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Abstract—Recent advances in wearable technology have led
to the development of various methods for stress sensing in
both controlled laboratory and real-life environments. However,
existing methods often rely on specialized or expensive sensors
that may not be easily accessible to the general population. In
this study, we investigate the feasibility of using off-the-shelf
smartwatches for stress detection in real-life scenarios. To achieve
this, we propose SOSW, a comprehensive methodology for robust
sensor data processing by considering both physiological and
contextual data. SOSW employs a two-layer machine learning
(ML) architecture. The first-layer ML model is trained and
validated using carefully collected data under controlled labo-
ratory conditions. The second-layer ML model is trained and
validated using data collected in real-life settings. We conducted
evaluations with 26 and 18 participants in controlled laboratory
and real-life conditions, respectively. The results indicate that
our methodology can successfully detect stressful events with an
F-1 score of up to 0.84 in laboratory conditions and 0.71 in
real-life scenarios using off-the-shelf smartwatches. The results
are comparable to those achieved by the state-of-the-art methods
that rely on dedicated wearables.

Index Terms—Commodity, context, field, in the wild, smart-
watch, SOSW, stress.
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I. INTRODUCTION

STRESS is the response of our body to an internal or
external threat to its homeostasis [1]. It represents a

defense mechanism that the body employs to maintain its
internal stability, commonly referred to as the fight-or-flight
response [2]. During the stress response, the body undergoes
internal changes, including an increase in heart rate (HR),
blood pressure, respiration, as well as improved oxygenation
and nutrition to the brain, heart, and skeletal muscles, among
other effects [3]. As a result, the senses become sharper,
and attention increases, enhancing the organism’s ability to
cope more effectively with the stressful situation [4]. Among
various physiological signals, the heart activity, which controls
the flow of blood in the veins carrying oxygen and nutrients
to various body parts, is a key indicator of the body’s
physiological stress response [5].

In daily life, our body utilizes the acute stress response,
which involves short-lived changes in our physiology, in
order to adapt to various situations [1], [6]. The acute stress
response is used to tackle everyday challenges, enhancing
performance, cognition, and memory in response to challenges
and threats [1]. However, prolonged exposure to stressors and
inadequate stress management can lead to malfunction in the
stress response system, resulting in episodic acute and chronic
stress [1]. Such sustained exposure to stressors can have a
cumulative toll and has been associated with various health
complications. For instance, it has been reported that chronic
stress can cause cardiovascular problems [1], compromise
the immune system [3], decrease work performance [7], and
overall decrease the quality of life [3], [8]. Therefore, our
work focuses on detecting acute stress in daily life settings to
enable timely interventions, before developing further health
complications.

A recent study revealed that stressful events that occur
in our daily lives may lead to heterogeneous physiological
responses [9] that are different from those observed in lab-
oratory settings. This aligns with the perspective of emotion
studies, which suggests that individuals’ emotions may vary
depending on various contexts (e.g., locations, social settings,
and activities) [10]. Traditional studies leveraged controlled,
laboratory-based settings to build a stress model based on
the physiological responses. However, researchers warned
that the practicability of such a model is limited [9], [11].
While laboratory-based models provide some hints for stress
detection in the wild, it is important to capture physiological
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Fig. 1. Sensors commonly used for stress detection.

responses under diverse stress episodes in the wild, and thus,
prior studies used experience sampling methods where users
are asked to self-report their perceived stress levels throughout
the day [9], [11].

One key challenge is reliable data collection of physiolog-
ical data in the wild [9], [11], [12], [13], [14], [15], [16].
Most of the prior studies relied on dedicated wearable HR
sensors (e.g., Polar H7 and Bioharness) as shown in Fig. 1,
which are bulky and inconvenient to wear [9], [17], [18].
These devices offer quality heart activity monitoring, but
discomfort of wearing on a chest limits temporal coverage as
well as adoption of a dedicated wearable hinders a large-scale
data collection. This work aims to leverage general-purpose
wearables like commodity smartwatches which offer passive,
continuous HR and activity tracking as in Samsung Watch
and Apple Watch, which further enable access to broader
contextual information of users, such as activity detection,
device use, social interactions, and health data. For this reason,
we expect that smartwatches can achieve higher temporal
coverage and broader contextual information in daily life
scenarios.

Our objective is to prove that we can build stress model
in real-life settings with commodity smartwatches in a reli-
able manner. This will help to realize real-time intervention
apps using commodity smartwatches, helping people to better
manage their stress in everyday contexts. For HR sensing,
a common method is photoplethysmography (PPG) sensing
which uses different wavelength lights and their reflection.
However, PPG is known to be error-prone under motion (or
physical activity) [19], [20] due to sensor displacement relative
to skin and loose wearing conditions [18], [21]. It is important
to understand the PPG sensing accuracy of a commodity
smartwatch and to systematically study how to deal with
PPG errors for model building. Therefore, our first research
question is RQ1: Is it possible for a commodity smartwatch
to accurately identify physiological stress?

Moreover, the population view of emotion argues that user’s
emotion depends on their contexts (e.g., places, social setting,
and activities) [10], and it is very important to consider
everyday contexts beyond the laboratory setting [22]. Beyond
user’s current physiological responses, we consider fusing
multiple contextual data, such as user’s activities, location,
social settings, device usage, mobility, among others. These
additional data streams act as contextual signatures, which may
help to improve the accuracy of stress model performance.
We employ multisensor contextual data fusion to address our
second research question RQ2: What is the attainable level of
accuracy in detecting stress by taking into account contextual
data in the wild?

While addressing these questions, we make the following
four-fold contributions.

1) We systematically analyze and demonstrate the lim-
itations of off-the-shelf smartwatches for measuring
individuals’ HR in realistic scenarios.

2) We develop a robust data processing pipeline that rigor-
ously addresses limitations of smartwatch PPG sensing
and incorporates diverse contextual data for real-life
stress detection.

3) This work combines physiological data collected from
commercially available smartwatches with contextual
information obtained from smartphones to accurately
identify and measure stress levels in the wild.

4) The extensive physiological and contextual data set,1

together with the codebase2 for our whole data process-
ing pipeline, is accessible to the public for the rapid
advancement of the scientific community.

We believe that SOSW makes a significant step toward stress
detection in real-life settings using general-purpose wear-
ables like smartwatches. Our methods enable smartwatches
to achieve reliable physiological stress detection in laboratory
settings, and their access to contextual data holds promise in
significantly enhancing stress detection in the wild, surpassing
the capabilities of dedicated wearables.

II. BACKGROUND AND RELATED WORKS

With recent advancements in sensor technology and mobile
devices, it has become possible to collect physiological data
and conduct experience sampling in real life, free-living
conditions using various devices, including smartphones,
smartwatches, and smartbands. Previous efforts have employed
both contact-based and contactless sensing methods, utiliz-
ing dedicated sensing wearables, to monitor physical and
physiological signals of stress [23]. While dedicated sensing
wearables (e.g., high-end, custom-made, and clinical-grade
devices) offer high-quality sensor data in controlled envi-
ronments like laboratory stress studies [24], [25], they also
present practical challenges when used for daily-life stress
tracking. These challenges include high costs, discomfort due
to bulkiness, and limited market accessibility [9], [17], [18].
As a result, the use of such devices in real-life studies may
raise questions about the reproducibility of findings [26].
An attempt to address this issue has been made by using
commodity chest straps for stress tracking [9]. However, chest
straps are invasive wearables that are not designed for daily use
and may be unwelcomed by subjects, limiting its continuous
sensing capability. In contrast, commodity smartwatches offer
a practical solution due to their compact and noninvasive
design, as illustrated in Fig. 1, leading to higher temporal cov-
erage of physiological sensing in real-life scenarios. Therefore,
we prioritize the use of commodity smartwatches for stress
sensing in real-life settings.

When it comes to sensing physiological signals related
to stress, previous research has demonstrated the feasibil-
ity of accurate stress detection using various physiological

1SOSW data set: https://www.kaggle.com/datasets/kobiljon/sosw-ieee-iot.
2SOSW codebase: https://github.com/qobiljon/sosw-pipeline.
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sensors, including PPG [13], [14], [27], [28], electrocardio-
graphy (ECG) [9], [11], [13], [29], galvanic skin response
(GSR) [9], [13], [14], respiratory inductance plethysmogram
(RIP) [11], [29], and skin temperature (ST) [14]. However,
it is important to note that physiological sensors (e.g., PPG)
have limitations in detecting perceived stress, as perceived
stress may not always manifest as immediate physiological
responses. Contextual information is known to significantly
influence users’ perceived stress levels, and when combined
with physiological data, it can enhance stress detection accu-
racies in real-life scenarios [11], [22].

