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Recent efforts to predict stress in the wild using mobile technology have increased; however, the field lacks a common
pipeline for assessing the impact of factors such as label encoding and feature selection on prediction performance. This
gap hinders replication, especially because of a lack of common guidelines for reporting results or privacy concerns that
limit access to open codes and datasets. Our study introduces a common pipeline based on a comprehensive literature
review and offers comprehensive evaluations of key pipeline factors, promoting independent reproducibility. Our systematic
evaluation aimed to validate the findings of previous studies. We identified overfitting and distribution shifts across users as
the major reasons for performance limitations. We used K-EmoPhone, a public dataset, for experimentation and a new public
dataset—DeepStress—to validate the findings. Furthermore, our results suggest that researchers should carefully consider
temporal order in cross-validation settings. Additionally, self-report labels for target users are key to enhancing performance
in user-independent scenarios.
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1 Introduction
Chronic stress is a growing concern, particularly among college students [71]. The prevalence and impact
of stress have prompted researchers to explore various strategies for alleviating it. One such approach is the
development of mobile applications specifically designed to cope with everyday stressors [28]. Furthermore, the
mobile sensor data collected from wearable sensors and mobile phones offer novel opportunities for extracting
invaluable insights into everyday stressors and enabling mobile context-aware interventions. The efficacy of
such context-aware interventions depends on accurately detecting when an individual is stressed.

Thus, prior studies have extensively explored how mobile sensors and interaction data can be used to predict
self-reported stress levels in real-world settings [35, 63]. In our work, we mainly focused on the in-the-wild,
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self-report stress prediction using mobile sensor data. In addition, we aim to use machine learning without
considering end-to-end deep learning because end-to-end deep learning models may be unsuitable for handling
event-based data (details regarding this are included in Section 6).
After a decade of development, very few literature reviews have summarized the common stress prediction

pipeline in this field [18, 64, 75]. For example, Fukazawa et al. [18] described the pipeline as comprising data
collection, feature design, machine learning and statistical analysis, and an evaluation setting. Certain “factors”
played a role in each step. One “factor” in the evaluation setting step is cross-validation, which can be conducted
through the k-fold or leave-one-subject-out (LOSO) approaches. Fukazawa et al. observed potential data leakage
using the k-fold cross-validation. However, insights from previous studies regarding stress prediction pipelines
have not been validated with implementations.
Recently, researchers have increasingly focused on reproducibility and generalizability issues in the broader

scope of mobile sensing [3, 7, 45, 47, 53, 79]. Most recent papers aim to achieve generalization across datasets
collected by different users and devices or in various countries. This is established with cross-dataset validation by
training on dataset 𝐴 and testing on dataset 𝐵. Mishra et al. [53], referred to this type of cross-dataset validation
as “cross-dataset reproducibility”. Cross-dataset generalizability and reproducibility have advanced; however,
research on within-dataset reproducibility using slightly different codes or analyses remains limited-Albertoni
et al. [5] defined this as “independent reproducibility.” In practice, each factor in the aforementioned pipeline
may impact the performance on the final performance. Reproducing results using the same dataset without
comprehensively understanding the impact of each factor can be challenging.
Despite a decade of efforts in this field, the performance of in-the-wild, self-reported stress prediction in

user-independent settings remains limited. Yu et al. [84] achieved a 63% macro F1 score in a group 5-fold cross-
validation, whereas Toshnazarov et al. [70] achieved a 65.8% F1 score using only physiological data in a LOSO
cross-validation setting with a pre-trained, in-the-lab best model. Further research is needed to shed light on this
low performance and potentially push the current performance limits.
This study is the first attempt at deriving a common pipeline in stress prediction through reproducibility

experiments. We aim to understand the impact of each pipeline ‘factor’ on the final performance, which will help
establish a benchmark and facilitate reproducibility in this field with open code and datasets. In addition, we
endeavor to enhance the performance limits by tuning the pipeline factors and debugging the reasons for the
currently low performance.
Therefore, we set the following research questions:
• RQ1What is the common pipeline for stress prediction using mobile sensor data?
• RQ2 What is the impact of each factor in a stress prediction pipeline on the final performance using a
public dataset?

• RQ3 How can the model performance in user-independent settings be improved?
• RQ4What is the primary reason for the low performance of real-world mobile stress prediction in user-
independent settings?

In addition to presenting a common pipeline, this study also meticulously examined factors within the
data analysis pipeline, adhering to the principles of independent reproducibility, using a public mobile sensor
dataset [35] with open code. We observed that the temporal order is essential when considering cross-validation
settings. In addition, removing samples of the neutral state may lead to overly optimistic results.
Furthermore, the sensor data require access to the target user’s data for personalization; however, the last

experience sampling method (ESM) stress label is valid for model improvement even in user-independent settings.
This indicates that human behavior derived from sensor data may vary across users; however, the temporal
dependency of stress states remains consistent. When sufficient labeled data from target users are available for
partial personalization (i.e., using part of the labeled data of the target user for training), the sensor data become
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more efficient for stress prediction. The Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
and user-independent cross-validation are also recommended for model evaluation.

We utilized the LOSO settings across two datasets, and integrating sensor data and previous self-reported stress
labels wasmost effective for enhancing stress prediction. This approach is consistent with prior research [48, 52, 70]
and highlights the importance of recent stress labels in improving the model performance. Additionally, this
finding is consistent with the benefits of partial personalization, underscoring the importance of incorporating
labeled data from target users to improve model accuracy. Our analysis indicated that overfitting and distribution
shifts across users are major contributors to poor performance in user-independent settings, necessitating an
enhanced focus on domain generalization and adaptation.
Moreover, the literature supports improving prediction accuracy through partial personalization and the

including the previous stress label as a feature [45, 48, 52, 70], further validating our results. Based on these
insights, we advocate a “user-in-the-loop” strategy, initially using the sensor data and the last stress label when
data from the target user is limited and transitioning to partial personalization with solely sensor data as more
user-specific labels are acquired. Thus, this work facilitates the development of more robust and accurate stress
prediction systems by identifying these challenges and opportunities.

2 Related Work

2.1 Real-world Mobile Stress Detection
Stress detection has been extensively explored in laboratories with previous studies achieving success using
an array of sensor data, including physiological metrics such as Electrocardiogram (ECG) readings [39, 57, 64].
Despite these advancements, transitioning from controlled environments to unpredictable real-world scenarios
presents a critical challenge for stress detection technologies.

The quest for accurate ground-truth labeling in emotion research has long relied on self-reported data. Histori-
cally, these data strongly correlated with facial expressions [62]. This correlation lays the foundation for using

Table 1. Open DataSets for Real-world Mobile Stress Detection

Dataset Duration #Users Feature Types Freq. of Labels Year

StudentLife [77] 10 weeks 48 Sensor data, ESM, pre-
and post- survey

3-13 ESMs administered
per day

2014

CrossCheck [76] 2-12 months 62 Sensor data Administered every 2-3
days

2016

Tesserae [42] 56 days 649 Sensor data, ESM, pre-
and post- survey

Administered daily 2019

TILES-2018 [55] 10 weeks 212 Sensor data, ESM, pre-
and post- survey

Administered daily 2020

TILES-2019 [82] 3 weeks 57 Sensor data, ESM, pre-
and post- survey

Twice a day 2022

GLOBEM [80] 10 weeks per year
(2018-21)

497 Sensor data, Weekly
ESM, pre- and post-
survey

Weekly 2022

K-EmoPhone [35] 7 days 77 Sensor data, pre- and
post- survey

10 ESMs administered
per day

2023

DeepStress [33] 6 weeks 24 Sensor data, pre-survey Avg. 4.9 ESMs sent per
day

2024
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self-reported labels as ground-truth benchmarks for emotion prediction. A pioneering study, AffectAura, allowed
users to record their emotional states, engage in reflective practices, and predict these states [44].

The Experience Sampling Method (ESM) [40] is widely recognized in collecting self-report surveys. Its applica-
tion spans various disciplines, offering a window into the participants’ emotions, thoughts, and daily activities as
they naturally occur. Upon receiving ESM notifications on their phones, individuals report these details daily.
A surge in technological innovation has occurred in the last decade, yielding advanced tools that enhance the
efficacy and reach of ESM, thereby enriching the data collected using this method [26].
In real-world mobile stress detection, combining mobile and wearable sensor data is a growing trend. As

highlighted in previous studies [10, 12], this approach leverages the capabilities of wearable technologies for
continuous, real-time stress monitoring. Moreover, some studies include past self-reported ESM data to enrich
the model [29]. Integrating diverse sensor types such as image and speech data [27, 32, 36, 73, 74] has gained
interest; however, practical challenges and privacy concerns in collecting such real-life data limit their feasibility.
Owing to these constraints, our research focused on conventional sensor data types. Table 1 details the existing
open datasets in this domain and provides a basis for future research to test our reproducible pipeline. In our
study, the K-EmoPhone dataset [15] was selected for the reproducibility experiments because of its high labeling
rate and raw sensor and phone interaction data availability.

2.2 Pipelines for Emotion Prediction Using Mobile Sensor Data
Prior studies have proposed common pipelines in the broader scope of emotion sensing using mobile or wearable
data; however, studies specifically focusing on the pipelines for mobile stress prediction are lacking. Fukazawa et
al. [18] proposed a common pipeline for mobile mental state detection, consisting of data collection, feature design,
machine learning and statistical analysis, and evaluation settings. Vos et al. [75] reviewed the pipeline for wearable
stress monitoring, comprising three main steps; preprocessing, feature engineering, and algorithm selection.
Regarding mobile emotion sensing, Yang et al. [81] designed a pipeline that included signal perception, feature
engineering covering handcrafted and deep feature extractions, and classification involving both traditional
machine learning and deep models. These prior works conducted extensive literature reviews in related fields
to develop the pipeline; however, a research gap exists because these studies have no real implementations. As
illustrated in Section 1, none of the insights derived from the literature reviews for pipeline design has been
validated using publicly available datasets.

2.3 Reproducibility, Generalizability, and Replicability
In machine learning, reproducibility, generalizability, and replicability have varied definitions. Albertoni et al. [5]
summarized the existing terminologies based on whether the experiment was conducted by the same team, on
the same data, using the same code and analysis, and so on. They defined reproducibility as using the same data
and the same code and analysis by different teams. In contrast, replicability involves using different codes and
analyses andor different data by different teams. Repeatability refers to replication by the same team, whereas
corroboration aims to validate findings from previous studies. According to ACM definitions [58], reproducibility
is the ability of a different team to arrive at the same scientific results using the same experimental
setup. According to Google Developers [25], generalization refers to a model’s ability to adapt properly to new,
previously unseen data. Raff et al. [61] defined independent reproducibility as using the same data and different
code and analysis.

