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ABSTRACT

Due to the difficulties inherent in conducting controlled experiments, recent causal inference stud-
ies have focused on developing treatment effect estimation using observational data. One major
difficulty in causal inference from observational data is that the underlying causal structure is
unknown. This may result in the misidentification of potential sources of causal estimation bias,
such as confounders, which must be controlled for accurate estimation. To consider all possible
confounders and other relevant information, conventional methods predominantly use all
observed covariates indiscriminately. However, previous studies have shown that including all
covariates without considering their causal relationships may deteriorate the estimation perform-
ance. Although several data-driven variable selection methods have been proposed for treatment
effect estimation, they cannot distinguish the confounders from other outcome-related covariates
and are limited to simple regression forms. In this study, we propose a method called the Variable
Selection Causal Estimation Network (VSCEN) that performs treatment effect estimation and causal
variable selection simultaneously. Through end-to-end differentiable training, the VSCEN selects
only the covariates beneficial for effect estimation and uses only those selected for effect estima-
tion. Experimental evaluations on fully synthetic, semi-synthetic, and real datasets demonstrate the
VSCEN's superior performance in conditional average treatment effect estimation and competitive
performance in average treatment effect estimation along with its accurate variable selection
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capabilities.

1. Introduction

Causal inference, in particular, estimation of treatment
(causal) effects, has drawn great attention in recent years in
various fields, including medicine, econometrics, and social
sciences (Imbens and Rubin, 2015). Under the potential out-
comes framework (Rubin, 2005), the treatment effect is
defined as the difference between the potential outcomes of
possible treatment values. Although experimental studies,
such as Randomized Controlled Trials (RCTs) are the gold
standard for treatment effect estimation, there are many
cases where RCTs are often difficult to conduct, because of
multiple practical issues (Frieden, 2017; Deaton and
Cartwright, 2018; Goldstein et al, 2018). The increasingly
available observational data, or data that were gathered with-
out control for any factors, have served as an alternative to
RCT data and have been utilized to explore various causal
relationships in question. Beyond the classic methods that
have focused on population-level or group-level Average
Treatment Effect (ATE), the progressively increasing number
of studies on observational data has led to advancements in
individual-level treatment effect estimation (Guo et al.,
2020).

An essential problem in causal inference using observa-
tional data is that the true underlying causal relationships
between the observed variables are unknown. For instance,
one central task in treatment effect estimation is to identify
and control for confounders, which are variables causal of
both the treatment and the outcome. Uncontrolled con-
founders induce unwanted associations between treatment
and outcome, leading to biased estimation of treatment
effects. Although the backdoor criterion (Pearl, 2009) guar-
antees a minimal sufficient adjustment set, a complete and
accurate causal diagram of the data is unavailable in most
cases, making it difficult to precisely specify the necessary
variables in the analysis. Therefore, an easy option has been
to include all the observed covariates in a causal model in a
“throw-in-the-kitchen-sink” manner. However, some covari-
ates in fact hinder the estimation process when they are
included. For example, including covariates related to nei-
ther the treatment nor the outcome (which we call spurious
variables) and covariates predictive of only the treatment
and not the outcome (instrumental variables) may decrease
the estimation efficiency (Schisterman et al., 2009; De Luna
et al., 2011; Rotnitzky and Smucler, 2020) while potentially
increasing estimation bias (Myers et al., 2011). On the other
hand, previous studies have shown that including covariates
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associated solely with the outcome and not the treatment
(outcome-predictors) and confounders may be beneficial in
causal modeling (Brookhart et al, 2006; Rotnitzky and
Smucler, 2020).

In addition to improving treatment effect estimation per-
formance, the knowledge regarding the causal relationships
between observed covariates and treatment/outcome can
increase our understanding of the conclusions given by
causal models, which is particularly important in real-world
scenarios. For instance, in the field of healthcare, machine
learning has experienced significant growth over the past
years (Beaulieu-Jones et al., 2019). Although machine learn-
ing models have achieved remarkable success in various
clinical tasks, the lack of interpretability has raised skepti-
cism among clinicians regarding the clinical conclusions
derived from these approaches (Beam and Kohane, 2018).
This issue becomes more pronounced when the question at
hand requires causal knowledge, as spurious correlations
induced by unintended causal relationships, such as con-
founders, can lead to erroneous conclusions. Therefore,
obtaining and incorporating the information about the
potential causality of covariates while estimating the treat-
ment effect in question is an advancement towards making
interpretable decisions. Furthermore, such knowledge may
also help highlight the covariates that should be considered
with priority in future validatory experiments, in which their
needs were emphasized by multiple previous studies
(Gentzel et al., 2019; Gordon et al., 2019; Zhao et al., 2019).

In this study, we propose the Variable Selection Causal
Estimation Network (VSCEN), an end-to-end differentiable
neural network model that selects the important causal vari-
ables directly from the input data for more accurate estima-
tion of the individual-level treatment effect and increased
interpretability regarding the causal relationships within the
data. We focus on selecting confounders and outcome-
predictors, as these are the covariate subsets known to be
beneficial in treatment effect estimation (Brookhart et al.,
2006; Rotnitzky and Smucler, 2020). The VSCEN selects the
confounders and the outcome-predictors through two dis-
joint Concrete selector layers (Balin et al, 2019), which are
then used as inputs for treatment effect estimation through
a neural network. Each selection layer is trained in a distinct
manner suitable for selecting only the intended causal varia-
bles. We tested VSCEN on fully synthetic data, semi-
synthetic data, and real observational data to verify the
model’s treatment effect estimation and variable selection
capabilities. The results validate that VSCEN can select the
intended causal variables and accurately estimate both indi-
vidual-level and group-level treatment effects.