To enhance stress detection accuracy, recent efforts have
explored the effectiveness of stress models initially trained
in controlled laboratory settings when applied to field data
sets containing real-life scenarios. This involves mapping
pairs of physiological and perceived stress inferences from
preceding data windows, typically the previous minute, using
techniques, such as Bayesian networks or hidden Markov
models (HMMs) [9], [11], [29]. However, it is essential to
note that such approaches heavily rely on physiological stress
response data obtained in controlled environments with limited
types of stressors. These may not always be a perfect match
for real-life scenarios, as different stressors can lead to
diverse physiological responses [9]. For example, the mental
arithmetic or socio-evaluative tasks in a laboratory protocol
may not be directly applicable to situations, such as driving
or other high-stress “fight-or-flight” scenarios encountered in
the wild.

Outside laboratory settings, there are few research efforts
that employ commercially available wearables to detect stress
in more naturalistic environments [30], [31]. For instance, the
study [30] effectively applied physiological data of commer-
cially available wrist wearables for stress detection of students
during a 50–70 min lecture. While the study offered valuable
insights into the physiological stress experienced by students,
it focused solely on a specific real-life situation, i.e., a short-
lived academic setting. Recently, another study [31] considered
stress detection in uncontrolled daily life settings by leveraging
commodity smartwatches paired with smartphones for the
collection of physiological and contextual data, respectively.
Although the study demonstrates a detection accuracy of 60%,
the authors overlooked the intrinsic limitations of optical-
based PPG sensors found in smartwatches, which inevitably
impact the accuracy of stress detection. Importantly, their field
study sampled users’ perceived stress labels at three specific
scheduled times: 1) 9 A.M.; 2) 4 P.M.; and 3) 9 P.M. However,
this approach may not fully capture the dynamics of perceived
daily life stress, which can vary at random times throughout
the day in natural conditions.

As opposed to these works, SOSW comprehensively
addresses the limitations of smartwatch-based physiological
signals and incorporates rich situational context data, including
previous contexts to detect perceived stress. Additionally,
SOSW is not limited to a singular real-life scenario; rather,
it encompasses a comprehensive approach to stress detection
within a variety of naturalistic settings, effectively functioning
in the wild. Furthermore, SOSW utilizes a physiological stress
model trained in a controlled laboratory setting to estimate

stress likelihood in real-life scenarios, a process we refer to
as laboratory knowledge transfer to field. SOSW then incor-
porates this information, derived from the laboratory model’s
output, as an additional factor when training a model on the
field data set to provide insights into the user’s physiological
stress state, which further enhances the performance of SOSW.

Let us in passing add that although there exist commercial
smartwatches that readily provide stress detection capabilities,
they are limited in several aspects. For instance, Fitbit’s stress
management application presents summary of physiological
readings to the user, and requires them to manually log their
perceived stress levels instead of detecting it passively [32].
Also, Samsung smartwatches provide proprietary software
that estimates physiological stress levels based on HR read-
ings [33]. However, there are limited documentations on the
proprietary software. Similarly, Garmin smartwatches also
report stress levels derived from HR arousals [34]. Common
limitation with these software is the limited accuracy of
physiological stress detection and lack of perceived stress
detection in real-life scenarios. Moreover, notably, even the
widely popular Apple Watch does not yet offer stress detection
features [35], [36]. In contrast to these limitations, our work
aims to develop a comprehensive methodology for perceived
stress detection in real-life scenarios. Rigorous evaluation of
the methods involved in SOSW prove the efficacy of our
methodology.

Since our study employs commodity smartwatches for
acquiring physiological readings (i.e., HR data) in real-life sce-
narios, it is highly important to systematically investigate the
reliability of such data in realistic conditions. Like chest-worn
sensors, such as ECG and respiratory, it has been demonstrated
that wrist-worn PPG sensors are also vulnerable to motion
artifacts [19], [20], [37], [38], [39]. Prior works commonly
rely on acceleration signals [40], [41], and various other PPG
signal filtering methodologies [42], [43] to handle such data.
Moreover, a recent study [21] argued that it is not enough
to rely solely on motion sensors to handle PPG inaccuracies,
reporting on how external lighting conditions between skin
and sensor can significantly affect PPG sensor accuracy as
well. They quantified various sensor to wrist distances using
artificial rings with different heights (i.e., 3, 5, 7, and 5 mm
with holes). However, our work systematically revisits the
importance of addressing both motion and looseness artifacts
in more realistic mobility and wearing conditions.

III. COMMODITY SMARTWATCH PPG
INACCURACIES—PRELIMINARY STUDY

A. Background and Motivation

Commodity smartwatches utilize a PPG sensor that includes
a light-emitting diode (LED) and photodiodes to capture
physiological signals, such as HR. The LED emits light
onto the skin, and the photodiodes measure the changes in
the amount of reflected light, providing information about
heart activity. In this process, as depicted in Fig. 2, the
changes in the reflected light correspond to blood volume
fluctuations in the wrist caused by the heartbeat. By analyzing
the generated waveform, higher-level information from the
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Fig. 2. Blood volume pulse signal acquisition by PPG sensor of commodity
smartwatch.

users’ heart activity, such as the HR and interbeat interval (IBI)
can be obtained. Such information, in particular the HR, is
commonly used as input parameters for stress detection, thus
accurate measurements of those parameters are of vital impor-
tance [44], [45]. Unfortunately, external light [18] and sensor
displacement over the skin [19] can influence the accuracy
of the PPG readings affecting the generated waveform and
ultimately disrupting the accurate measurements of the users’
heart activity.

Several studies have shown the susceptibility of PPG sensor
measurements to motion and looseness artifacts [18], [19],
[20], [21], [37], [38]. To address these challenges, existing
works commonly rely on acceleration signals and various
other PPG signal filtering methodologies [40], [41], [42]. The
effectiveness of smartwatches in different wrist movements
and when worn with a loose fit has been shown to have a
significant negative impact on the optical measurements col-
lected from these devices. Actions, such as gripping, flexing,
and extending fingers and wrist motions have been found to be
particularly damaging in this regard [20], [46]. The impact of
different sensor-to-skin distances and external light reaching
the optical sensor between the smartwatch and the skin has
been also analyzed. This analysis revealed that the PPG sensor
light intensity variance increases when the smartwatch is worn
loosely [18]. However, it is important to note that these studies
did not consider both motion and looseness simultaneously
in their experimental setups. Furthermore, some experiments
involved the use of external objects, such as 3D-printed
rings, to quantify the distance between the wrist skin and
the smartwatch [21]. Although such a setup facilitated the
evaluation of the impact of sensor-to-skin distance on HR
measurements, the experiment does not resemble real-life
scenarios.

B. Preliminary Study Setup

The aim of our preliminary study is to explore two major
limitations of commodity smartwatch PPG sensing: 1) the
impact of loose-wearing conditions and 2) increased wrist
motion intensities on the precision of HR estimation. This
study involved a systematic analysis that replicated real-world

TABLE I
PRELIMINARY STUDY SETTINGS, AVERAGED ACROSS 28 PARTICIPANTS.

“MOTION” REFERS TO THE DEGREE OF MOTION DURING THREE

DIFFERENT ACTIVITIES WITH NATURAL BODY MOVEMENTS.
“LOOSENESS” LEVELS PERTAIN TO THE TIGHTNESS OF THE

SMARTWATCH STRAP BASED ON THE PERCENTAGE RATIO

BETWEEN WRIST AND STRAP CIRCUMFERENCES

scenarios by varying smartwatch strap looseness levels and
wrist motion intensities, covering different realistic situations.
The specific methods used for quantifying strap looseness
levels and motion intensities, followed by our preliminary
study scenarios are detailed in the following.