We outlined our terminologies based on Albertoni. et al.’s terminology figure and other related works (Figure
1). The key terminologies used in this paper are highlighted in bold. We specifically focused on “independent
reproducibility,” which involves employing different codes and analyses on the same dataset.
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• Computational reproducibility
• Method reproducibility
• Experiment reproducibility
• Reproducibility

• Replicability
• Generalizability

• Independent reproducibility
• Robustness
• Data reproducible

• Replicability
• Generalizable
• Conceptual replicable
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Fig. 1. Summarized Terminologies (developed based on the work of Albertoni et al. [5])

In the broad fields of emotion, mental health, and daily activity prediction using mobile sensors and/or
wearable data, efforts have been made to explore generalizability and reproducibility. Xu et al. [79] explored
the generalizability of the in-the-wild depression detection models across different datasets. They explored
the generalizability across datasets collected from various institutions and years of data collection. Existing
studies [7, 37, 45] have focused on the generalizability of mood inference, activity detection, and personality
inference models across datasets collected from different countries. A study [3] also explored the cross-dataset
generalizability but defined it as merging multiple datasets and training and testing using the merged dataset.
Some studies [9, 53] have defined cross-dataset generalizability as transfer learning across datasets. However,
using the same code and analysis on different datasets is referred to as generalizability in our context (Figure 1).

In this domain, no previous work has specifically focused on independent reproducibility, which serves as the
central theme of this paper. Hereafter, any mention of ‘reproducibility’ denotes independent reproducibility.

2.4 Limited Performance in In-the-wild Mental State Prediction using Mobile Sensor Data and/or
Wearable Sensor Data

In wearable stress detection, Yu et al. [84] achieved a maximum macro F1 score of 63% in subject-independent
settings (group 5-fold cross-validation), even using semi-supervised learning. Meegahapola et al. [45] obtained a
53% Area Under the AUC-ROC for mobile mood inference for group 5-fold cross-validation. Recently, Toshnazarov
et al. [70] attained an F1 score of 65.8% for in-the-wild stress prediction with the pre-trained, in-the-lab best
model as part of a two-stage model with a LOSO cross-validation setting. Despite using pre-trained models, their
performance remains limited in in-the-wild datasets.
Given the low field performance in the field, several studies have explored tuning the factors in the pipeline

to improve the model performance limit. Sano et al. [63] explored different combinations of feature types and
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machine learning models to enhance performance. Hung et al. [30] achieved their best-performing model by
combining different time window sizes, feature selection methods, and machine learning models.

In-depth investigations into the causes of low performance have also been conducted. Pratap et al. [60] analyzed
the accuracy of personalized mobile mood detection models at the individual-user levels. They uncover that
personalization is effective for most users (80%), with an AUC-ROC of >50% and offers strong prediction results
for 11.8% users, with an AUC-ROC of >80%. Gao et al. [19, 20] identified the uncertainty in self-reported labels
as a factor contributing to poor mental well-being sensing performance in the wild. Xu et al. [79] highlighted
overfitting as a major barrier to model generalization across unseen users and suggested early stopping as a
mitigation strategy.
Despite previous attempts to enhance the model performance by tuning the pipeline factors, systematic

approaches are lacking because the pipeline and its factors are not clearly defined. Furthermore, existing research
merely identifies the phenomenon of low performance and lacks an in-depth investigation into the potential
causes using publicly available datasets.

3 Common Pipeline
Regarding the common pipeline in the in-the-wild mobile stress prediction field, RQ1, we conducted a literature
review and derived the steps and factors of a common pipeline. Based on three review papers published in 2017,
2020, and 2023 [18, 59, 81], we targeted 54 related papers. Given the in-the-wild mobile stress prediction scope of
this paper, our selection criteria exclude papers that are unrelated to stress prediction, do not use mobile sensor
data, do not target in-the-wild scenarios, and are not about building predictive models. Fifteen relevant papers
met the selection criteria.

Figure 2 illustrates the common pipeline derived, which summarizes and combines the pipelines from the prior
work. The pipeline comprises eight steps: preprocessing, feature extraction, feature preparation, feature selection,
data splitting, oversampling, model training, and model evaluation. Each step comprises different factors with all
possible alternatives. For example, in the preprocessing step (step 1), there are two options-a.1 and a.2-for factor
a of the preprocessing step (i.e., removing the invalid survey samples). We also provide supporting references
from relevant literature for each factor for the given pipeline components in Tables 2, 3, 4.

Specifically, several factors were not derived from the 15 related papers but are common in the broader scope
of emotion and human activity prediction using mobile and or wearable data. We also included important factors
that were not explored in the literature. For instance, b.2 (i.e., removing users with extreme label distributions
in Step 1 of preprocessing) has not been tested in previous works. However, we still included it in the common
pipeline setting, which aims to remove users who may always be stressed or not stressed as a proxy for the
low data quality of labels. Similarly, in the data splitting step (step 5), a.2 group k-fold cross-validation was not
used in the 15 related papers on mobile stress prediction but was used in Yu et al.’s work on wearable stress
detection [84] and Ferrari et al.’s work on human activity recognition [17]. Following this rationale, c.2, stratified
partial personalization and c.3, random partial personalization were used by Meegahapola et al. and Tarzav et al.
on mobile mood/food consumption level inference and wearable stress detection [45, 48, 69]. Lastly, b.1 and c.1
were added because of the time-series nature of the sensor data that were not tested in the previous work.

4 Methodology

4.1 Dataset
Given the scope of in-the-wild mobile self-report stress prediction, this study focused on predicting stress in
real time using in-the-wild mobile self-report data. Consequently, datasets that meet our criteria should include
self-reported stress labels and mobile sensor data, with a preference for those featuring in-situ stress labels. In a
common data collection setting, in-situ labels are collected multiple times throughout the day to capture real-time
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stress accurately. This contrasts with those gathered only at the day’s start or end, or even less frequently.
Frequent in-situ self-report collection is crucial because the aim is to predict real-time stress using mobile sensors.
The StudentLife, K-EmoPhone, and DeepStress datasets currently contain in-situ labels (Table 1). However, owing
to the large intervals between labels in the StudentLife dataset, which resulted in a lower data frequency, we
used only the K-EmoPhone and DeepStress datasets. We primarily focused on the K-EmoPhone dataset, which
features many users and a broader range of mobile and wearable sensor modalities than the DeepStress dataset.
The DeepStress dataset was used to corroborate the findings from the K-EmoPhone. The results of DeepStress
are discussed in Section 5.4.

4.1.1 K-EmoPhone Dataset. The K-EmoPhone dataset, introduced by Kang et al. [35], represents a rich amalgama-
tion of sensor and self-reported data captured from 77 participants over a week-long period. This comprehensive
dataset integrates heart rate metrics obtained from the Polar H10 ECG sensors with smartphone-sourced data,
including GPS location, physical activity, application usage, voice call and SMS logs, Wi-Fi scanning history, device
status, and battery consumption details. Complementing Polar H10 data and smartphone data, the Microsoft Band
2 wearable device provides additional physiological and behavioral data, such as heart rate via photoplethysmog-
raphy (PPG), R-R intervals (RRI), galvanic skin response (GSR), skin temperature, three-dimensional acceleration,
caloric expenditure, and step count. Table 15 lists the sensor data used in this study.
In addition to these sensor-based recordings, the dataset is enriched with personal information gathered

through participant surveys. Emotional states were meticulously logged using the ESM method, where subjects
rated their stress levels on a 7-point Likert scale ranging from -3 to +3. This method involved regular prompts

1. Preprocessing 2. Feature Extraction 3. Feature Preparation 4. Feature Selection

5. Data Splitting 6. Oversampling/Undersampling 7. Model Training 8. Model Evaluation

a. Remove invalid ESM samples
a.1 Remove expiratory
a.2 Remove neutral  

b. Remove invalid users
b.1 Remove users with too few
ESM samples
b.2 Remove users with extreme  
label distribution

c. Label encoding
c.1 Theoretical threshold
c.2 Statistical threshold for all 
users 
c.3 Statistical threshold for each 
user

a. Feature type
a.1 Sensor data
a.2 Survey data

a.2.1 Participant information
a.2.2 EMA context data
a.2.3 Previous EMA labels

b. Time window
b.1 Current (last value before label)
b.2 Immediate past (fixed time 
window before ESM)
b.3 Extended past (daily)

b.3.1 Epoch window 
b.3.2 Whole time window

a. Feature normalization
a.1 For all users (the statistics measure 
such as mean and std is calculated from 
the training set)
a.2 For each user

b. Impute missing values

a. Feature Selection
a.1 Filter methods 
a.2 Wrapper methods
a.3 Embedded methods

a. User-independent cross validation
a.1 Leave one subject out
a.2 Group-based k-fold cross-
validation

b. User-dependent cross validation
b.1 K-fold cross validation
b.2 Time series k-fold cross 
validation

c. Partial personalization
c.1 Random
c.2 Stratified
c.3 Time series

a. Oversample the minority class or 
undersample the majority class

a.1 Original Distribution
a.2 Random oversampling
a.3 Random undersampling
a.4 SMOTE/SMOTE-NC

a. Personalized vs generalized
a.1 Fully personalized (only using a single 
user’s data)
a.2 Similar-user model (only using similar 
user group’s data)
a.3 Multi-task learning 
a.4 Generalized model

b. Model selection
b.1 Traditional machine learning models 
(b.1.1 Gradient boosting, b.1.2 
RandomForest, b.1.3 SVM, b.1.4 logistic 
regression, b.1.5 KNN, b.1.6 decision tree, 
and b.1.7 Naïve Bayes classifier)
b.2 Neural network models (e.g. MLP)

a. Metric selection
a.1 Accuracy
a.2 F1 score (positive)
a.3 macro F1 score
a.4 AUC-ROC
a.5 precision (PPV)
a.6 recall

Fig. 2. Stress Prediction Common Pipeline
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Table 2. Related Work for Preprocessing & Feature Extraction

Steps Factors [54] [8] [24] [16] [30] [21] [50] [23] [14] [65] [67] [3] [35] [31] [70]

1.

a.1 ✓ ✓ ✓

a.2 ✓

b.1 ✓ ✓ ✓ ✓ ✓

b.2
c.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

c.2 ✓ ✓ ✓ ✓

c.3 ✓ ✓

2.

a.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

a.2.1 ✓ ✓ ✓

a.2.2 ✓ ✓

a.2.3 ✓ ✓

b.1 ✓

b.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

b.3.1 ✓ ✓ ✓

b.3.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1. denotes preprocessing, and 2. denotes feature extraction. Tick means yes (i.e., presence of the alternative), and blank means no (i.e.,
absence of the alternative). Each row denotes one alternative of the factors in the pipeline. Please refer to the previous common pipeline
figure for detailed information regarding the rows.

for emotion reporting, operational for 12 h daily-10 am to 10 pm-with an average prompt frequency of 45 min
intervals, thereby fostering a nuanced timeline of emotional fluctuation. The stress label distribution is attached
in Figure 10 in Appendix A.