2. Related work
2.1. Causal models with variable selection

The full causal structure of data is needed to identify the
covariates necessary for treatment effect estimation.
However, defining the causal structure of the observed data
based on domain knowledge is challenging, even with only a
few covariates, as we need to handcraft the underlying
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causal relationships (Imbens, 2020; Butcher et al, 2021;
Kyrimi et al., 2021). Alternatively, previous studies explored
data-driven methods to select only the appropriate variables
to be included in causal estimation models. Shortreed and
Ertefaie (2017) proposed the outcome-adaptive lasso, which
uses the adaptive lasso regularization to select only the con-
founders and the outcome-predictors to be included in the
treatment assignment model and estimate the average treat-
ment effect using the obtained treatment model. Similarly,
Koch et al. (2018) proposed using the group lasso to select
only the confounders and outcome-predictors. The utiliza-
tion of group sparsity for data-driven selection of outcome-
predictors and confounders in causal modeling was also
used in Greenewald et al. (2021). However, while these
methods demonstrate the joint selection of confounders and
outcome-predictors, they fail to distinguish between the two.
Although Kuang et al. (2017) proposed an ATE estimation
method capable of distinctly selecting confounders and out-
come-predictors, the method overlooks the presence of
instrumental variables. Furthermore, all of these methods
focus on estimating the ATE only and have not been
extended to estimate the Conditional Average Treatment
Effect (CATE), which quantifies the individual-level treat-
ment effect. On a different note, Makar et al. (2019) pro-
posed a method for data-efficient treatment effect estimation
based on input variable distillation, in which they discrimin-
ate the confounders from other covariates predictive of the
treatment effect during the estimation process. Although
their work is capable of estimating the CATE, their method
relies on regression trees for interpretability, which has lim-
ited estimation capabilities.

2.2. CATE estimation using neural networks

Recent advances in deep learning have led to the develop-
ment of causal inference methods that utilize neural net-
works for accurate CATE estimation. Johansson et al. (2016)
proposed using neural networks to estimate the treatment
effect by first learning representations that ensure covariate
distribution balance between treated samples and controlled
samples and then using the representations to predict both
potential outcomes. Shalit et al. (2017) built upon the work
of Johansson et al. (2016) and proposed the counterfactual
regression, in which the representations were learned by
penalizing the integral probability metric between the treated
and controlled representations. Shi et al (2019) also pro-
posed a neural network model for causal representation
learning, named the Dragonnet, which utilizes propensity
score estimation in building the representations. Du et al
(2021) integrated adversarial learning and a mutual informa-
tion constraint to learn balanced representations. Other
works that use neural networks include Alaa et al. (2017);
Louizos et al. (2017); Yoon et al. (2018); Li and Yao (2022);
Zhou et al. (2022). However, they focus on the expressivity
of neural networks without considering the causal relation-
ships between the covariates and treatment/outcome varia-
bles. Hassanpour and Greiner (2019), Zhang et al. (2021),
and Wu et al. (2022) proposed methods to decompose the
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input data into latent representations that act as confound-
ers, instrumental variables, and adjustment variables through
neural networks for more accurate estimation of treatment
effects. However, such latent representations generated via
neural networks are unidentifiable in most cases (Roeder
et al, 2021; Wu and Fukumizu, 2021). Thus, even if these
methods can accurately estimate the CATE, every model
specification and initialization may result in drastically dif-
ferent latent representations, which may lead to a misinter-
pretation of the underlying causality of the observed
covariates. Furthermore, while the learned network weights
are used to determine the causal contribution of the
observed covariates to the latent variables (Hassanpour and
Greiner, 2019; Wu et al., 2022), it is difficult to trust that
these weights correctly reflect the true effect sizes, since
multiple weight matrices may yield the same result (Roeder
et al., 2021). Instead, this work aims to clearly highlight the
causality of the observed covariates by identifying the con-
founders and outcome-predictors directly from the input
variables, and then using these selected covariates to esti-
mate the CATE, which is the main departure from earlier
studies (Johansson et al, 2016; Hassanpour and Greiner,
2019; Zhang et al, 2021; Wu et al, 2022). On a separate
note, similar to our work, Chu et al. (2020) proposed a
method for simultaneous variable selection and treatment
effect estimation entitled Feature Selection Representation
Matching (FSRM), which employs a sparse one-to-one layer
and incorporates sample matching inside a Wasserstein dis-
tance-regulated representation space in a network that
jointly estimates the potential outcomes and treatment
assignment. However, their method relies on the elastic net
regularization for variable selection (Zou and Hastie, 2005),
limiting its ability to select variables based on the desired
causal relationships between the observed covariates.

3. Background

3.1. Treatment effect estimation under the potential
outcomes framework

We work under the Neyman-Rubin potential outcomes
framework (Rubin, 2005) and assume binary treatment. Let
Y{ denote the potential outcome of subject i with observed
treatment A = g, that is, the outcome if the subject were to
be given treatment value a. For binary treatment, the factual
(observed) outcome can be defined as follows:

Y=(1-a)Y’+aY" (1)

The potential outcome of the unobserved treatment
assignment Y!™® is commonly referred to as the counterfac-
tual outcome. Then, we can define the Individual Treatment
Effect (ITE) as follows:

ITE; = Y} - Y. ()

However, because we do not have access to the true
counterfactual outcome, we cannot calculate the ITE dir-
ectly. Therefore, the individual-level treatment effect for sub-
ject i characterized by covariates x; is instead estimated
through the CATE:

CATE(X,) = E(Yil - Y10|X, = Xi)- (3)
The ATE can then estimated via:
ATE = E(CATE(x;)). (4)

3.2. Causal inference with observational data

We consider the standard assumptions for treatment effect
estimation under observational data.