In our study, we categorized the levels of looseness of
the smartwatch strap into three levels: 1) tight; 2) medium;
and 3) loose, based on the individual fit of the strap on
each participant’s wrist. To ensure accurate categorization,
we initially measured each participant’s wrist circumference,
specifically at the point where the smartwatch is worn. The
default strap that came with the smartwatch was utilized, with
its tightness being adjusted according to each participant’s
wrist circumference. For precise classification, we identified
the nearest strap hole that would bring the strap and wrist
circumferences closest to each other, marking it as “tight.” The
subsequent two holes were marked as “medium” and “loose,”
respectively. Our criteria for consistent looseness levels were
established based on the ratio between the participant’s wrist
circumference and the smartwatch strap’s circumference, rep-
resented as a percentage, as summarized in Table I.

With regards to quantifying motion intensity of wrist, we
observed participants during three natural body movements,
which took place on a standard chair and treadmill: 1) static
(i.e., sitting on a chair); 2) walking at a speed of 4 km/h;
and 3) running at 8 km/h, same as in a prior work [19]. To
reduce potential sources of bias or confounding effects, we
instructed participants to remain stationary while sitting on
a chair, minimizing their wrist motion, and to maintain their
natural wrist and body movements when using the treadmill,
avoiding the use of handrails.

In summary, we combined three strap-looseness levels and
three motion intensities, forming the following nine sce-
narios: 1) tight-static; 2) tight-walking; 3) tight-running;
4) medium-static; 5) medium-walking; 6) medium-running;
7) loose-static; 8) loose-walking; and 9) loose-running.
Throughout these nine scenarios, we collected PPG-based
HR data using the Samsung Watch 5 smartwatch [47] to
evaluate its accuracy. Simultaneously, we obtained ECG-based
HR data from the reliable Polar H10 chest strap [48], [49],
which served as our reference or ground truth HR data. Each
scenario, a 10-min session, aimed to explore the accuracy of
HR data of PPG sensor (with reference to ECG-based data)
under a specific wrist motion intensity and smartwatch fit.

To explore the HR accuracy of commodity smartwatch,
we recruited 28 participants, each of whom participated in
the nine scenarios spanning approximately 90 min. To ensure
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Fig. 3. Average MAE of IBI estimation by commodity smartwatch PPG
sensor data across participants and scenarios. The x-axis represents the nine
different scenarios, and the y-axis represents the average MAE in IBI data
estimation (ms) for the PPG sensor with reference to ECG-based data.

that the results are not impacted by any external variables
of the surrounding environment, our preliminary study was
conducted indoors with consistent lighting, temperature, and
humidity. We also shuffled the sequence of nine scenarios and
randomly assigned the smartwatch to the left or right wrist in
order to prevent potential bias or confounding effects related to
a specific scenario order or wrist placement, thus minimizing
the potential for systematic errors.

C. Preliminary Study Results

The preliminary study results, summarized in Fig. 3, pro-
vide the average mean absolute error (MAE) of the smartwatch
PPG sensor in estimating IBI data in milliseconds (ms) across
the 28 participants.

The accuracy of HR estimation tended to decrease with
higher levels of motion intensity. In contrast, the most precise
IBI estimations were obtained in static conditions, i.e., when
wrist motion was minimal.

Interestingly, the “tight” level of wearing the smartwatch
strap did not mitigate the errors in IBI estimation accuracy
caused by increased wrist motion intensities. This indicates
that motion intensity remains the primary factor influencing
IBI estimation accuracy. Furthermore, the impact of looseness
levels on IBI data accuracy is most pronounced when par-
ticipants are in a static condition, with no significant wrist
movements. Moreover, a significant increase in IBI estimation
error is observed as motion intensity rises, even when the
smartwatch is securely fastened to the participants’ wrists.

Based on obtained results, relying on the smartwatch’s PPG-
based HR estimation is most suitable when the participant
remains stationary. Notably, even in a static condition, there
is necessity to further process the PPG readings from the
smartwatch for reliable use, addressing the looseness levels. As
a result, we incorporate combination of motion and looseness
filters in our methodology to significantly enhance the quality
of the PPG readings. In the following section, we will delve
into the specifics of these filters in the methodology.

IV. METHODOLOGY: SOSW DATA PROCESSING PIPELINE

The ultimate objective of our methodology is to accurately
detect stress in real-world settings using physiological data
from smartwatches and contextual data from smartphones. To
this end, we introduce SOSW, a robust and comprehensive

Fig. 4. Laboratory data processing pipeline involving PPG signals of
commodity smartwatch.

data processing pipeline for laboratory and in-the-wild stress
detection. This pipeline not only overcomes the limitations
inherent in data from commodity smartwatches in real-life
scenarios, but also enhances accuracy by integrating rich
contextual data from situational environments.

Our methodology includes rigorous methods for handling
commodity smartwatch PPG signals in both laboratory and
real-life settings. This includes addressing challenges, such
as motion and looseness artifacts in real-life scenarios. We
train and validate a physiological stress detection model based
on laboratory data, selecting the most accurate and reliable
one. We utilize this model to gain insights into users’ physi-
ological stress states in real-life situations, drawing from the
knowledge established in the laboratory setting. Furthermore,
unlike existing approaches, SOSW incorporates handling of
rich contextual information derived from real-life settings in
addition to physiological data captured by smartwatches. This
approach aims to further enhance stress detection accuracy
in the wild. In the following sections, we provide a detailed
explanation of the data processing pipelines used in our
laboratory and field studies.

A. Laboratory Data Processing Pipeline

As depicted in Fig. 4, our pipeline for detecting physiolog-
ical stress under laboratory conditions consists of four main
processes: 1) data extraction; 2) data preprocessing; 3) feature
extraction; and 4) machine learning (ML) model generation
and validation. In what follows, we provide details on these
processes.

Data Extraction: The data encompasses physiological mea-
surements collected through commodity smartwatches during
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(a)

(b)

(c)

(d)

Fig. 5. Four steps of preprocessing of BVP data for physiological stress
model development. (a) Band-pass filter. (b) Outlier removal. (c) Interpolation.
(d) Peak detection for HR estimation.

the laboratory study, as well as information about participants,
such as their pseudo-identity and age. Additionally, it contains
logs detailing the participation process in the laboratory
study protocol, including the start and end timestamps for
each laboratory scenario. The laboratory study protocol was
designed to induce stress while recording physiological data
from smartwatch PPG and chest strap ECG sensors.3 More
details about the data collection and laboratory study protocol
can be found in Section V.

Given that SOSW primarily relies on smartwatch measure-
ments, we extract raw PPG signals the smartwatch and their
corresponding stress labels. The physiological readings were
matched with corresponding ground truth labels using their
timestamps and the start and end timestamps of laboratory
study scenarios. These raw data are subsequently subjected to a
comprehensive data preprocessing procedures to yield refined
data sets.

Data Preprocessing: Rigorous data preprocessing methodol-
ogy is essential to ensure that the PPG data from a commercial
smartwatch is reliable. Therefore, we paid special attention
to our preprocessing methods, which comprise the following
five subprocesses: 1) band-pass filtering; 2) outlier removal;
3) interpolation; 4) peak detection; and 5) handling invalid
HR and IBI data. The first four subprocesses are illustrated in
Fig. 5, and the last (fifth) subprocess is illustrated in Fig. 6. We
use these five subprocesses to get the most accurate HR and
IBI measurements from commodity smartwatch PPG signals.
It is worth mentioning that we employ the IBI over HRV due to
its simpler acquisition and a higher granularity of information.
Although the HRV data may also be employed, it is important
to note that the HRV is a derivative metric that is entirely
dependent on the IBI data. Therefore, while HRV provides a
view of autonomic nervous system activity and its modulation
of cardiac function, the IBI data can yield more immediate and
specific insights into cardiac rhythms, particularly in response
to acute stressors.

3The reliable HR data of chest strap ECG is used as ground truth to validate
the HR data estimated from the smartwatch PPG sensor readings.

Fig. 6. Invalid IBI and HR removal. Red shaded area depicts the segment of
data with invalid data, and yellow area depicts the same area without them.
The green area shows the final state of the data.

Band-Pass Filtering: First, we filter the BVP signals
by employing a third-order Butterworth band-pass filter to
extract the heartbeat information with lower and upper cutoff
frequencies of 0.5 and 3.7 Hz, respectively [9], [50]. By
setting the cutoff frequencies to such values, we guarantee
that undesired components are eliminated, only preserving the
relevant frequencies associated with the heartbeat.