4.1.2 DeepStress Dataset. For further analysis, we used the additional stress dataset named DeepStress which
closely mirrors the K-EmoPhone but was gathered from 24 participants (i.e., fewer participants) over 6 weeks (i.e,
a longer collection period) with fewer sensor modalities during the previous studies on the causal relationships in
everyday life data [33, 34]. We selected this dataset because it encompasses both mobile sensor data and in-situ
self-reported stress labels. Specifically, this dataset collected the participants’ stress levels using a 5-point Likert
Scale. Its composition is unidentical to that of the K-EmoPhone dataset; however, it offers crucial insights as it
includes data on participants’ locations, physical activities, and mobile app usage, which are vital for predicting
stress levels. Detailed information on this DeepStress dataset including data types and ESM notifications is
available at https://bit.ly/3whIEb2.

4.2 Baseline Pipeline
Establishing a baseline pipeline was crucial before designing the experiments to answer RQ 2, 3, and 4 (Figure 3).
This baseline allows us to analyze the impact and sensitivity of each factor in the pipeline, which is essential for
addressing RQ2 and reducing the complexity of potential factor combinations

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 143. Publication date: September 2024.
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Table 3. Related Work for Feature Preparation & Feature Selection & Data Splitting & Oversampling

Steps Factors [54] [8] [24] [16] [30] [21] [50] [23] [14] [65] [67] [3] [35] [31] [70]

3.
a.1 ✓ ✓ ✓
a.2 ✓ ✓
b ✓ ✓ ✓ ✓

4.
a.1 ✓ ✓ ✓ ✓ ✓
a.2 ✓ ✓ ✓
a.3

5.

a.1 ✓ ✓ ✓ ✓
a.2 ✓ ✓ ✓
b.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
b.2
c.1
c.2
c.3

6. a.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
a.2
a.3
a.4 ✓ ✓ ✓ ✓

3. denotes feature preparation, 4. denotes feature selection, 5. denotes data splitting, and 6. denotes oversampling/undersampling.

1. Preprocessing 2. Feature Extraction 3. Feature Preparation 4. Feature Selection

5. Data Splitting 6. Oversampling/Undersampling 7. Model Training 8. Model Evaluation

a. Remove invalid ESM samples
● Remove expiratory 

b. Remove invalid users
● Remove users with too few 

ESM samples
c. Label encoding 

● Theoretical threshold

a. Feature type
● Sensor data

b. Time window
● Current

○ Last value before 
ESM

● Immediate past
○ Fixed time window 

before ESM (15 mins)

a. Feature normalization
● For all users

○ The statistics measure 
such as mean and std is 
calculated from the 
training set

b. Impute missing values

a. Filter method
● LASSO filter

a. User-independent cross validation
● Leave one subject out

a. Oversample the minority class or 
undersample the majority class

● SMOTE-NC

a. Personalized vs generalized
● Generalized model

b. Model selection
● Traditional machine learning 

models
○ Gradient boosting

a. Metric selection
● AUC-ROC

Fig. 3. Baseline pipeline

4.3 Experiments for RQ2: Impact of Pipeline Factors on Model Performance
4.3.1 Preprocessing. In the preprocessing step of our common pipeline, we focused on three main factors:
removing invalid survey samples, removing invalid users, and label encoding (Figure 2). We consider two
alternatives for removing invalid samples: expired samples-those answered 10 minutes past the scheduled time,
and neutral state samples-representing the middle value on the Likert scale, specifically ‘0’ from the 7-point Likert
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Table 4. Related Work for Model Training & Model Evaluation

Steps Factors [54] [8] [24] [16] [30] [21] [50] [23] [14] [65] [67] [3] [35] [31] [70]

7.

a.1 ✓ ✓ ✓ ✓

a.2 ✓ ✓ ✓

a.3 ✓ ✓

a.4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b.1.1 ✓ ✓ ✓ ✓

b.1.2 ✓ ✓ ✓ ✓ ✓ ✓

b.1.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b.1.4 ✓ ✓ ✓

b.1.5 ✓ ✓

b.1.6 ✓ ✓ ✓ ✓ ✓

b.1.7 ✓ ✓ ✓

b.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

8.

a.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

a.2 ✓

a.3 ✓ ✓ ✓ ✓ ✓ ✓

a.4 ✓ ✓ ✓ ✓

a.5 ✓ ✓ ✓ ✓

a.6 ✓ ✓ ✓ ✓

7. denotes model training, and 8. denotes model evaluation.

scale in the K-EmoPhone dataset. The options for the removal of invalid users include either excluding users
with insufficient labels (less than 35 in the K-EmoPhone dataset) or excluding those exhibiting extreme label
distribution, where the count of the majority label is more than four times that of the minority label. Regarding
label encoding, we explore three alternatives: (1) using a theoretical threshold which is the mid-value of the label
range, (2) a statistical threshold averaged across all users, and (3) individual user mean thresholds. Note that
statistical thresholds are applicable only if the data is split in a user-independent manner to avoid data leakage.
In contrast, our baseline pipeline, shown in Figure 3, simplifies the approach by only removing expired label

samples, excluding users with too few ESM samples, and applying a theoretical threshold for label encoding.
Additionally, the experiment design for preprocessing, detailed in the Goal-Question-Method (GQM) format in
Table 5, outlines the structured approach we employed to evaluate these preprocessing steps.

4.3.2 Feature Extraction. Our feature extraction approach prepares hand-crafted features based on domain
knowledge and literature review. Tables 13, 14, and 15 in Appendix A depict details such as reasoning for using
this type of data, raw sensor data, preprocessing, information being aggregated into features, and extracted
features.
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Table 5. Experiment Design for Preprocessing, Feature Extraction & Preparation Steps

Goal Questions Methods

G1: Exploring how preprocessing
affects stress detection
model performance

Impact of excluding neutral states
on performance

Evaluate performance without
‘neutral state’ (0) samples

Effect of removing users with
extreme labels on performance

Assess performance after excluding
users with extreme label distributions
(majority/minority >4)

Influence of label binarization
choice on the final performance

Explore effects of various
label binarization thresholds

G2: Identify key features
impacting real-world
stress detection

Effect of adding participant
information to sensor data
on prediction

Compare sensor data only vs.
sensor data + participant information

Impact of including prior EMA
labels on sensor-only predictions

Compare sensor data only vs.
sensor data + previous stress label

Model performance if using
survey data only (participant
information or the last EMA label)

Test participant information only
and last stress label only

G3: Investigate how different
time window sizes
affect model performance

Performance fluctuations with
time window adjustments

Experiment with immediate past time
window sizes of 5, 10, 15, 30, and 45 mins
before ESM survey label; max duration
matches the average interval between labels

G4: Determine if current stress
correlates with extended past
events and if features from
the extended past predict
current stress levels

Impact of last night’s sleep
features on stress detection Conduct experiments with features below

excluding the first day’s data for fairness:
• Current and immediate past
• Current, immediate past, and sleep data
• Current, immediate past, and today’s epoch
• Current, immediate past, and
yesterday’s epoch
• Current, immediate past, and today’s
full-time window (6 am to label timestamp)
• Current, immediate past, and yesterday’s
full-time window (6 am to end of day)

Effect of extended past daily
features on stress detection

Optimal look-back period
for extended past features

Effectiveness of epoch time
window for extended past features

G5: Evalute if user-specific
normalization of sensor
features enhance model
generalization; aim to validate
or refute this approach

Difference in performance
between user-specific feature
normalization and
normalization for all users

Contrast user-specific standard
normalization with standard
normalization for all users,
where mean and standard deviation
are derived from the training set

In the study’s common pipeline, we consider two primary factors: (a) feature type and (b) time window. Feature
type involves both passive sensor data and survey data, which includes participant information, ecological
momentary assessment (EMA) context data, and previous stress labels. Regarding time windows, we differentiate
among the current time window, the immediate past time window, and the extended past/daily time window.

The rationale behind our time window settings draws heavily on prior research. We refer to Choy et al. [13] who
experimented with both immediate and extended past time windows, as well as Gjoreski et al. [24] who utilized
similar settings for short-term and relative epoch features. Kang et al. [35] introduced the use of the current time
window, capturing the last value before the label timestamp. However, extended past/daily time windows have
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Table 6. Experiment Design for Feature Selection, Data Splitting, Oversampling & Undersampling, and Model Training Steps

Goal Questions Methods

G6: Assessing filter methods for
feature selection in high-
dimensional sensor data

Difference in performance using
only LASSO filter versus combined
zero variance and pairwise
correlation filters

Compare various combinations:
• LASSO filter only
• LASSO filter + zero variance filter
• LASSO filter + pairwise correlation filter
• LASSO filter + zero variance filter
+ pairwise correlation filter

G7: Examine k-fold cross-
validation reliability with mixed
user IDs and shuffled times

Success of k-fold cross-
validation: impact of mixed
users, shuffled order, or both

Compare group k-fold vs. standard
k-fold cross-validation, time-series
k-fold vs. standard k-fold cross-
validation (requires temporal sorting)

G8: Assess partial
personalization cross-validation’s
effects, its temporal relation,
and the necessary data amount

Performance improvement
with partial personalization

Compare LOSO partial personalization
with 50% target user data for training
and rest for testing vs. LOSO with
50% data for testing only and rest unused

Relation between partial
personalization’s high performance
and shuffled temporal order

Comparing time series partial
personalization with stratified
and random partial personalization

Percentage of test user data
needed for partial personalization

Partial personalization ratios:
10%, 30%, 50%, 70%, and 90%
for time-series approach

G9: Test if oversampling or
undersampling improves
model performance and
determine which method
is the most effective

Effect of oversampling or
undersampling on
model performance

Compare original distribution
with oversampling or
undersampling methods

Most effective method for
improving performance:
oversampling or undersampling

Evaluate model performance
across different oversampling
and undersampling methods

G10: Determine the optimal
personalization level and
model type for best
performance, considering
variations in existing studies

Superior performance comparison:
similar-user model, multi-task
learning, or generalized model

Compare the baseline model
(generalized model) to multi-task
learning and similar-user models

Best performing model type

Performance evaluation with multiple
models: XGBoost, RandomForest, SVM,
Logistic Regression, KNN, decision tree,
Naive Bayes classifier, and MLP

been criticized for diluting feature expressiveness, as pointed out by Choy et al. [13], who recommend epoch
segmentation to better capture temporal variations. Similarly, Taylor et al. and Fukazawa et al. [18, 67] discuss
the benefits of epoch time windows for extended past/daily feature extraction. Bogomolov et al. [8] explored
using data from the past few days, discussing the impact of the size of the time windows, such as using one or
two days for feature extraction.
For the extended past time window, as illustrated in Figure 4, we employ an epoch-based feature calculation

approach. ‘Yesterday epoch features’ are computed within three-hour intervals starting at 6 a.m. and concluding
at the end of the day, while ‘today epoch features’ are calculated using the same interval but only extend up to the
time the label is recorded. This method ensures the extraction of distinct features for each epoch. Additionally,
sleep data, as noted in the feature engineering table, is derived from screen events with the sleep event start time
fixed between 9 p.m. the previous day and 7 a.m. on the current day, assuming a non-shift worker schedule.