Consistency: For observed treatment A =a, Y = Y“.
Overlap: If P(X =x) >0, then 0 < P(A =alX=x) <1
for all possible values of a.

e Unconfoundedness: Y° 1 A|X, ie., there are no unob-
served confounders.

o Stable unit treatment value assumption: The potential
outcomes of unit i do not vary with respect to the treat-
ment assignment of any j # i.

These assumptions are sufficient conditions for causal
identifiability (Rosenbaum and Rubin, 1983) with observa-
tional data.

Further, we assume the causal structure in Figure 1, in
which the observed covariates X can be partitioned into the
following variable sets based on their relationship with the
treatment A and outcome Y: confounders X¢, outcome-pre-
dictors X?, instrumental variables X!, and spurious varia-
bles XM. The assumed causal graph is natural for
observational data for which we do not know the true
underlying causal relationships, as we consider all possible
direct causes of the treatment and outcome.

Assuming such a causal structure, Greenewald et al
(2021) provide a proof for the c-equivalence (Pear]l and Paz,
2014) between the union set of confounders and outcome-
predictors X“ UX”? and the observed covariate set X. In
other words, it is sufficient to control for only the covariate
set X°UX? from the full observed set X to make an
unbiased estimation of the treatment effect.

3.3. End-to-end variable selection using concrete
random-variable sampling

The proposed model incorporates the Concrete selector layer
(Balin et al, 2019), which selects input variables through
Concrete (Gumbel-softmax) random variable sampling (Jang
et al.,, 2017; Maddison et al., 2017), for end-to-end selection
of the intended causal variables. Concrete random variables

X)) W
n=g

Figure 1. Partitioning of observed covariates X based on its causal relationship
to A and VY. Each subset of X must be discovered from the data. (A: treatment
assignment, Y: outcome, X' : instrumental variables, X : confounders, X? : out-
come-predictors, X" : spurious variables.)



are continuous relaxations of discrete random variables, in
which a Concrete vector m is defined as:

_ exp((loga; +g)/T)
S0 exp ((logag +g,)/T)
(5)

where g is a D-dimensional vector of i.i.d. Gumbel samples.
T is the temperature parameter determining the discreteness
of the Concrete random variable. As T — 0, m approaches
a one-hot vector with P(m; = 1) = a;/ > ;4. Concrete ran-
dom variables can be learned within an end-to-end differen-
tiable framework through the reparameterization trick
(Kingma and Welling, 2013), by learning the location par-
ameter & and sampling g.

Variable selection in neural networks using the Concrete
selector layer is performed by first sampling a Concrete random
variable m*¥), and then taking its dot product with the input
variables to obtain u¥) = X - m¥). These variables are then fed
into further neural network layers for a downstream task (Doo
and Kim, 2023), which is treatment effect estimation in our
case. As T — 0, u'®) becomes a single variable from the input
variables as determined by the nonzero element of the one-hot
vector m. We apply the exponential temperature annealing
schedule presented in Balin et al. (2019) with the modifications
described in Section 4. The annealing schedule sets T at epoch
b as To(Ts/ To)b/ B where T, and Ty are the initial and final
temperatures, respectively, and B is the total number of training
epochs. By applying such an annealing schedule, the selector
layers are trained to explore various variable combinations in
the beginning but later exploit the selection of the variables
most effective in minimizing the loss.

m ~ Concrete(a, T), m;

4. Proposed model

Our goal is to estimate the CATE of the supposed treatment by
predicting each counterfactual outcome using only observa-
tional data. Because the exact causal relationships among the
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observed variables are unknown in observational data, we aim
to select only the covariates that are helpful in accurate estima-
tion of potential outcomes, namely the confounders and the
outcome-predictors, and use only those covariates for treat-
ment effect estimation. We propose to achieve both tasks (treat-
ment effect estimation and causal variable selection)
simultaneously through an end-to-end differentiable training
method using neural networks. The VSCEN distinctively selects
confounders and outcome-predictors through its respective
Concrete selector layers specifically designed to select only the
intended covariate sets. This design ensures a clear and
straightforward interpretation of the selected covariates.
Furthermore, this separate selection process ensures the use of
both intended covariate sets in the treatment effect estimation.

4.1. Overall architecture

Figure 2 shows the overall architecture of the VSCEN. Let
X; € RP be the input covariates. For notational simplicity,
we hereafter omit the subscript i unless necessary. The
VSCEN first takes the input covariates and selects K¢ poten-
tial confounders and Kp potential outcome-predictors
through two separate Concrete selector layers. Each variable
selected by the Concrete selector layer ak) k= 1,..,Kc,
and v(%),k, = 1,...,Kp, is initially a weighted linear com-
bination of x!,...,x°, and approaches a one-hot vector as
training progresses. Then, at test time, the arguments of the
maxima are taken to obtain U, which consists of the
observed covariates assumed to be confounders X¢, and V,
which consists of the observed covariates assumed to be out-
come-predictors X? :

U= [u®), ., ue)], u) = xomemss” ©)

— Xargma)(jﬁ;k) (7)

V= [y, . y&n)], y®

On one side of the architecture, the selected variables U
and V are concatenated and fed into the further layers to

Confounder selection

Gradient
Reversal

Layer

Outcome-predictor selection

Figure 2. Network structure of the proposed VSCEN.
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obtain the estimated potential outcomes g and 7O The
estimated potential outcomes are then used to calculate the
estimated factual outcome Y using the observed binary
treatment assignment a through (1). On the other side of
the architecture, V goes through the gradient reversal layer
(Ganin and Lempitsky, 2015) in predicting the treatment
assignment A.