Outlier Removal: After the BVP signal is filtered, the
signal passes through the outlier removal process. The outliers
in the BVP signal can arise from abrupt shifts in sensor
positioning on the skin or can be attributed to technical
anomalies related to the sensor or the smartwatch’s operating
system (OS). The outlier removal process employs a robust
statistical technique known as the 4× median absolute devia-
tions (MAD) method [51]. The 4×MAD is an efficient method
for identifying and eliminating sharp, sudden spikes within the
BVP signal. By applying this method, the outliers in the BVP
signal are carefully removed, ensuring that the resultant signal
retains more reliable and genuine information related to heart
activity.

Interpolation: Due to the removal of the outliers, the
BVP signal becomes noncontinuous. To address this issue,
linear interpolation is employed. Although there exist other
interpolation techniques [52], such as full degree polyno-
mial interpolation, piecewise cubic Hermite interpolation, we
selected the linear interpolation due to its robustness to noise,
straightforwardness, and computational efficiency.

Peak Detection: The interpolated signal passes through the
peak detection process in which the signal is normalized in the
range (0, 1) first before finding the peaks. To find the peaks and
ultimately estimate the HR and IBI, the heartpy open-source
Python library [53] is employed.

Handling Invalid HR and IBI Data: Fig. 6 depicts the final
subprocess of our data preprocessing pipeline, handling of
invalid HR and IBI data. There might be unavoidable cases in
which the estimation of the HR and IBI are invalid due to the
noise of the BVP readings in the wild from the smartwatch.
In these cases, to guarantee appropriate values of HR and
IBI, invalid values are discarded. Consequently, estimated HR
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values that fall outside the physiologically plausible range of
30 to 220 beats per minute [9], [50] are replaced with “NaN”
to denote their invalidity. As a consequence, noncontinuous
data (with gaps) are created. To solve this problem, in
instances where IBI and HR values are missing, we apply
linear interpolation which offers a reasonable estimation for
continuity.

Feature Extraction: The estimated HR and IBI are now
utilized to generate a pool of time-domain physiological stress
features. These features, which have demonstrated efficacy
in detecting physiological stress [9], [11], encompass various
statistical metrics derived from the HR and IBI data. These
features include the minimum, maximum, mean, median, stan-
dard deviation, kurtosis, skewness, 20th, and 80th percentiles
of the HR and IBI data, alongside the standard deviation of
successive differences (SDSDs) and root mean square of SD
(RMSSD) between consecutive IBIs. To create these features
a sliding window of 1 min is applied to both the HR and IBI
time series data. It is worth mentioning that the 1-min window
size is considered a standard for laboratory and ambulatory
physiological monitoring [9], [29], [54], [55], [56].

ML Model Generation and Validation: Several ML learning
models, such as the adaptive boosting (AdaBoost), gradient
boosting (GB), logistic regression (LR), multilayer perception
(MLP), random forest (RF), support vector machine (SVM),
and extreme GB (XGB) are evaluated in order to select
a model with the best performance. To train and evaluate
the ML models, we have employed the leave-one-subject-
out cross-validation (LOSO CV) which is a robust evaluation
technique commonly used for testing the generalizability of
an ML model in human studies [26], [57]. We evaluate our
models with the LOSO CV technique on the entire data set
(features, labels) obtained from 26 participants. We complete
our laboratory data processing pipeline by developing a precise
physiological stress model from the entire laboratory data set.
This model is subsequently applied in the “lab knowledge
transfer” step of field data processing pipeline, which we
elaborate in the following section.

B. Field Data Processing Pipeline

The objective of the field data processing pipeline is
to detect perceived stress under real-life conditions. To
achieve this, our pipeline utilizes physiological data from
smartwatches and contextual information from smartphones.
We meticulously preprocess this data in a systematic and
comprehensive manner, applying laboratory-based knowl-
edge to real-world scenarios. The pipeline, illustrated in
Fig. 7, addresses the motion and looseness artifacts associated
with commodity smartwatches in realistic conditions. This
ensures the reliability of HR and IBI data. Additionally,
the pipeline integrates diverse situational context data from
passive sensing and EMA. Similar to the laboratory data
processing pipeline, our field data processing pipeline consists
of four key steps: 1) data extraction; 2) data preprocessing;
3) feature extraction; and 4) ML model generation and vali-
dation. The following paragraphs elaborate on each of these
steps.

Data Extraction: We extract the physiological and wrist-
motion data gathered through commodity smartwatches, along
with passive sensing-based contextual data and EMA-based
contextual data collected using participants’ smartphones.
The data also encompasses participants’ pseudo-identities and
perceived stress data collected via EMA, which is utilized to
create binary stress labels in real-world scenarios.

From the smartwatch, we extract raw PPG and tri-axial
acceleration signals. Simultaneously, from the smartphone,
we extract users’ perceived stress using EMA, as well as
their contextual information through both EMA and passive-
sensing data. The EMA-based contextual data, as illustrated in
Table III, includes such information as users’ perceived stress,
ongoing activities, location, and social settings. Additionally,
the timestamps of EMA are leveraged to derive further
contextual information, such as the day of the week and the
hour of the day. Regarding passive-sensing-based contextual
data, as presented in Table II, we extract information related to
activity recognition, transitions, call logs, device screen state,
and location. Finally, the extracted physiological and wrist-
motion data from the smartwatch, along with the contextual
data from the smartphone, are matched with corresponding
ground truth labels.

The self-reported PSS-4 data [58] from EMA were uti-
lized to infer binary stress labels (i.e., ground truth) during
the training and validation steps. The two positive items,
specifically questions 2 and 3 in Table III, are reverse coded,
and the average of all stress-related questions is calculated
for each participant. This averaged stress score serves as the
threshold for subjective stress classification, with scores above
and below or equal to the mean labeled as “stressed” and “not
stressed,” respectively.

Data Preprocessing: The preprocessing steps for the smart-
watch PPG data largely follow those used in the laboratory
stress model pipeline. However, a comprehensive quality
control process called “Wrist-worn PPG Quality Control” is
included for discarding unreliable PPG data and consequently
improving the overall data quality. This process consists of
three subprocesses: 1) motion artifact removal; 2) looseness
artifact removal; and 3) HR and IBI estimation.

Motion Artifact Removal: It has been argued that physio-
logical arousal, that should be indicative of a stress response,
can be easily obfuscated by activity confounds, such as
changes in posture, movement of hands, and physical activities
(e.g., walking and running) [11]. Screening out such physical
activity confounds can be a plausible method to reduce
confusion on stress sensing. Therefore, the motion artifact
removal process identifies and removes specific segments of
the BVP signals aroused by the activity confounds.

Fig. 8 visually illustrates the sequential procedures
employed to eliminate the corrupted BVP signal caused by
activity confounds. The tri-axial accelerometer values are
utilized by analyzing the acceleration signal during a 1-min
time frame. To initiate the process, the timestamps of the BVP
and acceleration signals are meticulously synchronized. Then,
the 1-min interval of acceleration signal is partitioned into
six smaller subintervals, each spanning a duration of 10 s.
The standard deviation (denoted with σ) of the acceleration
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Fig. 7. Field data processing pipeline involving PPG signals of commodity smartwatch and contextual data of smartphone.

TABLE II
SUMMARY OF PASSIVE SENSING-BASED CONTEXTUAL DATA COLLECTED

IN THE WILD USING ANDROID SMARTPHONES

magnitude is computed from each of the six subwindows. If
the standard deviation of at least three subwindows exceeds
a threshold value, the associated 1-min window in the BVP
signal is considered to be compromised and thus excluded
from further processing. Here, the threshold value of 0.21384
was chosen based on empirical evidence, which demonstrated

that this particular threshold allows for the accurate detection
of both static and nonstationary states [59].