In the baseline pipeline, shown in Figure 3, we utilize only sensor data among the feature types and consider
the current and immediate past time window (past 15 minutes). The feature extraction process is organized
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Current

Label 

Timestamp

Immediate Past

3 hour epoch

6am 9am

3 hour epoch

12pm

3 hour epoch

3pm

The latest epoch of Today 

(Until current timestamp)

12am

3 hour epoch

9pm6pm

3 hour epoch

Yesterday Epochs

No epochs 

at night 

Time window for 

finding start of sleep

Today Epochs

Fig. 4. Time window setting details

under the GQM format in G2, G3, and G4 of Table 5, structuring our approach to ensure thorough evaluation and
analysis.

4.3.3 Feature Preparation. In the common pipeline for feature preparation, we focus on two primary factors:
normalization and data imputation. There are two approaches to normalization: one involves normalizing features
for each individual user, supported by some literature that suggests user-specific normalization can enhance
the generalization capability of predictive models [53]. The other approach is to normalize features across all
users, being careful to avoid data leakage by ensuring that the statistics used for normalization are derived
solely from the training set. For data imputation, our standard method involves interpolating numeric features
and forward-filling categorical features, and this approach is consistently applied throughout our experimental
evaluations without variations in the imputation methods tested. In the baseline pipeline, as shown in Figure 3,
normalization is applied across all users, and missing values are imputed using the aforementioned methods by
default. The feature preparation phase of our study, described as step 3 in our experimental design, is methodically
organized in G5 of Table 5, ensuring a structured and thorough evaluation process.

4.3.4 Feature Selection. In our common pipeline (Figure 2), feature selection is crucial, with the main factor
being the type of feature selection method utilized. We consider three options: filter methods, wrapper methods,
and embedded methods [4, 81]. Filter methods involve selecting features based on specific criteria, such as the
LASSO to perform both variable selection and regularization, zero variance filtering, and elimination of high
pairwise correlation [6]. Specifically, the LASSO filter removes features whose coefficients are reduced to zero;
the zero variance filter removes features with nearly constant values; and the pairwise correlation filter removes
features with high pairwise correlation, indicating redundancy. The second alternative, wrapper methods, involves
selecting subsets of features and assessing their effectiveness by training models on them, though this method
is less favored due to its high computational demands. The third alternative, embedded methods, incorporates
feature selection directly into the model training process, as seen when using LASSO during model training,
which automatically selects features.

Despite the available methods, as shown in Table 3, previous studies rarely apply embedded methods, and
only a few have utilized wrapper methods. In this paper, we will focus exclusively on different filter methods for
feature selection. In the baseline pipeline, as outlined in Figure 3, we default to using the LASSO filter for feature
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selection. The approach to feature selection in our study is structured under the GQM format, organized in G6 of
Table 6, ensuring a systematic evaluation of the methods tested.

4.3.5 Data Splitting. In the realm of mobile stress detection which is our common pipeline, data splitting
techniques are categorized into three primary approaches. The first, subject-independent cross-validation, employs
methods such as Leave-One-Subject-Out (LOSO) and group-based k-fold cross-validation. These methods segment
the data based on unique user identifiers, ensuring that all data from a single user falls within the same fold,
as illustrated in Figure 5. The second approach, subject-dependent cross-validation, includes techniques like
time-series k-fold cross-validation, which considers the temporal order of data but ignores user identifiers,
and the standard k-fold cross-validation, which treats the dataset as a collection of independent observations,
disregarding both user ID and temporal sequence as shown in Figure 6. The third approach, partial personalization
cross-validation, merges aspects of subject-independent validation (either LOSO or group-based k-fold) with the
inclusion of a subset of the test users’ data within the training set, as depicted in Figure 7. This method has been
explored in previous studies [45, 69], highlighting its potential for improved model personalization.

In this paper, our focus will be on LOSO combined with a subset of the target user’s data for partial personal-
ization. This approach has three variations based on how the subset of the test user’s data is selected. Previous
research has primarily investigated the first two types: random selection and stratified selection, which consider
both label distribution and user ID. The third type, which has not been explored in prior studies, involves selecting
the subset based on temporal order. For instance, the first 50% of a test user’s data might be included in the
training set to enhance model personalization.

In our baseline pipeline, as shown in Figure 3, LOSO will be used as the default cross-validation method. The
design and methodology of our data splitting process are meticulously outlined in the GQM format, presented in
G7 and G8 of Table 6, to ensure a comprehensive evaluation of the various approaches.

Training Set (N=9) Test Set (N=1)

LOSO

Training Set (N=8) Test Set (N=2)

Group-based 5-fold 

Cross Validation

Divide all users into 5 groups, 

each time one group is 

selected as a test set, and this 

process repeats 5 times

Fig. 5. Subject Independent Cross-Validation (assuming 10 users in total)

4.3.6 Oversampling and Undersampling. In the domain of mobile stress detection, the prevalence of non-stress
states creates an inherent label imbalance challenge, skewing the dataset towards one (majority) class. Data
imbalance is closely related to how labels are binarized (i.e., encoded) from Likert-scale stress self reports. In
other words, label encoding is inherently linked to how labels are initially defined, which is influenced by factor
c label encoding (more details in Preprocessing step). If labels are encoded using the mean of all users’ Likert
responses, it could lead to a situation where the labels for certain users are exclusively categorized as either
positive or negative. This is due to baseline level of subjective stress received by each user. For instance, user A is
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(a) Standard 5-fold Cross Validation

After random shuffling, divide all data samples 

into 5 groups. Each time 1 group is selected as 

a test set. This process repeats 5 times. 

Training Set

(b) Time Series 5-fold Cross Validation

Each user’s data is first sorted by time and then split into 6 folds. For the first 

split, use all users’ first fold as a training set and the second as a test set. Rep

eat this process five times with increasing size of the training set.

Shuffling

Test Set

Each User’s Data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6

Split 1

Split 2

Split 3

Split 4

Split 5

Fig. 6. Subject Dependent Cross-Validation (assuming 5 users in total)

Training Set

First sort a test user’s data in a 

temporal order. Then select the 

first x% of data and put it in the 

training set as well

1-x %x %

Test Set

Fig. 7. Partial Personalization Cross-Validation (assuming 10 users in total)

usually not stressed, while user B is usually stressed. Furthermore, addressing how to categorize neutral states
in a binary classification framework presents additional challenges and can contribute to label imbalance. For
instance, if the categories of ‘stressed’ and ‘not stressed’ are initially balanced, reclassifying ‘neutral’ states as
‘stressed’ would disrupt this balance and exacerbate label imbalance. To counteract this imbalance, researchers
often employ oversampling/undersampling strategies like the Synthetic Minority Over-sampling Technique for
Nominal and Continuous data (SMOTE-NC) [11], random oversampling, and random undersampling.
As shown in the baseline pipeline Figure 3, SMOTE-NC will be used by default. This method is adept at

augmenting minority class instances in mixed data types, containing both categorical and numerical features.
Oversampling is done on the training set only since the test set should not be manipulated in the training stage
to avoid data leakage. The experiment for step 6. Oversampling/Undersampling is organized in G9 of Table 6.

4.3.7 Model Training. In the domain of stress detection modeling, two pivotal considerations govern the training
process: the degree of personalization and the selection of the modeling approach. Personalization ranges from
fully personalized models, which utilize data from individual users for both training and testing, to models that are
specific to groups of users clustered by demographic information or sensor data patterns. In our case, we will use
demographic information for similar user clustering. Multi-task learning approaches expand upon group-specific
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models by incorporating mechanisms for sharing information across user groups, thereby augmenting the models’
versatility and performance. In contrast, generalized models are designed to operate across the entirety of the user
base, encompassing a broad spectrum of user behaviors within a single predictive framework. In this paper, we
will not test the fully personalized model because of the dataset size of the K-EmoPhone dataset and only consider
a similar-user model, multi-task learning model, and generalized model. The detailed explanation for personalized
models is available in the Supplementary Material. The selection of the appropriate model constitutes the second
major consideration, with options spanning from conventional machine learning algorithms to sophisticated
deep learning networks. However, we will only focus on traditional machine learning models. A more detailed
discussion regarding the application of deep learning methods in this domain will be given in Section 6.
As shown in the baseline pipeline Figure 3, the generalized XGBoost model will be used by default as the

baseline in the experiments. It is noteworthy that our default model, XGBoost, requires a separate validation
set in addition to training and test sets. This is used for early stopping. One of the pitfalls in the experimental
setting is to use of a test set as a validation which causes data leakage, subsequently leading to optimistic model
performance metrics. Hence, we exclusively form a validation set as 20% of the training set. This setting ensures
the test set is only used once in the end for model evaluation. The experiment for step 7. Model Training is
organized in G10 of Table 6.

4.3.8 Model Evaluation. Evaluative metrics are critical to the assessment of model efficacy, with the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC) metric being paramount, especially in the context of
imbalanced datasets [6]. This metric’s resilience to label imbalance makes it a preferred choice for validating
models within this research. Given the prevalence of imbalanced stress labels, our study will concentrate on
macro AUC-ROC as the primary measure of performance, ensuring a consistent and rigorous evaluation of the
predictive capabilities of our stress detection models.

4.4 Experiments for RQ3: Improving Model Performance in User-independent Settings
To answer RQ3 on how to improve model performance in user-independent settings, we try to tune the factors
in the common pipeline to push the model performance following the same way as Sano et al. and Hung et al.
[30, 63]. The experiments started from the baseline pipeline (explained in experiments for RQ2). All factors except
for LOSO cross-validation, generalized model, and macro AUC-ROC metric will be tuned to improve the model’s
performance (i.e., discriminatory ability).

4.5 Experiments for RQ4: Analysis of Low Performance in User-independent Settings
Similar to Pratap et al. [60], we dive into the individual user level of data and compare the high-performance users
and low-performance users in the baseline pipeline model explained in experiments for RQ2. Confusion matrix,
feature importance, and label distribution will be examined to find the difference between high-performance and
low-performance users which could potentially cause the performance difference.