4.2. Training the outcome-predictor selector layer

Each selector layer is trained in a distinct manner such that
one layer prefers the selection of confounders X¢ and the
other layer prefers the selection of outcome-predictors X”.
This means that the instrumental variables X’ and spurious
variables XV will not be selected by these selector layers. To
train the outcome-predictor selector layer to select outcome-
predictors as V as intended, we leverage the fact that among
confounders, outcome-predictors, and instrumental varia-
bles, only the outcome-predictors are not predictive of the
treatment assignment (see Figure 1); the other two subsets
of covariates (i.e., confounders and instrumental variables)
are directly causal of the treatment assignment, as indicated
by the edges going into A from X¢ and X'. This observation
hints that the gradient reversal layer (Ganin and Lempitsky,
2015) can be placed on the network head that predicts A
using only the supposed outcome-predictors to enforce the
selector layer to select variables that are least predictive of
the treatment assignment while most predictive of the out-
come. That is, for every epoch, the network is optimized in
the direction opposite of minimizing the treatment assign-
ment prediction error, resulting in the exclusion of instru-
mental variables and confounders for V. Because we use V
in estimating an outcome, spurious variables that are causal
of neither the outcome nor the treatment are naturally
excluded, resulting in the selection of only the outcome-pre-
dictors as V.

4.3. Training the confounder selector layer

The confounder selector layer is trained by discriminating
the confounders from X“UX” as the training progresses.
As the network is trained to estimate the outcome, the con-
founder selector layer is likely to select either confounders
or outcome-predictors, although it has no knowledge of
whether the selected covariate is a confounder or an out-
come-predictor. Assuming that the network has already
trained to select outcome-related covariates with some train-
ing, we then force the confounder selector layer to prefer
the selection of confounders over outcome-predictors as U
through the use of covariate-treatment correlation. As shown
in Figure 1, there exists an edge from the confounders X¢
to treatment A, whereas no edge exists between outcome-
predictors X” and A. Hence, it is likely that the confounders
are more strongly associated with the treatment than the
outcome-predictors, making the covariate-treatment correl-
ation an obvious criterion that distinguishes the two.
Assuming we train the model for a total of B epochs, we
first train the confounder selector layer with the standard

exponential temperature annealing schedule for B’ epochs
(e.g, B'=B/2). We then incorporate the covariate-treat-
ment correlation into the Concrete random variable sam-
pling scheme at epoch b > B’ as follows:

exp ((logay x exp (B|p;|) +g;)/T(b))

m;(b) = — >
S0 exp (log s x exp (Bloul) + 8/ T(0)
where
pp = Corr(X®,4) if X ¢ XCat epoch (b—1),
¢ 0, otherwise.

(8)

The hyperparameter f§ controls the extent to which the cor-
relation is considered. Such adjustments inflate the location
parameter a for only the covariates correlated with treat-
ment assignment. Therefore, with the confounder selector
already trained to select some covariates predictive of the
outcome, the incorporation of covariate-treatment correl-
ation p encourages the confounder selector layer to select
confounders over outcome-predictors. This additional
inclination towards confounders using p is important for
confounder selection regardless of what variables are
selected by the outcome-predictor selector layer. In essence,
p reduces the chances of only outcome-predictors being
selected by both selector layers when selection is solely based
on prediction. The incorporation of p can also improve
training efficiency by guiding the confounder selector to
restrict searches on irrelevant variables. Note that while
increasing the number of training epochs may help the con-
founder selector prefer the desired covariates through
enhanced prediction in general, a mere increase in training
epochs may not be enough, as there always remains the pos-
sibility of selecting outcome-predictors over confounders
when selection is solely driven by prediction. Although
instrumental variables may also be associated with the out-
come as they are connected in the assumed causal structure
(Figure 1), we expect their effects to be negligible in predict-
ing the outcome since the observed treatment value A = g is
included in the estimation process. Hence, it is unlikely that
the confounder selector layer would select instrumental vari-
ables over confounders as U. Similar to the outcome-pre-
dictor selector layer, spurious variables are naturally
excluded because they are not causal of the outcome.

4.4. End-to-end training of VSCEN

£ - 1 §N C ()/ f(U a)) £ (Cl ‘1(')) ( )
ou i> > v > b, rea i> > 9
N i—1 ‘ / treat

where L,,; is set as the mean squared error loss of the fac-
tual outcome estimation and Ly, is set as the binary cross-
entropy loss of the treatment assignment prediction. Here, f
and h are neural network functions that estimate the out-
come and treatment, respectively. Note that L, is calcu-
lated using both selected covariate sets, whereas Ly.q is
calculated using only the selected outcome-predictor set. At
every epoch of training, the network trains to minimize the



total loss £ and is optimized in the direction of minimizing
the factual outcome estimation error while maximizing the
treatment assignment prediction error, resulting in the
desired selection of confounders and outcome-predictors.
Training of all network parameters, including both the neural
network parameters and variable selection location parame-
ters, is performed through standard backpropagation using
gradient descent, allowing fully differentiable end-to-end
training for simultaneous estimation of the treatment effect
and selection of causal variables. The training algorithm is
detailed in Section 1 in the Supplementary Materials.

5. Experiments

To test the abilities for treatment effect estimation and
causal variable selection, we conducted experiments on three
types of data: fully synthetic data, semi-synthetic data, and
real data. For each dataset, we aim to answer the following
evaluation questions:

e Fully synthetic data: How precisely can VSCEN estimate
the individual and population-level treatment effect?
How correctly can VSCEN identify the true confounders
and outcome-predictors?

o Semi-synthetic data: How precisely can VSCEN estimate
the treatment effect on popular benchmark data com-
pared to other methods? How correctly can VSCEN
identify the true outcome-generating covariates?

e Real data: Can VSCEN suggest reasonable effect size and
confounders/outcome-predictors on real-world data?

