 41 
sepsis-related variables for 2773 patients (see Section 3 in 
the Supplementary Materials for details) as the covariates, 
whether the patient passed away within 30-days of ICU stay 
as the observed outcome, and whether the patient was given 
antibiotics as the binary treatment. The softmax probabilities 
of the 30-day mortality for treated and controlled 
(PðY ¼ 1jA ¼ aÞ for a 2 f0, 1g) were considered to be the 
estimated potential outcomes. We used the mean values of 
the covariates before the patient was given the treatment in 
consideration as the input covariate values.

We report the mean (standard error) estimated effect size 
and the p-value under the null hypothesis that the average 
treatment effect is zero over 100 repeated experiments on 
the same dataset with different train-test splits. The VSCEN 
estimated a statistically significant (p-value < 0:001) negative 
treatment effect of size 0.03 as the treatment effect of antibi
otics. In other words, the use of antibiotics on sepsis 
patients decreased the risk of mortality and was indeed 
causal to a patient’s survival. Although we cannot know how 
accurate the estimated effect size is as the ground-truth 
effect size is unknown, such a negative treatment effect was 
similarly suggested by other baseline models as well (esti
mated effect sizes by other baseline models are given in 
Section 3 in the Supplementary Materials).

We examine in depth the covariates selected by the 
VSCEN as confounders and outcome-predictors when the 
use of antibiotics is the treatment of interest. Figure 5 shows 
the proportion of times each covariate was selected as either 
confounder (left green bars) or outcome-predictor (right 
blue bars) over 100 repeated experiments. The most domin
ant confounder selected was the white blood cell count, 
which is one of the major symptoms of an infection. Thus, 
white blood cell count is a clear cause of antibiotic usage 
while also being a cause of increased mortality rate. Another 
dominant confounder identified by the VSCEN was the 

Figure 5. Proportion of selected sepsis-related covariates.

4Sepsis is an illness due to physiologic, pathologic, and biochemical 
abnormalities caused by infection (Singer et al., 2016).

IISE TRANSACTIONS 389

https://doi.org/10.1080/24725854.2024.2330085
https://doi.org/10.1080/24725854.2024.2330085


Glasgow Coma Scale (GCS), which measures the conscious
ness of patients. Indeed, GCS is another symptom that is 
commonly observed for patients with infection and is con
currently highly predictive of mortality (Udekwu et al., 
2004). Other covariates that were often selected as con
founders were vital signs, such as respiratory rate and heart 
rate, which are common predictors of mortality while being 
indicative of an infection. On the other hand, covariates 
such as age, weight, and comorbid conditions (e.g., cancer) 
may not be associated with antibiotic usage, but they are 
typical predictors of patient mortality. The VSCEN appro
priately selected these covariates as outcome-predictors 
instead of confounders. In conclusion, the VSCEN was able 
to simultaneously estimate treatment effects while selecting 
clinically meaningful confounding and outcome-predicting 
causal covariates.

6. Conclusion

In this study, we proposed the VSCEN for simultaneous 
treatment effect estimation and causal variable selection. 
Specifically, we incorporate the Concrete random sampling 
layers in a neural network for potential outcomes estimation 
to select confounders and outcome-predictors, allowing both 
estimation and selection to be performed in an end-to-end 
differentiable manner. Achieving both tasks simultaneously 
allows us to highlight the more important covariates for the 
treatment effect while quantifying the treatment effect size 
of interest.

We conducted experiments on various datasets to evalu
ate the proposed method in terms of both treatment effect 
estimation and causal variable selection. First, through 
experiments on fully synthetic data for which we know the 
complete underlying causal structure, we showed that the 
VSCEN is able to accurately estimate treatment effects while 
selecting the intended covariate subsets. Second, through 
experiments on the IHDP dataset, which is a commonly 
used benchmark dataset, we demonstrated the effective per
formance of the VSCEN for both treatment effect estimation 
and variable selection in comparison to contending models. 
Finally, through experiments on the MIMIC-III sepsis data, 
we displayed the ability of the VSCEN to select causally 
meaningful covariates in real clinical data while quantifying 
the treatment effect size.

Despite the success of the VSCEN in simultaneous treat
ment effect estimation and causal variable selection on both 
synthetic and real datasets, there are a few limitations that 
must be noted. First, the proposed model and its results are 
only applicable if the causal structure assumed in this study 
(Figure 1) is true. Hence, the results are not universal and 
cannot handle other causal structures (e.g., when there is 
selection bias due to a common child of the treatment and 
outcome). However, we believe this causal structure is prac
tical enough for most real observational data, because all 
direct causes of the treatment and outcome are taken into 
account. In addition, because the confounder selection uti
lizes the correlation between the covariates and the treat
ment assignment, the selection may be focused on those 

covariates with a stronger linear correlation with the treat
ment assignment. Although correlation is a distinguishing 
factor between confounders and outcome-predictors in the 
assumed causal structure, there may be situations in which 
the model over-selects a few dominant confounders in terms 
of correlation instead of selecting from a wider pool of can
didates. Lastly, this study focused solely on empirically sug
gesting the intended variable subsets and cannot guarantee 
their identification theoretically.

Despite these limitations, the VSCEN can be useful in 
providing accurate treatment effect estimation for various 
data, while increasing knowledge about the underlying 
causal structure. This can aid causal decision-making in sit
uations such as drug prescription, in which important causal 
variables must be primarily considered. In future research, 
we plan to expand the work to more complex causal scen
arios, such as those with selection bias or effect modifiers. 
Furthermore, we plan to extend our model to handle mul
tiple treatment scenarios.
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