5 Results

5.1 RQ2 Results for Reproducibility Experiments
Our study employs three baseline models as shown in Table 7. Baseline 1, depicted in Figure 3 (Section 4), serves
as our primary baseline model. Baseline 2, which excludes the first day’s stress labels, is used in extended past
feature experiments (G4 in Table 5) to ensure comparability by avoiding null values on the initial day. Baseline 3
facilitates a fair comparison between the baseline model and a partial personalization approach that utilizes 50%
of the target user’s data. It employs LOSO cross-validation, where only 50% of the test user’s data is used in the
test set, leaving the remainder unused.
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The results for Steps 1 to 3 in the pipeline are shown in Table 8, while results for the rest of the pipeline are in
Table 9. Specifically, the stratified random partial personalization experiment (LOSO + stratified 50% test user) was
not conducted due to the lack of labels per user in the K-EmoPhone dataset and challenges in stratifying samples
based on label distribution, as labels for some users were unevenly distributed. Results from RQ2 experiments are
summarized in Table 10, addressing all questions from the previous methodology experiment design.

Our findings suggest that removing neutral state samples may improve model performance, but this could be
overly optimistic as the neutral state is crucial for affective computing [22]. Despite addressing label imbalance
issues through label encoding for each user or removing extreme users, performance improvements remain
modest. This finding aligns with [48, 52, 70], which noted the meaningful help provided by previous survey labels.

Regarding window size, no clear relationship was observed, yet it still influences model performance, echoing
Yu et al.’s findings about sequence length [84]. Extended past features’ improvement compared to baseline 2 was
limited and epochs were not necessarily better than whole time windows, differing from Choy et al.’s observations
inmobile interruptibility prediction [13]. However, their use of k-fold cross-validationmay explain the discrepancy.
Normalization for each user did not significantly enhance performance compared to normalization across all
users, diverging from previous assumptions [53].
Partial personalization showed a slight performance improvement in the LOSO setting, albeit smaller than

previous findings [45]. The original study’s use of group-5-fold cross-validation and a larger dataset size might
explain the modest improvements seen in our study. This is consistent with Trazav et al.’s work [69], where
LOSO partial personalization showed minimal enhancement.
Furthermore, time-series partial personalization performed even worse than random partial personalization,

emphasizing the importance of temporal order and suggesting that time-series methods are more applicable
in real-world settings. Multi-task learning and similar-user models did not improve the model performance as
reported in previous studies [65, 67], possibly due to the LOSO cross-validation and the small dataset size.
It is noteworthy that the previous results and comparisons are done based on LOSO cross-validation which

may cause different conclusions and also on the limited dataset K-EmoPhone. The comparisons will be revisited
with the DeepStress dataset offering more data per user in a subsequent subsection.

Through analysis of the results for reproducibility experiments, RQ2 impact of each factor on the model
performance is answered.

5.2 RQ3 Results for Pushing the Performance Limits
To enhance the performance of our generalized models, we experimented with various parameter combinations,
focusing on the AUC-ROC due to its relevance in scenarios with imbalanced labels. These efforts, conducted in a
LOSO setting, are detailed in Table 11. As shown in Table 7, Baseline 2 yields a higher AUC-ROC than Baseline 1.
Consequently, our subsequent optimization experiments are based on Baseline 2, consistently excluding data
from the first day as standard practice.

5.2.1 Sensor Data Only. The highest AUC-ROC achieved using only sensor data was 58%, combining features
from the baseline model and yesterday’s whole time window features. As in Table 11, the best model with sensor

Table 7. Results for Baseline

Experiment Type Accuracy F1-Score (pos. label) Macro F1-Score AUC-ROC Precision Recall

Baseline 1 0.600 0.294 0.494 0.518 0.521 0.517
Baseline 2 (removing 1st day’s data) 0.620 0.302 0.502 0.556 0.536 0.528
Baseline 3 (using 50% data for testing) 0.604 0.281 0.485 0.511 0.506 0.511
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Table 8. Results for Preprocessing, Feature Extraction & Preparation

Experiment Type Details Accuracy F1 Sco. for Pos. Macro F1 Score AUC Precision Recall

Removing Neutral States 0.551 0.408 0.497 0.543 0.552 0.544
Removing Extreme Users 0.568 0.402 0.512 0.533 0.528 0.529
Label binarization
(mean for all users) 0.534 0.500 0.485 0.539 0.527 0.528G1: Label Processing
Label binarization
(mean for each user) 0.529 0.458 0.503 0.524 0.524 0.525

Previous survey label data only 0.668 0.424 0.570 0.570 0.571 0.570
Pre-experiment survey only 0.575 0.281 0.353 0.500 0.288 0.500
Sensor + Pre-experiment
survey only 0.599 0.303 0.492 0.533 0.512 0.508G2: Using Different Feature Types
Sensor + Previous survey
label data 0.626 0.343 0.525 0.568 0.545 0.536

5 mins 0.606 0.313 0.501 0.518 0.523 0.521
10 mins 0.611 0.334 0.516 0.542 0.539 0.535
30 mins 0.603 0.321 0.506 0.546 0.529 0.527
45 mins 0.597 0.305 0.499 0.535 0.529 0.520
Today epochs only 0.604 0.340 0.511 0.542 0.538 0.532

G3: Using different time window sizes
for immediate past time window

Noterday epochs only 0.547 0.289 0.453 0.500 0.475 0.499
Current + immediate past +
sleep 0.607 0.288 0.492 0.561 0.516 0.521

Current + immediate past +
today epochs 0.621 0.303 0.504 0.559 0.551 0.525

Current + immediate past +
yesterday epochs 0.610 0.307 0.502 0.560 0.538 0.528

Current + immediate past +
today whole time window
(aggregated over all epochs)

0.616 0.302 0.502 0.543 0.526 0.523
G4: Using extended past features

Current + immediate past +
Yesterday whole time window
(aggregated over all epochs)

0.630 0.317 0.514 0.580 0.536 0.539

G5: Feature Normalization Standard Normalization for
each user 0.544 0.336 0.480 0.536 0.530 0.523

data alone only reached a 51.4% macro F1 score, potentially influenced by the universal binarization threshold
(0.5) used for label probability. Future studies could enhance the macro F1 score by optimizing this threshold.

5.2.2 Sensor and ESM Data. Our combination of steps below produced the best-performing model:
• Exclusion of neutral state samples (0 values).
• Omission of users with an excessively skewed label distribution (majority label ratio > 0.8).
• Incorporation of immediate past sensor features and current ESM data (last stress label).
• Elimination of features with zero variance, high pairwise correlation, and application of LASSO for feature
selection.

• Reduction of the evaluation set ratio from 20% to 10% of the training data.
This refined approach yielded our best AUC-ROC of 63.1%, surpassing the performance of models relying

solely on ESM data (59.6% AUC-ROC) and sensor data only (58% AUC-ROC). This finding underscores the value
of integrating sensor and ESM data for more accurate stress detection, demonstrating that the combination of
these data sources is superior to using ESM data alone and sensor data only. However, there are some limitations
as removing neutral states may not be realistic in real-world applications.

RQ3 regarding the best performance we can achieve is answered by tuning the factors in the pipeline. It is also
noteworthy that the past ESM label is important for achieving the best performance.
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Table 9. Results for Feature Selection, Data Splitting, Oversampling & Undersampling, and Model Training

Experiment Type Details Accuracy F1 Sco. for Pos. Macro F1 Score AUC Precision Recall

Remove 0 variance features +
LASSO only 0.593 0.295 0.489 0.532 0.521 0.515

Remove features with high
pairwise correlation +
LASSO only

0.597 0.307 0.496 0.525 0.519 0.512

G6: Feature selection Remove 0 variance features +
Remove features with high
pairwise correlation + LASSO

0.602 0.318 0.503 0.539 0.524 0.518

Group k fold 0.598 0.349 0.528 0.562 0.539 0.532
Time-series k fold 0.615 0.389 0.553 0.588 0.558 0.553
k fold 0.650 0.462 0.601 0.650 0.607 0.599
LOSO + random 50% test user 0.632 0.319 0.510 0.552 0.549 0.528
LOSO + stratified 50% test user NA NA NA NA NA NA
LOSO + first 50% test user 0.599 0.255 0.466 0.534 0.504 0.509
LOSO + first 10% test user 0.609 0.324 0.508 0.558 0.534 0.524
LOSO + first 30% test user 0.628 0.317 0.512 0.570 0.532 0.533
LOSO + first 70% test user 0.609 0.268 0.469 0.557 0.506 0.517

G7 & G8: Data splitting

LOSO + first 90% test user 0.619 0.257 0.510 0.576 0.529 0.539
Original distribution 0.602 0.217 0.463 0.511 0.517 0.502
Random oversampling 0.580 0.290 0.484 0.527 0.512 0.511G9: Oversampling &

Undersampling Random undersampling 0.540 0.410 0.491 0.530 0.523 0.521
Multi-task learning 0.562 0.335 0.467 0.541 0.498 0.514G10: Using different levels

of personalization Similar-user model 0.520 0.339 0.457 0.514 0.502 0.500
RandomForest 0.631 0.242 0.487 0.535 0.539 0.524
SVM 0.606 0.307 0.500 0.542 0.539 0.519
Logistic Regression 0.569 0.327 0.483 0.508 0.510 0.510
KNN 0.453 0.459 0.425 0.535 0.518 0.515
Decision Tree 0.550 0.346 0.483 0.499 0.504 0.499
Naïve Bayes classifier 0.504 0.415 0.466 0.524 0.521 0.524

G10: Model training using
different machine
learning models

MLP 0.593 0.323 0.503 0.548 0.532 0.529

5.3 RQ4 Results for Exploring Low-Performance Reasoning
As outlined in Section 4. Methodology, the study compares the top four highest-performing users with the
four lowest to identify key differences, similarly done in Pratap et al. [60]. The primary distinction lies in label
distribution: lower-performing users often exhibit a more skewed label distribution. Details are available in
Figures 11, 12, and 13 in Appendix A. Attempts to balance this by binarizing labels using the user-specific mean
led to only marginal performance improvements, as shown in Table 8 under the factor mean for each user.
Performance enhancements were observed in some previously lower-performing users, while others experienced
a decrease which is a sign of overfitting.
To further validate the existence of overfitting, we analyzed AUC-ROC results for all splits in the LOSO

approach for both training and test sets (Figure 8). The figure reveals a marked performance discrepancy between
training and test datasets, coupled with high variance across folds—classic indicators of overfitting.
Observations:

• Performance Discrepancy: A generalization gap suggests the model’s inability to maintain its predictive
accuracy on unseen data.
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Table 10. Answers to Reproducibility ExperimentQuestions

G1: Preprocessing

After removing neutral state samples/extreme users/label binarization
using the mean threshold of all users/each user, the labels are more balanced.
The AUC-ROC improves using all these methods. Among all the techniques,
removing neutral states gives us the best improvement but it is not realistic
in real-world application.