We relied on fully synthetic and semi-synthetic data due
to the innate difficulties of evaluating causal estimation
models on real-world observational data, in which neither
the true treatment effect nor the true causality between
observed variables is known for real data (Holland, 1986;
Shalit et al., 2017). We also conducted experiments on real
data to investigate the model’s ability to discover meaningful
causal covariates while estimating treatment effects.

We compared our method with previous methods for
treatment effect estimation, including linear regression with
Lasso Regularization (LR lasso), Causal Forest (CF) (Wager
and Athey, 2018), Orthogonal Random Forest (ORF)
(Oprescu et al., 2019), Outcome-Adaptive Lasso (OAL)!
(Shortreed and Ertefaie, 2017), Group Lasso and Doubly
robust estimation (GLiDer) (Koch et al., 2018), Data-driven
Variable Decomposition (D2VD)? (Kuang et al, 2017,
Kuang et al., 2022), Treatment-Agnostic Representation net-
work (TARnet), CounterFactual Regression network (CFR)
(Shalit et al., 2017), DragonNet (Shi et al, 2019), Treatment
Effect by Disentangled Variational AutoEncoder (TEDVAE)
(Zhang et al., 2021), Adversarial Balancing-based representa-
tion learning for Causal Effect Inference (ABCEI) (Du et al.,

'Because OAL was originally presented with an ATE estimator and not an
outcome-model, we used the OAL to calculate the Inverse Probability of
Treatment Weights (IPTW) but fit a separate linear outcome model.

“We only present the ATE error for D2VD as it is unsuitable for CATE
estimation.
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2021), and Feature Selection Representation Matching
(FSRM) (Chu et al., 2020). Details on hyperparameter ranges
and implementation are provided in Section 2 in the
Supplementary Materials.

For the fully synthetic and semi-synthetic data, we eval-
uated the methods primarily on two treatment effect estima-
tion metrics:

e Root Precision in the Estimation of Heterogeneous
Effects (PEHE)

Loh o) 500
€/PEHE — \/NZ((Y -V = (YO -y, (10)
i1

e Absolute ATE error

EATE = ’m —ATE| (11)

where 7 is the estimated potential outcome for treatment
value a and ATE is the estimated ATE. The PEHE measures
the individual-level effect estimation error, and the ATE
error measures the population-level effect estimation error.
Furthermore, the variable selection results are presented
through the False Discovery Rate (FDR), which measures
the proportion of falsely selected variables:
1SN s

> (12)

FDR:]E[

where S is the set of selected variables, Sy is the true set,
and |- | is the cardinality of the set. For the fully synthetic
and semi-synthetic data, we report the results for both in-
samples (training samples) and out-samples (test samples).
Note that in-sample estimation is still a meaningful task for
causal inference because the counterfactual outcomes remain
unknown to the model during training. For the real data,
we report the estimated treatment effect size and qualita-
tively assess the selected covariates based on well-known
domain knowledge. However, the true treatment effect in
real data is unknown because the counterfactual outcomes
are unavailable.

5.1. Fully synthetic data-based evaluation

First, we conducted experiments on a fully synthetic dataset,
in which the full data generation scheme including all coun-
terfactual outcomes is known completely. This allows us to
evaluate the methods for treatment effect estimation since the
ground-truth effect sizes are known, both individual-wise and
population-wise. It also allows us to evaluate the methods for
varijable selection, because the true confounder and outcome-
predictors in the data-generating process are known.

5.1.1. Data generation

We model after Zigler and Dominici (2014) and Shortreed
and Ertefaie (2017) for the fully synthetic data generation.
For each sample, we sampled the covariates X from a 100-
dimensional multivariate standard Gaussian distribution. For
interpretational simplicity, we fixed covariates {X', ..., X"} as
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the set of confounders, {X%,...,X'°} as the set of outcome-
predictors, and {X'!, ..., X3} as the set of treatment-predic-
tors. The remaining covariates {X'6,..., X'} are spurious
variables. Note that the results are general regardless of the
fixed covariate indices, since all covariates are generated via
the standard Gaussian distribution.

We next set two coefficient vectors ¢, and ¢; for outcome
generation and treatment assignment, respectively, in which
their elements were set as 0.5 if the corresponding covariate

is causal and zero otherwise (i.e., ¢} =..=cl’ =0.5c}! =
w=c®0=0 and =.=c¢= l=..=c’=05
., /¥ =¢%,...,c/% =0). We sampled binary treatment

assignment from a Bernoulli distribution with p=
a(3 L, ¢X), where o is the sigmoid function. Outcomes
were generated using a linear model Y* = 3", ¢/X? + 4a +
e, where € ~ AN (0,1). As seen in the outcome generation
model, the treatment effect size was set to four. For the
experiments on the fully synthetic dataset, we report the
mean (standard error) of the mentioned performance met-
rics over 100 replications of data generation, each with N =
2000. We report the mean (standard error) FDR for only
the VSCEN and D2VD, as the other methods cannot distin-
guish the selected covariates and thus cannot calculate the
FDR of confounders and outcome-predictors separately.

5.1.2. Exploring the behaviors of VSCEN

We begin our analysis of the VSCEN by conducting an
ablation study. In this study, we conducted experiments on
the fully synthetic dataset, disabling specific components of
the VSCEN to clearly highlight its behaviors. Given the
known ground-truth data generation process, this ablation
study enables us to understand the functionality of each
suggested component. Specifically, we tested the impact of
each component introduced for variable selection on the
estimation and variable selection performance. To achieve
this, we performed experiments using the following four
models:

1. Full VSCEN with all proposed components.
VSCEN without the use of the gradient reversal layer in
outcome-predictor selection (i.e., utilizing only covari-
ate-treatment correlation in Concrete random sampling
for confounder selection).