Looseness Artifact Removal: We have shown in our prelim-
inary study that BVP signal readings are considerably affected
by the degrees of loose wearing conditions of smartwatch,
see Section III. Therefore, to filter out the loose wearing
conditions and consequently obtain cleaner BVP signals, the
variance of light intensity readings from the smartwatch can be
utilized [18]. Particularly, we employ the HMM based on the
Viterbi algorithm [18]. The HMM comprises two hidden states
(accurate and inaccurate) and learns the transitions and emis-
sion probabilities based on observations. The HMM is trained
on the variance of the PPG light intensity. To optimize the
training process and enhance its efficiency, the Baum–Welch
expectation-maximization algorithm is employed. Employing
these methods not only ensures that the measurements are free
from the interference of looseness artifacts but also guarantees
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TABLE III
SUMMARY OF EMA-BASED CONTEXTUAL AND PERCEIVED STRESS DATA COLLECTED IN THE WILD USING SMARTPHONES

Fig. 8. Physical activity confound detection based on standard deviations of
acceleration signals from commodity smartwatch.

a higher degree of accuracy and precision in the results derived
from the PPG light intensity data [21].

Following the processes for motion artifact removal and
looseness artifact removal, additional preprocessing steps are
applied to the BVP signal. These steps include band-pass
filtering, outlier removal, interpolation, peak detection, and
handling of invalid data. These preprocessing steps are same
as those described in Section IV-A. These additional prepro-
cessing steps assist in obtaining more accurate HR and IBI
values, thereby help in deriving more reliable physiological
stress features.

Feature Extraction: Since the SOSW field pipeline follows
a two-layer learning architecture, we first extract features
for the ML model in the first layer. Similar to the case of
the feature extraction of the laboratory stress data processing
pipeline described in Section IV-A, we derive 1-min level time-
domain features from the estimated HR and IBI data, such
as minimum, maximum, standard deviation, kurtosis, among
other features.

Then, we feed these features to our ML model in the
first layer, the laboratory-based physiological model created in
Section IV-A, to obtain a refined feature, i.e., the likelihood
of a person being stressed. It is worth mentioning that to
create this refined feature obtained from the smartwatch, a
knowledge transfer type was devised, which is a well-trained
and validated ML model with ideal stress and nonstress data
set was exploited. Provided these 20 time-domain features, this
ML model learned to distinguish between stress and nonstress
of a person providing a probabilistic distinction, which is used
as a part of our pool of features for our ML model in the
second layer.

As a part of the pool of features for our ML model in the
second layer, we incorporate features extracted from the smart-
phone passive sensing data related to participants’ physical
activities, device use patterns, and mobility behavior. These
passive sensing-based features include time and frequency
domain information derived from the activity recognition,
transition, call log, screen state, and GPS location data.
Furthermore, we generate additional features from the user-
reported contextual data (i.e., EMA), including information
about participants’ ongoing activities, their locations, and
social settings. To create these features, we perform one-hot
encoding on the responses, converting the categorical data of
raw EMA responses into sets of binary encoded values. These
features are then employed to generate our field stress model.

ML Model Generation and Validation: Similar to the model
generation and validation in the laboratory stress process
pipeline in Section IV-A, our second (final) layer ML model is
generated and rigorously validated using the LOSO CV. Each
participant is iteratively left out as an “unseen” participant for
testing purposes, while the model is trained on the rest of the
participants. This process is repeated for each participant in
the data set, allowing for a comprehensive assessment of the
model’s performance across different users.

V. DATA COLLECTION

In this section, we provide a comprehensive overview of
our data collection methodology, detailing the types of data
collected, devices, and applications used for data acquisition,
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as well as the participant recruitment and demographic
information. We also outline the study procedures that gov-
erned data collection, ensuring transparency in our approach
of acquiring the necessary information for our stress detection
model.

A. Data Types

Physiological Data: We recorded raw PPG signals to mon-
itor user’s heart activity, and tri-axial accelerometer readings
to track user’s wrist motion, for which we utilized off-the-
shelf smartwatch, i.e., Galaxy Watch 5. The data from the
smartwatch were captured at a sampling rate of 12 Hz for both
PPG and accelerometer signals during laboratory and field
studies. Additionally, during the laboratory study exclusively,
we collected HR and IBI data at 1-Hz sampling rate using a
Polar H10 chest strap [48], which is noted for its accuracy in
previous studies [49].

Contextual Data: Alongside physiological and wrist motion
data of smartwatch, we also collected rich contextual data
through EMA and passive sensing techniques using smart-
phone. The rich contextual data provides insights that
complement the physiological data captured by the smart-
watch, allowing for a greater representation of the experiences
of the participants in real-life scenarios.

The EMA data comprises participants’ perceived stress
state and their situational contexts. Table III shows the EMA
questions with their possible answers prompted to the par-
ticipants. User’s perceived stress state was self-evaluated by
participants with PSS-4 questionnaire [58], which is widely
used in prior works [11], [60]. Concurrently, we adopt the
method proposed in [61] to capture user’s situational context
information through EMA. The method includes 13 categories
for user’s activity, five categories for location, and a binary
social settings, all of which represent the user’s in-situ context
at the time of filling out the EMA. Moreover, we devise an
additional contextual data from the time of filling out the
EMA, namely, the time of day and day of week.

In addition to the EMA data, we expanded our set of contex-
tual data by incorporating passive sensing data of smartphone.
The summary of the incorporated passive sensing data types
are provided in Table II. The data included user’s activity
information recognized by smartphones provided by activity
recognition API of the Android OS. This API provides updates
when a user transitions between activities, for example, from
walking to being still. Furthermore, it periodically reports
detected activities, accompanied by a confidence rating that
indicates, for example, if the device is with a user who is
walking and the probability that this activity has been correctly
identified.

Alongside activity data, we also collected device use
information, such as phone calls and device screen state. Phone
call data includes such information as the time each call
occurred, whether it was an incoming, outgoing, or missed
call, and how long the call lasted in seconds. On the other
hand, the device screen state information includes the state of
the smartphone’s screen (“on” or “off”) and keyguard (virtual
“lock”) state, which collected whenever user interacts with

the smartphone screen, i.e., on-change. For example, data is
recorded each time the user unlocks the screen or turns it off.

We also collected GPS location data, including latitude and
longitude expressed in degrees, accompanied by information
about the location’s accuracy measured in meters. The accu-
racy value signifies the radius of the possible area where the
user could be located, with smaller values indicating more
precise and accurate location information.

B. Data Collection Devices

We utilized a strategic combination of devices to capture
physiological and contextual data during both laboratory and
field stress studies. For both lab and field evaluation, we used
the Samsung Watch 5 smartwatch [47], aiming to determine
the viability of using commodity smartwatches for stress
detection. The choice of this particular device was driven by
two main factors: 1) unlike most of the commercially available
smartwatches, such as Fitbit by Google and Apple Watch, the
Galaxy Watch allows access to the raw sensing data [62] and
2) its widespread popularity that makes it suitable for practical
applications [36], [63].

During the laboratory phase, HR data using the Polar H10
chest strap were additionally gathered. In the field study,
while still leveraging the Samsung Watch 5 for physiolog-
ical readings and wrist-motion data, we employed Android
smartphones to gather EMA and passive sensing data. The
utilization of these devices allowed for a comprehensive
exploration of stress behaviors in real-life scenarios.

C. Data Collection Applications

EMA and Passive Sensing Data Collection App: We
developed a custom Android application to acquire EMA and
passive sensing data from users’ smartphones. With regards
to EMA data collection, we integrated firebase cloud mes-
saging [64] to trigger push notifications on user smartphones
whenever they are required to submit EMA self-reports. And
for passive sensing data collection, we deployed an always-
running foreground service in the smartphone, guaranteeing
uninterrupted acquisition of smartphone passive sensing data.
Finally, we carefully refined the application’s user interface
(UI) to enhance the user experience, with the goal of achieving
high user compliance.

Physiological and Wrist-Motion Data Collection App: We
also developed a custom application for WearOS smartwatch
OS, and similar to the smartphone application, it was also
deployed as an always-running foreground service. The appli-
cation also provided a watchface UI, in order to provide
essential information at a glance (e.g., current date and time),
and to consistently keep the application in the foreground
mode. Additionally, we adjusted specific system configurations
of smartwatches to facilitate uninterrupted, continuous data
collection by our application. These adjustments included
disabling the battery-saving “doze” mode and minimizing
interruptions from the watch’s native functions, such as its
activity and sleep detection features.