G2: Feature Extraction:
feature types

Pre-data-collection survey data slightly improves AUC-ROC. Previous
ESM stress labels did help improve the performance.
However, only using previous ESM stress labels achieves similar performance
compared with using both previous labels and sensor data.

G3: Feature Extraction:
size of time windows There is no clear linear relationship between performance and time window size.

G4: Feature Extraction:
extended past features

Sleep data does not improve AUC significantly. The improvement is ignorable.
Removing 1st day’s data improves performance. Extended past features
do help improve the performance. It is better to look at yesterday. Epoch time
window is not necessarily better than the whole time window.

G5: Feature Preparation Normalizing features for each user improves AUC-ROC by around 2%.

G6: Feature Selection Remove 0 variance features + Remove features with high pairwise correlation +
LASSO works the best, slightly improve AUC-ROC

G7 & 8: Data Splitting

Standard k-fold cross-validation result is much higher than time-series k-fold
(6% in AUC-ROC). Using standard k-fold cross-validation could be overly
optimistic. Partial personalization does help improve performance. The first
30% of the test user’s data will be good enough for partial personalization.
Besides, if we ignore temporal order for partial personalization, we may achieve
overly optimistic results as well.

G9: Oversampling &
Undersampling

The oversampling and undersampling methods are slightly improving the
performance. However, the difference between different oversampling and
undersampling methods is very limited.
Multi-task learning >generalized model >similar-user modelG10: Model Training MLP works best in terms of AUC-ROC.

Table 11. Results for Best Performing Models

Experiment Type Acc. F1-Score (pos. label) Macro F1-Score AUC-ROC Prec. Recall
Using both ESM and sensor data 0.621 0.584 0.587 0.631 0.598 0.604
Only using sensor data 0.630 0.317 0.514 0.580 0.536 0.539

• Inconsistent Optimization: Efforts to recalibrate the model for lower-performing users did not yield a
commensurate improvement in overall performance. This implies that the model, initially overfitted to
high-performing users, merely shifted its overfitting bias to the newly optimized group.

Note that the issue of overfitting primarily occurs in user-independent cross-validation, which may arise from
the distribution shift across different users, as reported in Xu et al.’s work[79]. As potential solutions, previous
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Fig. 8. Train & Test AUC-ROC for Baseline Pipeline

studies [79, 83] proposed tuning hyperparameters related to model complexity, regularization, and early stopping
to mitigate overfitting issues. Detailed hyperparameters are available in Table 12. After parameter tuning with
Hyperopt, we achieved 56.9% AUC-ROC. This marks some improvement compared to baseline performance;
however, the overfitting issue persists, evidenced by the gap between the training set and test set performances.

Through a comparative analysis of high- and low-performance users, along with the visualization of training
and testing performances, overfitting emerged as a potential cause of suboptimal performance in real-world
mobile stress prediction. This issue appears to be particularly prevalent in user-independent scenarios, likely due
to a distribution shift across users. Despite efforts to mitigate overfitting through hyperparameter tuning, the
performance improvements remained modest.

5.4 Results of the DeepStress Dataset
As for RQ2 reproducibility experiments, we present the results of the DeepStress dataset in Tables 16, 17, 18 in
Appendix A. We note that the combination of current, immediate past, and sleep features was not examined in
the new dataset due to a lack of sleep data. In the K-EmoPhone dataset, sleep information was derived from the
screen on/off events, which were not available in the new dataset.

Table 12. Hyperparameters Related for Addressing Overfitting in XGBoost

Parameters Value Range Parameters Value Range

max_depth 3 to 10 (integers) learning_rate 0.01 to 0.2 (log scale)
min_child_weight 1 to 6 (integers, step size of 1) n_estimators 100, 250, 500 (discrete choices)
subsample 0.6 to 1.0 (continuous) reg_lambda 0.5 to 5.0 (continuous)
colsample_bytree 0.5 to 1.0 (continuous) reg_alpha 0.0 to 2.0 (continuous)
colsample_bylevel 0.5 to 1.0 (continuous) num_parallel_tree 1, 10, 20 (discrete choices)
gamma 0.0 to 0.5 (continuous) early_stopping_rounds 10, 30, 50 (discrete choices)
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For label preprocessing, removing neutral state samples does not improve performance, which could be due to
the label size difference (566 per user, as opposed to 70 per user in K-EmoPhone). When the label size is large,
the influence of neutral state samples on the discriminative power of a classifier appears to be minimal. For
feature types, the last ESM label is still working. The last ESM label and sensor data without hyperparameter
tuning is still worse than the last ESM label only. For time window size setting, similarly, there is no obvious
linear relationship between model performance and window size. For extended past features, removing 1st day’s
data does not significantly improve the model performance. This could be because the period of the new dataset
is much longer than that of K-EmoPhone, and the effect of the first day is small. In contrast, we found that
removing the first day in K-EmoPhone helped us slightly mitigate overfitting. Generally, this type of extended
past feature still improves the model performance. For feature normalization & selection, similarly, there is some
improvement, but it is limited. For data splitting, Group k works worse than LOSO, which is counterintuitive. This
could be because the number of participants in the new dataset is small (n=24) compared with the K-EmoPhone
dataset (n=77). In group k cross-validation, there will be far fewer users in the training set compared with LOSO.
Similarly, on the new dataset, the time-series k-fold is worse than the k-fold. For partial personalization,

similarly, using time-series partial personalization is worse than random partial personalization. However, partial
personalization is improving model performance even in LOSO settings. On K-EmoPhone, the improvement is
limited to less than 2% in AUC-ROC but around 5% on the DeepStress dataset, probably due to many more labels
per user (70 vs. 566). This may also imply that enough amount of labeled data from target users is important for
the success of partial personalization. Note that partial personalization here is mainly based on LOSO. Results
regarding group-k partial personalization will be elaborated in the discussion section, and the improvement is
much bigger than LOSO, which is consistent with Lakmal’s paper [45]. For oversampling and undersampling,
there exists similar limited improvement even with different ways of oversampling and undersampling. For
personalized models, the performance is even lower than generalized models. It could be due to the lack of
Big-Five personality information in the new dataset, which may be necessary for the successful grouping of
similar users. For model types, while the best model differs from the K-EmoPhone dataset, it is consistent with
K-EmoPhone results that there is some model type impact though limited.

As for RQ3, we achieved 0.563 AUC-ROC by using SVM for sensor data only and 0.616 AUC-ROC by combining
sensor data and the last ESM label as features. Consistently, the last ESM label is important for model performance
improvement. As for RQ4, the overfitting phenomenon still exists on the new dataset even though there are fewer
sensor data types and more labels per user. Similar to the K-EmoPhone dataset, we also conducted parameter
tuning related to model complexity, regularization, and early stopping. After parameter tuning, the performance
was 0.537 AUC-ROC, and there is a minor improvement compared with the baseline, which is consistent with the
finding on the K-EmoPhone dataset.

6 Discussion

6.1 Independent Reproducibility for Mobile Stress Detection
As suggested by Fukazawa et al. [18], the temporal order is important for realistic cross-validation settings,
as shown in Section 5. We observed that time-series k-fold and time-series random partial personalization
underperform compared to common k-fold cross-validation and random partial personalization. This discrepancy
might be due to the different amounts of data used for testing the time series and common k-fold cross-validations,
potentially biasing the comparison. However, both time series and random partial personalization use the same
amount of data for training and testing; therefore, random partial personalization could be overly optimistic,
failing to consider the temporal order.
Removing neutral states may yield overly optimistic results that are unrealistic in real-world situations. The

last stress label improves the model performance even in user-independent cross-validation settings, indicating
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that the temporal dependency of stress states is universal across users. Conversely, sensor data are more useful in
user-dependent cross-validation and partial personalization settings, indicating that human behavior in sensor
data is heterogeneous across users and requires data from the target user for effective personalization. The last
ESM label could be useful in scenarios lacking target user data. When substantial data from the target user are
available, the sensor data become more critical for stress prediction.
Among the metrics used, AUC-ROC emerged as the most reliable measure compared to accuracy, macro F1

score, and others. The LOSO and group-k cross-validation methods reflect the real implementation of new users
more. LOSO represents the most challenging scenario for stress prediction models, and a model that performs
well in LOSO is likely to succeed in other cross-validation settings.

6.2 Improving Real-World Mobile Stress Prediction Performance
6.2.1 Improving Prediction Performance via User-in-the-loop Strategies. As suggested by Toshnazarov et al. and
Meegahapola et al. [45, 48, 70], using the last ESM label as a feature and incorporating part of the labeled data
of the target user into the training set improves the model performance, consistent with our findings. This
underscores the importance of labels from the target user and the efficacy of a “user-in-the-loop” strategy, which
comprises two stages: using the last ESM label and implementing partial personalization.

In the initial phase, when data for partial personalization or training a personalized model are scarce, collecting
stress labels is crucial because the last stress label could serve as a vital predictor. Once a sufficient label corpus is
amassed in the latter stage, we can strategically transition to partially personalized models. Partial personalization
is useful for the DeepStress dataset, but it is limited for the K-EmoPhone dataset. On the DeepStress dataset, the
LOSO time-series partial personalization improved AUC-ROC by 5%, and the group-k-fold time series partial
personalization achieved a 67.6% AUC-ROC, marking a 17% improvement compared to the group-k-fold without
partial personalization. However, the performance improvement was minor in LOSO and the group-k-fold cross-
validation for the K-EmoPhone dataset. This disparity likely stems from the new dataset having six weeks of data
per user, compared to only one week in the K-EmoPhone dataset, which may be insufficient for effective partial
personalization. Therefore, sufficient labels should be collected for partial personalization.

Collecting sufficient labeled data from the target user is beneficial; nevertheless, gathering ESM labels in real
life remains challenging. Strategies for collecting more labels without burdening users are related to receptivity
prediction [6] and designing active learning algorithms [68]. Compared with receptivity prediction, designing
active learning algorithms that optimize performance without collecting excessive labels requires further research.

Another essential research question is how to effectively utilize the data from the target user. Meegahapola et
al. introduced a domain-adaptation method that requires only unlabeled data from the target user [46]. However,
research on supervised multimodal domain adaptation that uses labeled data from target users for mobile stress
prediction is lacking. Previous research, such as that of Cahoon et al. [9], typically focused on a single or few
modalities, such as step count and heart rate, for stress prediction.