3. VSCEN without the use of covariate-treatment correl-
ation (i.e., employing only the gradient reversal layer).

4. VSCEN without both. These two components were
incorporated into the VSCEN to train the selector
layers, guiding them to select the desired covariates of
outcome-predictors and confounders.

Figure 3 summarizes the results from the ablation study,
with the evaluation metrics (PEHE, ATE error, FDR for
confounder selection, and FDR for outcome-predictor selec-
tion) shown for all four models tested. We present the aver-
age performance and the corresponding standard error over
100 replications. As shown in Figure 3(a)-(d), the estimation
error was the lowest for the VSCEN with all model compo-
nents (ie., gradient reversal layer and the covariate-

treatment correlation). Furthermore, removing the gradient
reversal layer for outcome-predictor selection decreased the
ability of both variable selectors and resulted in the worst
FDRs. Similarly, without using the covariate-treatment cor-
relation in selecting the confounders, the treatment effect
estimation performance decreased, and higher PEHE and
ATE error resulted.

Figure 3(e) and (f) shows the proportion of specific
covariates selected by the models considered in the abla-
tion study as confounders and outcome-predictors, respect-
ively. Examining the covariates selected by the models in
depth, the models without the use of the gradient reversal
layer for outcome-predictors selection (cyan: w/o GRL &
Corr., red: w/o GRL) often resulted in mixing up the con-
founders and the outcome-predictors, as they are both pre-
dictive of the factual outcome. The high confusion in
varjable selection was still evident for the model without
the gradient reversal layer but with the use of the covari-
ate-treatment correlation (red: w/o GRL), although the dif-
ference in effect estimation performance was less
pronounced than the difference in variable selection per-
formance (Figure 3). We speculate that this model dis-
played good estimation in spite of poor variable selection
because it actually uses the same covariates as the full
VSCEN in place to estimate the outcome, as confounders
are identified as outcome-predictors and vice versa.
Furthermore, the models without the gradient reversal
layer occasionally selected treatment-predictors as outcome-
predictors, which rarely happened for the models with the
gradient reversal layer used (orange: w/o Corr., purple:
Full VSCEN). Therefore, we conclude that both compo-
nents used to train the selector layers help not only vari-
able selection but also estimation.

5.1.3. Comparative results

Table 1 shows the estimation performance on the synthetic
dataset of all models considered. The VSCEN had the low-
est root PEHE among all contending models, showing its
ability to accurately estimate the CATE. In addition, the
VSCEN performed comparably with other methods in
terms of ATE estimation. Compared to the D2VD (Kuang
et al., 2017), which was the only baseline method capable
of distinctively selecting confounders and outcome-predic-
tors, the VSCEN exhibited superior variable selection per-
formance for both covariate sets. In particular, the VSCEN
outperformed the D2VD significantly in confounder selec-
tion. This is expected, as the assumed causal structure for
the D2VD does not consider instrumental variables, unlike
the VSCEN.

We also examined which covariates were selected as
confounders and outcome-predictors using the VSCEN
(Figure 4). The left green bars represent the proportion of
covariates selected as confounders and the right blue bars
represent the proportion of covariates selected as outcome-
predictors. As intended, X', ..., X’ are generally selected as
confounders, and X%,.., X! are generally selected as out-
come-predictors. As seen in Figure 4, there were occasions
when the confounders and outcome-predictors were
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Figure 3. Treatment effect estimation error and variable selection performance of the models in the ablation study. (a) PEHE, (b) ATE error, (c) FDR for confounder
selection, (d) FDR for outcome-predictor selection, (e) Proportion of times each covariate was selected as a confounder by the models in the ablation study,
(f) Proportion of times each covariate was selected as an outcome-predictor by the models in the ablation study (GRL: gradient reversal layer, Corr: covariate-treatment

correlation).

confused with each other, as both selections were trained to
estimate the factual outcome well. However, instrumental
variables (treatment-predictors), which we want to exclude
deliberately, were not selected by the model. Therefore, we
can see that each of the selectors was mostly able to select
only the intended covariates.

5.2. Semi-synthetic data-based evaluation

Similar to experiments on the fully synthetic data, we con-
ducted experiments on a popular benchmark dataset used to
evaluate treatment effect estimation models. In specific, we
used the Infant Health and Development Program (IHDP)
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Table 1. Results on fully synthetic data.