Data Collection Server: On the data collection server side,
we integrated our mobile data collector with the Easytrack
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Fig. 9. Three-stage laboratory stress study protocol, including socio-evaluative stress by public speech, cognitive stress by time-constrained mental arithmetic,
and physical challenge by cold-pressor test.

data collection platform [65], ensuring efficient data trans-
missions between participants’ devices and the server through
the gRPC framework [66]. The Easytrack platform features
general-purpose functionalities that enabled easy adaptation
to our stress detection use case. Easytrack’s server regularly
computes various data quality metrics and reports them to the
researchers, simplifying the monitoring process and ensuring
data integrity. A dashboard by EashTrack provides an overview
of data quality, enabling quick identification of any potential
issues or discrepancies about each participant and each source
of data (e.g., sensor or EMA).

D. Participant Recruitment and Demography

For our study, we recruited participants using email broad-
casts, flyers at a local university, and announcements on
local social media platforms, specifically targeting Android
device users. We successfully recruited 28 healthy participants,
comprising 16 university students and 12 from the general
population. Of these participants, 15 were female and 13 were
male. The average age of the participants was 22.8 years, with
a standard deviation of 2.7 years.

E. Data Collection Procedure

Laboratory Data Collection Procedure: Participants in the
laboratory data collection study underwent three distinct,
validated stress-inducing scenarios, in line with earlier stud-
ies [9], [29]. These stressors encompassed socio-evaluative,
cognitive, and physical challenges. The sequence and duration
of these stressors, as well as the initial 30-min baseline resting
period, are illustrated in Fig. 9. During the baseline rest period,
participants were instructed to sit comfortably in an empty
room and relax as much as possible, with controlled room
temperature and lighting to prevent external factors cause any
unintended physiological arousal. Additionally, participants
were asked to refrain from using their smartphones throughout
the laboratory study.

After the initial 30-min baseline rest period, participants
engaged in three stress-inducing scenarios.

1) Socio-Evaluative Stressor: Participants were given 4 min
to prepare before delivering public speech in front of
five researchers, including a professor. To intensify the
social stress associated with the task, their speeches were
video recorded, ensuring anonymity. After the speech,
participants had 5 min of rest to recover.

2) Cognitive Stressor: Participants underwent two sessions
of 4-min cognitive stressors: one while sitting on a
chair and the other in a standing position. The stressor
included a mental arithmetic task, specifically counting
backwards in steps of 7, similar to the method used
in [9]. To increase arousal, participants were shown their
progress in real time, and rewards were promised for top
performers. Five minutes of rest followed this task.

3) Physical Challenge: Last stressor was the cold pressor
test, where participants were instructed to immerse their
hands in ice-cold water for up to 4 min. Most partici-
pants lasted around 2 min. Following this, participants
had a 30-min resting period to conclude the experiment.

Field Data Collection Procedure: The two-week field
data collection was performed in unconstrained natural envi-
ronments where participants were not subjected to any
predetermined protocol. Only minimal guidelines to ensure
the uninterrupted collection of data, and to maintain the
study’s integrity, were instructed to the participants. They
were instructed to wear the smartwatch continuously, except
during bedtime or if it caused skin irritations. Participants were
also reminded to keep data collection applications on their
smartphones and smartwatches operational, with a particular
emphasis on keeping the smartwatch application in the fore-
ground to avoid data collection stoppage. Participants were
encouraged to keep sensor permissions active, including GPS,
to collect location data.

To effectively capture the perceived stress dynamics
throughout the day, participants received 12 push notifications
daily, prompting them to complete the EMA questionnaire at
randomized intervals between 40 and 80 min, allowing for a
comprehensive understanding of stress experiences in various
situations. The questionnaire was designed with precision to
minimize ambiguities, with a prompt asking participants to
reflect exclusively on the preceding hour to enhance accuracy
of the response and reduce memory biases, effectively captur-
ing the real-time stress experiences.

VI. EVALUATION

This section presents a thorough evaluation of our proposed
methodology, SOSW, with its performance in detecting stress
under laboratory and real-life conditions. We start with an
overview of our data set and then move to a detailed expla-
nation of our evaluation methods. Following this, we present
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the results from evaluations conducted on both laboratory and
field study data sets.

A. Data Set Summary

We present a detailed data set summary, providing insights
into our data collection and cleansing processes. For clarity,
we have chosen to report the amounts of data in minutes for
our laboratory study data set and in hours for our field study
data set.

In the laboratory study data set, we initially recruited 28
participants, but two participants withdrew from the labora-
tory study, leaving us with a total of 26 participants. Each
participant contributed 2 h of data during the data collection
phase. The data set comprises 864 min of baseline-rest data
and 323 min of stressor-related data, offering valuable insights
into physiological responses to various stressors.

In our field study data set, we collected data from 28
participants over a period of 2 weeks. This included a total
of 1928 h of physiological and wrist-motion data, 4930 h of
passive sensing contextual data, and 2867 h of EMA contextual
data with a total of 3732 EMA responses. To ensure the
high quality of the data, we meticulously cleansed the data
set by removing participants and segments with invalid or
missing data. Specifically, two individuals who had limited
participation in our laboratory study were excluded from the
field study data set. Their inclusion could have introduced
unwanted noise or biases, hence their exclusion.

In our field study, EMA data provided essential information
about participants’ perceived stress in uncontrolled, real-life
settings. The EMA data was a crucial part of the field
data set, hence, participant compliance was highly important.
However, two participants demonstrated significantly lower
EMA compliance rate, submitting significantly less EMA data
over two weeks compared to the rest of the group, leading
to their exclusion from the field data set. Furthermore, six
participants exhibited a pattern of inputting similar EMA
responses throughout the entire 2-week data collection period.
A lack of variations in self-report data raised concerns about
reliability and bias, and we decided to exclude these six
participants from the field study data set.

Further data cleansing steps involved excluding segments
with missing or invalid data, considering the continuous
sensors and their expected sampling rates. After this step, we
were left with 651 h of complete and usable data. Additionally,
we applied our motion and looseness artifact removal filters,
which resulted in the exclusion of 26 and 24 h of data,
respectively. The final data set, therefore, contains 601 h of
high-quality data (with 727 remaining EMA responses), after
the exclusion of participants and segments with invalid or
unreliable data, ensuring that our data set is of the highest
quality for analysis and research.

B. Evaluation Methods

In this section, we describe the evaluation methods and
performance metrics used for assessing our laboratory and
field study data sets. Through this, our objective is to examine
the generalizability of our work.

We start by assessing if features extracted from commodity
smartwatch PPG signals can distinguish between resting and
stress-induced periods in the laboratory study. For this, we
use Welch’s t-test of unequal variances to identify statistically
significant differences between two binary stress groups:
1) stress and 2) nonstress. Similarly, we apply the same
statistical test to evaluate the significance of features from
passive sensing-based contextual data in the field study. For
EMA-based contextual features, we utilize one-way ANOVA
tests. These tests help us investigate if categorical group
differences can statistically explain the variance in the overall
data set regarding perceived stress levels. By employing these
methods, we gain preliminary insights into the reliability of
these features, which aids in the development of ML models.

To evaluate the generalizability of our laboratory and field
models, we apply the LOSO CV technique. It is an effective
technique for testing the robustness of our methods by sys-
tematically leaving out one subject’s data at a time, helping us
ensure that our models can be applied to the data of unseen
users. In LOSO CV, each participant’s data is treated as a
single isolated fold, ensuring the model is tested against each
individual-specific variations in the data. We employ widely
used performance metrics, such as precision, recall, F-1 score,
specificity, accuracy, and area under the receiver operating
characteristic curve (AUROC). In summary, we aggregate
these metrics from LOSO CV, combining results obtained after
testing against each participant to provide a comprehensive
assessment.

C. Predicting Stress Based on the Laboratory Data Set

This section focuses on stress detection model performance
analysis in ideal, controlled laboratory settings. Evaluation
in these settings can provide insights into the reliability of
physiological data from commodity smartwatch in detecting
stress under ideal circumstances. First, we investigate the
distinctive physiological stress features, and then we leverage
such features to explore the performance of various ML
models in classifying stress in laboratory settings. To evaluate
the effectiveness of our methodology, we also conduct a bench-
mark comparison against recent stress detection methods.
In addition to smartwatch-based stress model performance,
we also report our ECG-based laboratory stress classification
performance as well.

Significant Physiological Features: We begin by determin-
ing whether the extracted features from the BVP signals are
able to capture a significance difference between the resting
and stress-induced periods of the laboratory study. To this end,
we employ Welch’s t-test of unequal variances to determine
which features showed any statistically significant differences
between the resting baseline period and each of the stress-
induction periods.