6.2.2 Dealing with Overfitting. Our investigation suggests that overfitting is a key factor diminishing the effec-
tiveness of generalized models in mobile stress detection. This issue correlates with the challenges of working
with heterogeneous populations [50] and limited labeling [84]. Following the approach of Xu et al. [79], employing
hyperparameter tuning for model complexity, regularization, and early stopping may mitigate the overfitting
issue; nonetheless, the extent of performance improvement is limited.
In addition, particularly for the XGBoost model, selecting an evaluation set for early stopping in the models

can influence the final performance. Different ways of evaluating set splitting from the training set exist, such as
random splitting, stratified splitting, and LOSO. In addition, the size of the evaluation set is crucial. Determining
how to choose an evaluation set that accurately represents unseen users or the general population is a compelling
research challenge for addressing overfitting in this field.
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Theoretically, using fewer types of sensor data and more data per user would help reduce overfitting. However,
comparisons between the K-EmoPhone and DeepStress datasets indicate that this is not necessarily effective in
user-independent settings; however, noticeable improvements exist in user-dependent scenarios. More labeled
data per user is beneficial only when there is access to target users’ data.

Overall, overfitting in user-independent settings may stem from distribution shifts across users. There are two
methods for handling distribution shifts; domain generalization [79] and domain adaptation [46].

6.2.3 Application of Personalized Models. While performance improvements using multitask learning and similar-
user models are quite limited for the two datasets, personalized models have shown the potential for model
improvement in prior studies [67]. The main challenge in applying personalized models lies in their computational
demands. Training specific models for each user or group of users can be resource-intensive, given a large user
base. Several strategies can be used to address these challenges.
Personalized models may be trained for groups of similar users rather than each user. Additionally, for deep

learning, some layers can be shared across user groups usingmultitask learning approaches. Moreover, incremental
learning can be used to incrementally update an existing model with new data, thereby minimizing the need for
full retraining and making it suitable for devices with limited computational resources. Finally, on-device learning
could be an option. This method involves training models on the device by leveraging federated learning, using a
combination of on-device and cloud resources to reduce data transmission and computational overhead [78].

6.2.4 Application of Deep Learning. Our derived pipeline remains valid when manually crafted features are inputs
for the deep learning models. However, if we use an end-to-end deep learning model, the entire pipeline would
be different because designing and manually extracting features or conducting feature selection methods would
not be necessary. Regarding end-to-end deep learning, recent mobile/wearable emotion prediction/detection
papers using end-to-end deep learning models mainly focus on continuous high-frequency sensor data collected
via wearable and mobile devices instead of event log data which is also common in such datasets [41, 49, 84].

The challenge is that event log data, such as call logs and other low-frequency event log data, may be unsuitable
for automated deep learning-based feature extractors, in other words, representation learning, especially for
in-situ stress prediction, because the sequence length will be relatively short in this scenario (Figure 9). Another
essential issue in using end-to-end deep learning models is the lack of labeled data [84] and dataset size in this
field. In real-world experiments, notifications that allow users to report their emotions can be bothersome, making
it challenging to collect sufficient labels for deep learning.
Researchers have recently developed possible solutions for this first multimodal challenge. Xu et al. [79]

extracted features at different frequencies (from an epoch of a day to multiple days) to address this issue instead
of using a unified time window or sequence length setting to handle the event log data.

6.3 Limitations and Future Work
This paper focuses solely on in-the-wild mobile self-reported stress prediction and does not explore the combined
effects of various factors, primarily because of the exponential increase in computational complexity and potential
reproducibility challenges. In addition, this paper does not cover end-to-end deep learning because of concerns
about multimodal and label numbers. Future work could explore end-to-end deep learning in multimodal mobile
stress prediction to address these gaps.
In a stress prediction pipeline, several parameters have crucial roles, including the threshold for the LASSO

feature selection (a fixed threshold or the mean value of all features), data sorting by temporal order per user or
across all users, and an embedded feature selection method. The data sorting method can influence the model’s
interpretation of temporal sequences, thereby affecting its performance. Additionally, using XGBoost for feature
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selection and model training improved performance. However, numerous other factors within the pipeline should
be further explored.
Some biases could also exist regarding the baseline in the experiments, especially when comparing different

cross-validation methods. For example, comparing time-series k-folds and common k-folds could be biased
because they use different amounts of data for training and testing. We have added one more baseline, 3, using
only 50% of the target user’s data for testing, and the rest are unused to make a fair comparison with partial
personalization with 50% of the target user’s data. However, aside from the 50%, there were 10%, 30%, 70%, and
90% partial personalization, and we did not create baselines for each of them to avoid information overhead.

Future research should also consider designing active learning algorithms that optimize the model performance
with minimal label collection from users. Addressing distribution shifts across users and mitigating overfitting in
user-independent settings will require further exploration of domain-adaptation techniques.

7 Conclusion
In this paper, we derived a common pipeline for in-the-wild mobile stress prediction by experimenting with
the impact of each factor on the model performance, which is defined as independent reproducibility. This
is the first paper to introduce independent reproducibility in this field. This concept is essential for the field
because, without sufficiently comprehending the impact of each factor, researchers would find it challenging to
replicate existing works given the lack of open code and dataset because of privacy issues in this field [43]. Some
insights were derived through reproducibility experiments. In particular, disregarding the temporal order for
cross-validation settings, such as random k-fold cross-validation and random partial personalization settings, can
be overly optimistic. We also observed that data from target users are crucial for improving model performance,
regardless of whether the last stress label is used as a feature or partial personalization with part of the target
user’s data in the training set. Finally, overfitting was identified as a potential cause of low model performance
in user-independent cross-validation settings, which could be related to distribution shifts across users. More
research should be conducted on domain generalization and adaptation in this field to handle distribution shifts
and overfitting [46, 79].

Acknowledgments
This research was supported by the Basic Science Research Program through the National Research Foundation
of Korea (NRF) funded by the Korean government (MSIT) (2022R1A2C2011536).

References
[1] Saeed Abdullah, Mark Matthews, Elizabeth L. Murnane, Tanzeem Choudhury, and Geri Gay. 2014. Towards Circadian Computing:

“Early to Bed and Early to Rise” Makes Some of Us Unhealthy and Sleep Deprived. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp ’14). ACM, New York, NY, USA, Association for Computing Machinery,
New York, NY, USA, 673–684. https://doi.org/10.1145/2632048.2632100

[2] L. Acharya, L. Jin, and W. Collins. 2018. College life is stressful today–Emerging stressors and depressive symptoms in college students.
Journal of American College Health 66, 7 (2018), 655–664. https://doi.org/10.1080/07448481.2018.1451869

[3] D. A. Adler, F. Wang, D. C. Mohr, and T. Choudhury. 2022. Machine learning for passive mental health symptom prediction: Generalization
across different longitudinal mobile sensing studies. PLOS ONE 17, 4 (2022), 1–20. https://doi.org/10.1371/journal.pone.0266516

[4] Charu C. Aggarwal. 2014. Data Classification: Algorithms and Applications. Chapman and Hall/CRC. https://doi.org/10.1201/b17320
[5] R. Albertoni, S. Colantonio, P. Skrzypczyński, and J. Stefanowski. 2023. Reproducibility of Machine Learning: Terminology, Recommen-

dations and Open Issues. arXiv preprint arXiv:2302.12691 (2023). https://arxiv.org/abs/2302.12691
[6] Jumabek Alikhanov, Panyu Zhang, YoungTae Noh, and Hakil Kim. 2023. Design of Contextual Filtered Features for Better Smartphone-

User Receptivity Prediction. IEEE Internet of Things Journal (2023). https://doi.org/10.1109/JIOT.2023.3331715
[7] Karim Assi, Lakmal Meegahapola, William Droz, Peter Kun, Amalia De Götzen, Miriam Bidoglia, Sally Stares, George Gaskell, Altangerel

Chagnaa, Amarsanaa Ganbold, Tsolmon Zundui, Carlo Caprini, Daniele Miorandi, José Luis Zarza, Alethia Hume, Luca Cernuzzi,
Ivano Bison, Marcelo Dario Rodas Britez, Matteo Busso, Ronald Chenu-Abente, Fausto Giunchiglia, and Daniel Gatica-Perez. 2023.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 143. Publication date: September 2024.

https://doi.org/10.1145/2632048.2632100
https://doi.org/10.1080/07448481.2018.1451869
https://doi.org/10.1371/journal.pone.0266516
https://doi.org/10.1201/b17320
https://arxiv.org/abs/2302.12691
https://doi.org/10.1109/JIOT.2023.3331715


143:26 • Zhang et al.

Complex Daily Activities, Country-Level Diversity, and Smartphone Sensing: A Study in Denmark, Italy, Mongolia, Paraguay, and UK.
In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23). Association for Computing Machinery, New
York, NY, USA, Article 506, 23 pages. https://doi.org/10.1145/3544548.3581190

[8] Andrey Bogomolov, Bruno Lepri, Michela Ferron, Fabio Pianesi, and Alex (Sandy) Pentland. 2014. Daily Stress Recognition from Mobile
Phone Data, Weather Conditions and Individual Traits. In Proceedings of the 22nd ACM International Conference on Multimedia (Orlando,
Florida, USA) (MM ’14). Association for Computing Machinery, New York, NY, USA, 477–486. https://doi.org/10.1145/2647868.2654933

[9] Jordan L. Cahoon and Luis A. Garcia. 2023. Continuous Stress Monitoring for Healthcare Workers: Evaluating Generalizability Across
Real-World Datasets. In Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health
Informatics (BCB ’23) (Houston, TX, USA). ACM, New York, NY, USA, Association for Computing Machinery, New York, NY, USA, 5.
https://doi.org/10.1145/3584371.3612974

[10] Y. S. Can, N. Chalabianloo, D. Ekiz, and C. Ersoy. 2019. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic
Programming Contest Case Study. Sensors 19, 8 (2019), 1849. https://doi.org/10.3390/s19081849

[11] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. 2002. SMOTE: synthetic minority over-sampling technique. Journal of
artificial intelligence research 16 (2002), 321–357. https://doi.org/10.1613/jair.953

[12] J. Chen, J. Rogers, C. Chen, and D. Kotz. 2021. Stress Detection Using Context-Aware Sensor Fusion From Wearable Devices. IEEE
Internet of Things Journal 8, 15 (2021), 12148–12161. https://doi.org/10.1109/JIOT.2023.3265768

[13] Minsoo Choy, Daehoon Kim, Jae-Gil Lee, Heeyoung Kim, and Hiroshi Motoda. 2016. Looking back on the current day: interruptibility
prediction using daily behavioral features. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp ’16). Association for Computing Machinery, New York, NY, USA, 1004–1015. https://doi.org/10.1145/2971648.
2971649

[14] Matteo Ciman and Katarzyna Wac. 2018. Individuals’ Stress Assessment Using Human-Smartphone Interaction Analysis. IEEE
Transactions on Affective Computing 9, 1 (2018), 51–65. https://doi.org/10.1109/TAFFC.2016.2592504

[15] Sharon M Crook, Andrew P Davison, and Hans E Plesser. 2013. Learning from the past: approaches for reproducibility in computational
neuroscience. In 20 Years of Computational Neuroscience. Springer, 73–102. https://link.springer.com/chapter/10.1007/978-1-4614-1424-
7_4