In-sample Out-sample Variable selection
€ 'PEHE €ATE € 'PEHE €EATE FDR( FDRP
LR lasso 1.95 (0.02) 1.33 (0.08) 1.96 (0.08) 1.34 (0.10)
CF 1.03 (0.04) 0.20 (0.08) 1.07 (0.06) 0.22 (0.08)
ORF 1.01 (0.04) 0.24 (0.09) 0.81 (0.05) 0.26 (0.10)
OAL 1.18 (0.01) 0.05 (0.04) 1.19 (0.03) 0.84 (0.19)
GLiDer 1.73 (0.01) 2.66 (0.03) 1.74 (0.02) 2.67 (0.08)
D2vD 0.25 (0.07) 0.25 (0.07) 0.94 (0.12) 0.32 (0.15)
TARnet 0.74 (0.06) 0.16 (0.08) 0.76 (0.07) 0.17 (0.09)
CFR 0.73 (0.07) 0.16 (0.08) 0.73 (0.07) 0.16 (0.08)
Dragonnet 0.73 (0.06) 0.15 (0.08) 0.76 (0.06) 0.16 (0.09)
TEDVAE 1.37 (0.15) 0.15 (0.09) 1.37 (0.15) 0.15 (0.10)
ABCEI 1.41 (0.03) 0.11 (0.06) 1.48 (0.09) 0.14 (0.10)
FSRM 0.55 (0.07) 0.27 (0.10) 0.53 (0.07) 0.25 (0.11)
VSCEN 0.36 (0.08) 0.15 (0.11) 0.36 (0.08) 0.16 (0.11) 0.19 (0.13) 0.24 (0.14)
*FDRc : FDR for confounder selection, FDRp : FDR for outcome-predictor selection. A lower value is better for all metrics presented.
Table 2. Results on semi-synthetic (IHDP) data.
In-sample Out-sample
€ /PEHE €ATE € /PEHE €ATE FDRCUP
LR lasso 2.15 (0.12) 3.36 (0.29) 2.15 (0.13) 3.37 (0.41) 0.82 (0.23)
CF 1.23 (0.22) 0.33 (0.21) 1.30 (0.25) 0.36 (0.27)
ORF 1.04 (0.25) 0.39 (0.19) 1.06 (0.31) 0.40 (0.27)
OAL 1.47 (0.25) 0.25 (0.21) 1.47 (0.26) 0.50 (0.43) 0.61 (0.14)
GLiDer 1.88 (0.15) 2.77 (0.29) 1.88 (0.16) 2.78 (0.41) 0.60 (0.19)
D2vD 0.22 (0.16) 0.25 (0.20) 0.70 (0.16)
TARnet 1.09 (0.19) 0.16 (0.13) 1.17 (0.23) 0.19 (0.15)
CFR 0.98 (0.17) 0.16 (0.13) 1.07 (0.19) 0.19 (0.14)
Dragonnet 0.82 (0.11) 0.16 (0.13) 0.87 (0.15) 0.19 (0.14)
TEDVAE 0.66 (0.13) 0.14 (0.11) 0.66 (0.16) 0.15 (0.12)
ABCEI 1.58 (0.11) 0.22 (0.11) 1.61 (0.17) 0.23 (0.15)
FSRM 0.92 (0.32) 0.40 (0.33) 0.99 (0.33) 0.42 (0.34) 0.60 (0.31)
VSCEN 0.60 (0.20) 0.14 (0.10) 0.58 (0.19) 0.16 (0.12) 0.10 (0.10)
*EDRcp : FDR for the union of confounders and outcome-predictors.
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Figure 4. Proportion of times each covariate was selected as a confounder or an outcome predictor over 100 replications of the fully synthetic data.

dataset (Hill, 2011). The IHDP is a suitable benchmark data-
set for our purpose because we can identify both potential
outcomes and which covariates were used to generate
outcome.

5.2.1. Data generation

The IHDP dataset is originally from a real RCT on the
effects of home visits by trained experts on child develop-
ment. Hill (2011) derandomized this dataset by removing
treated samples with non-white mothers, resulting in a data-
set composed of 747 samples (139 treated and 608 control),
with 25 real covariates regarding the child or the mother,

such as the child’s birth weight and the mother’s age. In
addition, using these real covariates and treatment values,
Hill (2011) devised synthetic outcome generation schemes in
which the outcome is generated using a randomly sampled
subset of the observed covariates, allowing identification of
the true outcome-generating covariates at each replication of
outcome generation. We generated the outcomes using the
nonlinear generation procedure of Hill (2011).”> Such a

3We generated our own version of the IHDP data in order to identify the
outcome-generating (causal) covariates. This is because the publicly available
version provided in Johansson et al. (2016) does not specify the outcome-
generating covariates.
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Figure 5. Proportion of selected sepsis-related covariates.

semi-synthetic dataset allows the evaluation of treatment
effect estimation models based on the assumed treatment
effect size. The IHDP dataset is a well-known benchmark
dataset used to evaluate treatment effect estimation models.

We again report the mean (standard error) of the perform-
ance metrics over 100 replications of outcome generation
using 25 real input covariate values and treatment assignment
for 747 samples. Because the treatment assignment is taken
from the original experimental data, we cannot distinguish
the confounders from the outcome-predictors. Therefore, we
report the mean (standard error) FDR for the selection of out-
come-generating variables as either confounders or outcome-
predictors (FDR¢_p) for the applicable models.

5.2.2. Comparative results

Table 2 shows the estimation performance on the IHDP
data. Similar to the fully synthetic data experiments, the
VSCEN outperformed all contending methods in terms of
root PEHE. Compared with the shallow models (LR Lasso,
CF, ORF, OAL, GLiDer), the VSCEN achieved an improve-
ment of at least 40%. Compared with TARNet, CFR, and
Dragonnet, which are neural network methods that indis-
criminately use all input variables, the VSCEN achieved
improvements of approximately 20% to 30%. The VSCEN
also outperformed the FSRM, which is a neural network
method that incorporates variable selection. The ATE esti-
mation performance was also the best among the contending
models. The results provide evidence that incorporating the
causal structure regarding the outcome and the treatment
may improve estimation performance. Specifically, we find
that recovering only the confounders and the outcome-pre-
dictors from the data is sufficient for treatment effect esti-
mation, which is the key task of this work. Furthermore, the
VSCEN accurately selected the covariates used for outcome
generation as either confounders or outcome-predictors
whereas the previous variable selection models, both shallow
and deep, performed poorly (Table 2). This indicates that
the VSCEN is useful in distinguishing the variables that also
need to be collected for future effect prediction.

5.3. Real data-based evaluation

Finally, we conducted experiments on real patient data to
verify the effectiveness of the model in identifying true
causal covariates in real causal situations.