Table IV presents the results of Welch’s t-test, examining
the significance of various physiological features extracted
from PPG sensor data for distinguishing between resting and
stress-induced periods for three different stressors: 1) socio-
evaluative stressor; 2) cognitive stressor; and 3) physical
challenge. Several features exhibit statistical significance

Authorized licensed use limited to: DONG EUI UNIVERSITY. Downloaded on October 01,2024 at 05:17:43 UTC from IEEE Xplore.  Restrictions apply. 



TOSHNAZAROV et al.: SOSW: STRESS SENSING WITH OFF-THE-SHELF SMARTWATCHES IN THE WILD 21539

TABLE IV
STATISTICAL SIGNIFICANCE ANALYSIS OF PHYSIOLOGICAL STRESS FEATURES IN LABORATORY STUDY DATA SET USING WELCH’S t-TEST. TABLE

REPORTS THE SIGNIFICANCE OF PHYSIOLOGICAL FEATURES DERIVED FROM COMMODITY SMARTWATCH DATA IN

DISTINGUISHING BETWEEN BASELINE REST AND THREE STRESSORS

TABLE V
COMPARISON OF PERFORMANCES OF SEVERAL ML METHODS ON THE TASK OF BINARY STRESS CLASSIFICATION USING PHYSIOLOGICAL

DATA FROM LABORATORY STUDY USING COMMODITY SMARTWATCH DATA

across all stressors, indicating their effectiveness in capturing
physiological changes associated with stress. However, the
physical challenge shows fewer significant features compared
to the other two stressors. This suggests that the physical
challenge may be less effective in inducing stress across all
participants. In contrast, the socio-evaluative stressor emerges
as the most effective stressor for inducing stress response.
These results emphasize the potential of using these fea-
tures to detect stress-related physiological changes using PPG
measurements. This suggests that PPG-based stress detection
approaches may yield comparable results to stress detection
approaches employing ECG measurements.

Comparison of ML Methods: Having determined that the
features extracted from HR data (obtained from commercially
available, off-the-shelf smartwatches) showed significant dif-
ferences between rest and stress-induced periods, we then
used these features to build ML models designed to infer
whether the person is stressed or not stressed. The ML models
considered here are the AdaBoost, GB, LR, MLP, RF, SVM,
and extreme GB (XGBoost).

Table V shows the performance comparison of these ML
models, where several metrics including F-1 score, precision,
recall, specificity, and so on, are presented. Among these
metrics, F-1 score is a critical metric that balances precision
and recall, offering a comprehensive view of the performance

of the respective models. The LR stands out as the top-
performing model with an F-1 score of 0.835, indicating its
strong ability to accurately identify individuals experiencing
stress while maintaining a low rate of false positives. Although
other models, such as XGBoost and MLP also perform well,
the LR model demonstrates its proficiency in the binary stress
classification, making it a compelling choice. Additionally,
it is worth noting that the LR model consistently exhibits
superior performance across all the other performance metrics
compared to other models.

Benchmark Comparison: To assess the stress detection
performance of SOSW in laboratory settings, we conduct a
comparative analysis that includes a recent approach developed
by Dai et al. [28] utilizing PPG-equipped wristband, and
the work by Mishra et al. [9] that utilizes ECG sensor. In
this performance evaluation, we consider the best-performing
models from each of these studies. The comparison is based
on three commonly used performance metrics: 1) precision;
2) recall; and 3) F-1 score.

Fig. 10 shows the performance of several works for detect-
ing stress under laboratory conditions. This figure shows that
the proposed SOSW provides the best performance among the
works using physiological measurements obtained from the
commodity smartwatch PPG sensor. The SOSW provides
an F-1 score metric value of approximately 0.84 while the
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Fig. 10. Benchmarking of SOSW methodology against SOTA in detecting
physiological stress in laboratory settings.

approach proposed by Dai et al. 0.62 [28]. Additionally, when
compared to the approach by Mishra et al. [9], SOSW shows
notable proximity in the precision metric with a value of
0.85 as opposed to the prior work’s reported 0.86 precision.
Interestingly, it is also observed that when SOSW employs
the ECG measurements, it provides a higher F-1 score than
when it uses PPG measurements. This improved performance
can likely be attributed to the generally higher accuracy
of electrical-based ECG sensors, as opposed to the optical-
based PPG sensors. Moreover, although the SOSW yields a
marginally diminished recall, it exhibits superior precision and
near similar recall in comparison to the approach proposed by
Mishra et al. [9]. These results demonstrate the robustness of
our methodology in detecting stress in laboratory settings and
affirm the potential of commodity smartwatches in physiolog-
ical stress detection.

D. Predicting Stress Based on the Field Data Set

This section evaluates the performance of the SOSW stress
detection methodology in the wild. We begin by examining
the impact of contextual factors on perceived stress levels.
Then, we comprehensively evaluate diverse ML models on
the challenging task of detecting stress in the wild. To
determine the effectiveness of our approach, we also perform
a benchmark comparison with previous research that uses
dedicated sensors to obtain precise physiological readings in
real-world settings.

Significant Contextual Features: We start our evaluations by
assessing the significance of contextual features derived from
EMA on the perceived stress levels. To this end, we conduct
five separate one-way ANOVA tests with the perceived stress
score as the dependent variable and the EMA reported activity,
location, social setting, time of day, and day of week as
independent categorical values, respectively. The results of
these ANOVA tests are summarized in Table VI. This table
reveals that the categories related to reported activity, location,
and day of week are statistically significant (p < 0.001). This
indicates that there are significant changes in perceived stress
levels linked with various activities, places, and days of the
week (i.e., weekday or weekend).

We also analyze the effect of time-domain and frequency-
domain features extracted from passive sensing on the

TABLE VI
STATISTICAL SIGNIFICANCE ANALYSIS OF EMA-BASED CONTEXTUAL

FEATURES FROM FIELD STUDY DATA SET USING

ONE-WAY ANOVA TEST

perceived stress levels, as shown in Table VII. Employing
Welch’s t-test, similar to our analysis of physiological
features in Section VI-C, we find that several time-
domain and frequency-domain features related to physical
activity (passive sensing) data are statistically significant.
However, device usage information, such as call logs,
shows limited statistical significance. These findings sug-
gest that our time-domain and frequency-domain contextual
features, particularly those related to activity-based pas-
sive sensing data, have a correlation with perceived stress
levels.

Comparison of ML Methods: With these promising results,
we further evaluate the performance of SOSW in the task
detecting stress in the wild. The SOSW field data process-
ing pipeline leverages a two-layer detection architecture, in
which the first layer employs an accurate physiological stress
model devised from the laboratory pipeline, specifically the
LR model. This best-performing physiological stress model
devised from the laboratory data set is employed in the
first layer of the field data processing pipeline. The second
layer model is the contextual stress model, the final decision-
maker in detecting perceived stress in the wild. We evaluate
the efficacy of various ML models for this layer, includ-
ing AdaBoost, GB, LR, MLP, RF, SVM, and extreme GB.
Additionally, the effectiveness of these models is assessed
across diverse combinations of data, including physiological,
EMA, and passive sensing data.

Table VIII presents the performance analysis of the SOSW
pipeline for stress detection with the field data set using
various ML models and different combinations of features,
i.e., variants. Several important insights can be drawn from
this table. First, the addition of contextual information to
physiological data marginally enhances the model’s accuracy.
Second, fusing all features devised from field data set results
in an F-1 score of 0.681 with an increase of 2.3% points
compared to using only physiological data. Third, the highest
F-1 score in real-world conditions, at 0.712, is recorded
when the previous stress state is considered. This aligns with
finding from Mishra et al. [9] reported that accounting for
previous stress state significantly enhances the final classi-
fication accuracy. Be that as it may, our findings suggest
that a more extensive data set might not always translate
to better performance; in fact, it can potentially mislead
the models in the classification task. Finally, among the
various ML models, linear regression, GB, and SVM showed
higher accuracies, while the multilayer perceptron achieved
the maximum performance.
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TABLE VII
STATISTICAL SIGNIFICANCE ANALYSIS OF PASSIVE-SENSING-BASED CONTEXTUAL FEATURES IN FIELD STUDY DATA SET USING WELCH’S t-TEST.