Q%
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Covariates

We used the data from MIMIC-III (Johnson et al., 2016),
which is a clinical database containing comprehensive dei-
dentified data of approximately 50,000 Intensive Care Unit
(ICU) patients from the Beth Israel Deaconess Medical
Center in Boston, Massachusetts, to investigate the effect of
antibiotics, which is a common treatment option for sepsis,
on the 30-day mortality of septic patients.* We extracted 41
sepsis-related variables for 2773 patients (see Section 3 in
the Supplementary Materials for details) as the covariates,
whether the patient passed away within 30-days of ICU stay
as the observed outcome, and whether the patient was given
antibiotics as the binary treatment. The softmax probabilities
of the 30-day mortality for treated and controlled
(P(Y =1]A =a) for a € {0,1}) were considered to be the
estimated potential outcomes. We used the mean values of
the covariates before the patient was given the treatment in
consideration as the input covariate values.

We report the mean (standard error) estimated effect size
and the p-value under the null hypothesis that the average
treatment effect is zero over 100 repeated experiments on
the same dataset with different train-test splits. The VSCEN
estimated a statistically significant (p-value < 0.001) negative
treatment effect of size 0.03 as the treatment effect of antibi-
otics. In other words, the use of antibiotics on sepsis
patients decreased the risk of mortality and was indeed
causal to a patient’s survival. Although we cannot know how
accurate the estimated effect size is as the ground-truth
effect size is unknown, such a negative treatment effect was
similarly suggested by other baseline models as well (esti-
mated effect sizes by other baseline models are given in
Section 3 in the Supplementary Materials).

We examine in depth the covariates selected by the
VSCEN as confounders and outcome-predictors when the
use of antibiotics is the treatment of interest. Figure 5 shows
the proportion of times each covariate was selected as either
confounder (left green bars) or outcome-predictor (right
blue bars) over 100 repeated experiments. The most domin-
ant confounder selected was the white blood cell count,
which is one of the major symptoms of an infection. Thus,
white blood cell count is a clear cause of antibiotic usage
while also being a cause of increased mortality rate. Another
dominant confounder identified by the VSCEN was the

“Sepsis is an illness due to physiologic, pathologic, and biochemical
abnormalities caused by infection (Singer et al., 2016).
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Glasgow Coma Scale (GCS), which measures the conscious-
ness of patients. Indeed, GCS is another symptom that is
commonly observed for patients with infection and is con-
currently highly predictive of mortality (Udekwu et al,
2004). Other covariates that were often selected as con-
founders were vital signs, such as respiratory rate and heart
rate, which are common predictors of mortality while being
indicative of an infection. On the other hand, covariates
such as age, weight, and comorbid conditions (e.g., cancer)
may not be associated with antibiotic usage, but they are
typical predictors of patient mortality. The VSCEN appro-
priately selected these covariates as outcome-predictors
instead of confounders. In conclusion, the VSCEN was able
to simultaneously estimate treatment effects while selecting
clinically meaningful confounding and outcome-predicting
causal covariates.

6. Conclusion

In this study, we proposed the VSCEN for simultaneous
treatment effect estimation and causal variable selection.
Specifically, we incorporate the Concrete random sampling
layers in a neural network for potential outcomes estimation
to select confounders and outcome-predictors, allowing both
estimation and selection to be performed in an end-to-end
differentiable manner. Achieving both tasks simultaneously
allows us to highlight the more important covariates for the
treatment effect while quantifying the treatment effect size
of interest.

We conducted experiments on various datasets to evalu-
ate the proposed method in terms of both treatment effect
estimation and causal variable selection. First, through
experiments on fully synthetic data for which we know the
complete underlying causal structure, we showed that the
VSCEN is able to accurately estimate treatment effects while
selecting the intended covariate subsets. Second, through
experiments on the IHDP dataset, which is a commonly
used benchmark dataset, we demonstrated the effective per-
formance of the VSCEN for both treatment effect estimation
and variable selection in comparison to contending models.
Finally, through experiments on the MIMIC-III sepsis data,
we displayed the ability of the VSCEN to select causally
meaningful covariates in real clinical data while quantifying
the treatment effect size.

Despite the success of the VSCEN in simultaneous treat-
ment effect estimation and causal variable selection on both
synthetic and real datasets, there are a few limitations that
must be noted. First, the proposed model and its results are
only applicable if the causal structure assumed in this study
(Figure 1) is true. Hence, the results are not universal and
cannot handle other causal structures (e.g., when there is
selection bias due to a common child of the treatment and
outcome). However, we believe this causal structure is prac-
tical enough for most real observational data, because all
direct causes of the treatment and outcome are taken into
account. In addition, because the confounder selection uti-
lizes the correlation between the covariates and the treat-
ment assignment, the selection may be focused on those

covariates with a stronger linear correlation with the treat-
ment assignment. Although correlation is a distinguishing
factor between confounders and outcome-predictors in the
assumed causal structure, there may be situations in which
the model over-selects a few dominant confounders in terms
of correlation instead of selecting from a wider pool of can-
didates. Lastly, this study focused solely on empirically sug-
gesting the intended variable subsets and cannot guarantee
their identification theoretically.

Despite these limitations, the VSCEN can be useful in
providing accurate treatment effect estimation for various
data, while increasing knowledge about the underlying
causal structure. This can aid causal decision-making in sit-
uations such as drug prescription, in which important causal
variables must be primarily considered. In future research,
we plan to expand the work to more complex causal scen-
arios, such as those with selection bias or effect modifiers.
Furthermore, we plan to extend our model to handle mul-
tiple treatment scenarios.
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