TABLE REPORTS THE SIGNIFICANCE OF VARIOUS CONTEXTUAL FEATURES IN IDENTIFYING USERS’ (BINARY) PERCEIVED STRESS STATE

Benchmark Comparison: To assess the stress detection
performance of SOSW using the field study data set, we
conduct a comparative analysis with a previous work’s findings
reported in [9]. It is crucial to emphasize that the previous
study operates with the advantage of high-precision ECG and
GSR measurements acquired through dedicated hardware. In
this performance evaluation, we consider the best-performing
models from each of these studies. To be specific, for the
SOSW the MLP model, which employs physiological data
of general purpose, commodity smartwatch, and previous
stress state is considered. The comparison is based on three
commonly used performance metrics: 1) precision; 2) recall;
and 3) F-1 score.

Fig. 11 shows the performances of SOSW and the recent
prior work by Mishra et al. [9] in the task of stress detection
in the wild. Mishra et al. [9] reported achieving up to 0.70
F-1 score in their field study using ECG and GSR data.
This figure shows that the contextual stress model by SOSW
outperforms the counterpart by 1.2% points in terms of
F-1 score, utilizing commodity smartwatch and smartphone
data. While SOSW records marginally lower recall of 0.88

compared to 0.91 by Mishra et al. [9], it gains the upper hand
by outperforming in terms of precision with a value of 0.60,
exceeding the 0.57 precision score of the prior work. And
our methodology, SOSW, could achieve an F-1 score of 0.71
using commodity smartwatch physiological data and contex-
tual information of smartphone. These findings highlight the
potential of PPG data from commodity smartwatches, comple-
mented by contextual information, as a viable alternative to
traditional dedicated ECG and GSR sensors for stress detection
in the wild.

VII. DISCUSSION

A. Detecting Stress in the Lab and in the Wild

Under laboratory conditions, it was found that physiological
features extracted from off-the-shelf smartwatches are highly
correlated with stress instances. By employing such features,
several ML models were tested, and among them, the LR
showed the best performance with an F-1 score of 0.835. We
believe that such considerable improvement is achieved due
to the fact that SOSW consists of a robust data processing
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TABLE VIII
COMPARISON OF SEVERAL ML METHODS BASED ON THE F-1 SCORE METRIC ON THE TASK OF BINARY FIELD STRESS

CLASSIFICATION USING PHYSIOLOGICAL AND CONTEXTUAL FEATURES

pipeline and employs relevant features that are highly corre-
lated with stress instances.

As stress detection research transitions from laboratory
settings to real-life scenarios, researchers consistently report
that contextual data improves the performance of stress
detection [14], [22], contrary to solely relying on physio-
logical signals. While dependence on an external data to
the smartwatch could put limitations on the accuracy of the
methodology, luckily, the modern smartwatches also have
access to contextual data directly from the smartwatch itself.
Such contextual data includes user’s activities, step counts,
sleep duration, and so on [67]. However, we leave the nuanced
smartwatch-based contextual data, which has evolved fairly
recently, for future studies. Instead, our work uses contextual
data from smartphones, and smartphones have proven to
be highly suitable for a variety of real-life scenarios and
heterogeneous audiences [68].

In real-life conditions, SOSW not only exploits physiologi-
cal features but features extracted from contextual information
obtained through EMA and passive sensing. Additionally,
SOSW exploits a type of knowledge transfer in which the
well-trained and validated LR model is employed as a fixed
model on its first layer. The second ML model was trained
and validated employing contextual features alongside to the
output of the LR model which was employed in the first
layer.

We computed the statistical significance of the features
extracted from the EMA questionnaires and passive sensing by
employing the ANOVA test and Welch’s t-test, respectively.
The results of the ANOVA test highlight the significant impact
of activities, locations, and days of the week on perceived
stress levels. In contrast, the results of Welch’s t-test showed
that less than 20% of the features extracted from passive
sensing are correlated to perceived stress level. Most of signif-
icant features are those related to activity features. However,
intriguingly, features related to device usage specifically those
related to screen state are not significant at all.

Although Welch’s t-tests and one-way ANOVA tests show
some degree of contextual feature significance, aligning with
the previous work [22], the results of the LOSO CV technique
showed only marginal improvement in accuracy upon the addi-
tion of EMA and passive sensing-based contextual features to
physiological features. For future research, this may suggest

Fig. 11. Benchmarking of the SOSW methodology against SOTA in detecting
perceived stress in the wild.

that some degree of personalization is needed when using rich
contextual information to further enhance accuracy.

B. Limitations and Future Directions

The findings from both laboratory and real-life assessments
suggest that SOSW is a robust and practical methodology
for stress detection. Its effectiveness in capturing stress-
related changes, coupled with its integration with everyday
smartwatches and contextual information, positions it as a
valuable tool for monitoring and managing stress in various
settings, from controlled environments to real-life situa-
tions. However, we would like to acknowledge that there
exist certain factors that may impose limitations on its
performance.

A factor that may impose limitation on the daily-life
stress detection performance is the wide range of pos-
sible daily-life scenarios that can potentially impact the
user’s perceived stress. While our methodology can accu-
rately detect physiological stress arousals, there can be such
instances where perceived stress exhibits less pronounced
physiological arousal in real-life conditions, which may com-
promise the performance of our methodology. To mitigate
such undesirable outcome, SOSW leverages rich contextual
data encompassing behavioral biomarkers of perceived stress
alonside the physiological arousal information.

Another factor that can limit the performance of stress
detection methodology is the scale of a data collection study.
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With the number of participants involved our study, unfor-
tunately, we may not be able to claim generalizability. A
larger scale and more longitudinal data collection conducted
across diverse participant groups may be necessary to assert
the generalizability of the stress detection methodology. This
can cover a broader demographic spectrum, such as age,
gender, and health backgrounds, and longer study durations
(e.g., months or years) taking into account that individuals can
adapt to certain scenarios and perception of stress can possibly
vary over long periods of time. Last, but not least, a larger
data set would also enable effective utilization of advanced
deep learning techniques, such as deep neural networks for
potentially improving stress detection accuracies.

The daily-life stress detection performance can also be
limited by the battery life of the commercial smartwatches.
Although the battery life of the smartwatch Galaxy 5 guaran-
tees more than 60 h under typical use [69], continuous sensing
may deteriorate the life span, which may limit the temporal
coverage for physiological data acquisition. Another potential
problem that may arise is the loss of data collection due to
the interruption of data transmission via Bluetooth from the
smartwatch to the smartphone. To ameliorate such a situation,
the smartwatch can locally store the data and later, when the
connection is reestablished, upload the sensing data.

It is also important to note that while the specific find-
ings, presented in Section VI, are based on data collected
from the smartwatch Galaxy 5, the underlying principles and
methodologies can be applied to other devices with similar
capabilities. Nevertheless, we acknowledge that variations
in sensor accuracy and data processing algorithms across
different devices may impact the exactness of the results.
Therefore, as a future direction, we aim to expand the scope
of our study to include a variety of devices, which will
enhance the generalizability of our findings and provide a
more comprehensive understanding of the capabilities and
limitations of the current smartwatch technology for stress
detection.

VIII. CONCLUSION

In this study, we investigated the feasibility of using com-
mercially available smartwatches combined with contextual
data for detecting stress in both laboratory and real-life
settings. To do so, we first conducted a preliminary study in
which we analyzed the quality of physiological measurements
obtained through the smartwatches. This early study revealed
that physiological data collected through smartwatches are
easily distorted by motion and loose-wearing conditions. To
cope with this, we proposed robust data processing pipelines.
The SOSW methodology carefully combines motion artifact
and looseness artifact removal techniques for improving mea-
surements obtained through the smartwatches. Additionally,
it considers a two-layer modeling architecture leveraging our
best ML model obtained in our laboratory data set for improv-
ing stress detection. To evaluate our methodology, we collected
two data sets under laboratory and real-life conditions. For
the laboratory data set, using just physiological data obtained
from off-the-shelf smartwatches, our proposed methodology

can accurately detect stress instances with an F-1 score of
0.84. For the field data set, our methodology can detect stress
periods with an F-1 score of 0.66 using physiological data
alone and an F-1 score of 0.71 by combining physiological
and contextual data.
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