[16] R. Ferdous, V. Osmani, and O. Mayora. 2015. Smartphone app usage as a predictor of perceived stress levels at workplace. In 2015 9th
International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth). IEEE, 225–228. https://doi.org/10.4108/
icst.pervasivehealth.2015.260192

[17] Anna Ferrari, Daniela Micucci, Marco Mobilio, and Paolo Napoletano. 2020. On the Personalization of Classification Models for Human
Activity Recognition. IEEE Access 8 (2020), 32066–32079. https://doi.org/10.1109/ACCESS.2020.2973425

[18] Y. Fukazawa, N. Yamamoto, T. Hamatani, K. Ochiai, A. Uchiyama, and K. Ohta. 2020. Smartphone-basedMental State Estimation: A Survey
from a Machine Learning Perspective. Journal of Information Processing 28, 3 (2020), 650–669. https://doi.org/10.2197/ipsjjip.28.650

[19] Nan Gao, Soundariya Ananthan, Chun Yu, Yuntao Wang, and Flora D. Salim. 2023. Critiquing Self-report Practices for Human Mental
and Wellbeing Computing at Ubicomp. arXiv:2311.15496 [cs.HC]

[20] Nan Gao, Mohammad Saiedur Rahaman, Wei Shao, and Flora D Salim. 2021. Investigating the Reliability of Self-report Data in the
Wild: The Quest for Ground Truth (UbiComp/ISWC ’21 Adjunct). Association for Computing Machinery, New York, NY, USA, 237–242.
https://doi.org/10.1145/3460418.3479338

[21] Enrique Garcia-Ceja, Venet Osmani, and Oscar Mayora-Ibarra. 2015. Automatic Stress Detection in Working Environments From
Smartphones’ Accelerometer Data: A First Step. IEEE Journal of Biomedical and Health Informatics 20 (2015), 1053–1060. https:
//api.semanticscholar.org/CorpusID:3738191

[22] Karen Gasper. 2023. A Case for Neutrality: Why Neutral Affect is Critical for Advancing Affective Science. Affective Science 4 (2023),
458–462. https://doi.org/10.1007/s42761-023-00214-0

[23] Surjya Ghosh, Niloy Ganguly, Bivas Mitra, and Pradipta De. 2017. Evaluating effectiveness of smartphone typing as an indicator
of user emotion. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). 146–151. https:
//doi.org/10.1109/ACII.2017.8273592

[24] Martin Gjoreski, Hristijan Gjoreski, Mitja Lutrek, and Matja Gams. 2015. Automatic Detection of Perceived Stress in Campus Students
Using Smartphones. In 2015 International Conference on Intelligent Environments. 132–135. https://doi.org/10.1109/IE.2015.27

[25] Google Developers. n.d.. Generalization - Machine Learning Crash Course. https://developers.google.com/machine-learning/crash-
course/generalization/video-lecture. Accessed: 2024-03-25.

[26] Tom Gross and Tony Malzhacker. 2023. The Experience Sampling Method and its Tools: A Review for Developers, Study Administrators,
and Participants. Proceedings of the ACM on Human-Computer Interaction 7, EICS (2023), 182:1–182:29.

[27] Megha V. Gupta, Shubhangi Vaikole, Ankit D. Oza, Amisha Patel, Diana Petronela Burduhos-Nergis, and Dumitru Doru Burduhos-
Nergis. 2022. Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks. Bioengineering 9, 10 (2022), 510. https:
//doi.org/10.3390/bioengineering9100510

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 143. Publication date: September 2024.

https://doi.org/10.1145/3544548.3581190
https://doi.org/10.1145/2647868.2654933
https://doi.org/10.1145/3584371.3612974
https://doi.org/10.3390/s19081849
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/JIOT.2023.3265768
https://doi.org/10.1145/2971648.2971649
https://doi.org/10.1145/2971648.2971649
https://doi.org/10.1109/TAFFC.2016.2592504
https://link.springer.com/chapter/10.1007/978-1-4614-1424-7_4
https://link.springer.com/chapter/10.1007/978-1-4614-1424-7_4
https://doi.org/10.4108/icst.pervasivehealth.2015.260192
https://doi.org/10.4108/icst.pervasivehealth.2015.260192
https://doi.org/10.1109/ACCESS.2020.2973425
https://doi.org/10.2197/ipsjjip.28.650
https://arxiv.org/abs/2311.15496
https://doi.org/10.1145/3460418.3479338
https://api.semanticscholar.org/CorpusID:3738191
https://api.semanticscholar.org/CorpusID:3738191
https://doi.org/10.1007/s42761-023-00214-0
https://doi.org/10.1109/ACII.2017.8273592
https://doi.org/10.1109/ACII.2017.8273592
https://doi.org/10.1109/IE.2015.27
https://developers.google.com/machine-learning/crash-course/generalization/video-lecture
https://developers.google.com/machine-learning/crash-course/generalization/video-lecture
https://doi.org/10.3390/bioengineering9100510
https://doi.org/10.3390/bioengineering9100510


A Reproducible Stress Prediction Pipeline with Mobile Sensor Data • 143:27

[28] Mathias Harrer, Sophia H. Adam, Harald Baumeister, Pim Cuijpers, Eirini Karyotaki, Randy P. Auerbach, Ronald C. Kessler, Ronny
Bruffaerts, Matthias Berking, and David D. Ebert. 2019. Internet interventions for mental health in university students: A systematic
review and meta-analysis. International Journal of Methods in Psychiatric Research 28, 2 (2019), 1–18. https://doi.org/10.1002/mpr.1759

[29] S. Hosseini, S. Katragadda, R. T. Bhupatiraju, Z. Ashkar, C. W. Borst, K. Cochran, and R. Gottumukkala. 2021. A multimodal sensor
dataset for continuous stress detection of nurses in a hospital. arXiv preprint arXiv:2108.07689 (2021). https://arxiv.org/abs/2108.07689

[30] Galen Chin-Lun Hung, Pei-Ching Yang, Chia-Chi Chang, Jung-Hsien Chiang, and Ying-Yeh Chen. 2016. Predicting Negative Emotions
Based on Mobile Phone Usage Patterns: An Exploratory Study. 5, 3 (2016), e160.

[31] Salar Jafarlou, Jocelyn Lai, Iman Azimi, Zahra Mousavi, Sina Labbaf, Ramesh C Jain, Nikil Dutt, Jessica L Borelli, and Amir Rahmani.
2023. Objective Prediction of Next-Day’s Affect Using Multimodal Physiological and Behavioral Data: Algorithm Development and
Validation Study. JMIR Formative Research 7 (2023). https://doi.org/10.2196/39425

[32] Taejae Jeon, Han Byeol Bae, Yongju Lee, Sungjun Jang, and Sangyoun Lee. 2021. Deep-Learning-Based Stress Recognition with
Spatial-Temporal Facial Information. Sensors 21, 22 (2021), 7498. https://doi.org/10.3390/s21227498

[33] Gyuwon Jung, Sangjun Park, and Uichin Lee. 2024. DeepStress: Supporting Stressful Context Sensemaking in Personal Informatics
Systems Using a Quasi-experimental Approach. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New York, NY, USA.

[34] Gyuwon Jung, Sangjun Park, Eun-Yeol Ma, Heeyoung Kim, and Uichin Lee. 2024. A Tutorial on Matching-based Causal Analysis of
Human Behaviors Using Smartphone Sensor Data. ACM Comput. Surv. (feb 2024). https://doi.org/10.1145/3648356 Just Accepted.

[35] S. Kang, W. Choi, C. Y. Park, N. Cha, A. Kim, A. H. Khandoker, L. Hadjileontiadis, H. Kim, Y. Jeong, and U. Lee. 2023. K-EmoPhone: A
Mobile andWearable Dataset with In-Situ Emotion, Stress, and Attention Labels. Scientific Data 10 (2023). https://doi.org/10.1038/s41597-
023-01234-6

[36] Maryam Khalid and Akane Sano. 2022. Exploiting Social Graph Networks for Emotion Prediction. Scientific Reports 13 (2022), 60691.
[37] Mohammed Khwaja, Sumer S. Vaid, Sara Zannone, Gabriella M. Harari, A. Aldo Faisal, and Aleksandar Matic. 2019. Modeling Personality

vs. Modeling Personalidad: In-the-wild Mobile Data Analysis in Five Countries Suggests Cultural Impact on Personality Models. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 3, Article 88 (sep 2019), 24 pages. https://doi.org/10.1145/3351246

[38] T. Kim, H. Kim, H. Y. Lee, H. Goh, S. Abdigapporov, M. Jeong, H. Cho, K. Han, Y. Noh, S. J. Lee, and H. Hong. 2022. Prediction for
Retrospection: Integrating Algorithmic Stress Prediction into Personal Informatics Systems for College Students’ Mental Health. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY,
USA, 20 pages. https://doi.org/10.1145/3491102.3517701

[39] S. Koldijk, M. Sappelli, M. Neerincx, S. Verberne, and W. Kraaij. 2014. The SWELL Knowledge Work Dataset for Stress and User
Modeling Research. In Proceedings of the 16th ACM International Conference on Multimodal Interaction (ICMI ’14). ACM, 291–298.
https://doi.org/10.1145/2663204.2663257

[40] Reed Larson and Mihaly Csikszentmihalyi. 2014. The Experience Sampling Method. Springer Netherlands, Dordrecht, 21–34. https:
//doi.org/10.1007/978-94-017-9088-8_2

[41] Boning Li and Akane Sano. 2020. Extraction and Interpretation of Deep Autoencoder-based Temporal Features from Wearables for
Forecasting Personalized Mood, Health, and Stress. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 2, Article 49 (jun 2020),
26 pages. https://doi.org/10.1145/3397318

[42] S. M. Matingly, J. M. Gregg, P. Audia, A. E. Bayraktaroglu, A. T. Campbell, N. V. Chawla, V. Das Swain, M. De Choudhury, S. D. D’Mello,
A. K. Dey, G. Gao, K. Jagannath, K. Jiang, S. Lin, Q. Liu, G. Mark, G. J. Martinez, K. Masaba, S. Mirjafari, E. Moskal, R. Mulukutla, K.
Nies, M. D. Reddy, P. Robles-Granda, K. Saha, A. Sirigiri, and A. Striegel. 2019. The Tesserae Project: Large-Scale, Longitudinal, In Situ,
Multimodal Sensing of Information Workers. In CHI Conference on Human Factors in Computing Systems Extended Abstracts (CHI’19
Extended Abstracts). https://www3.nd.edu/~dwang5/documents/chi19extendedabstracts.pdf

[43] M.B.A. McDermott, S. Wang, N. Marinsek, R. Ranganath, M. Ghassemi, and L. Foschini. 2021. Reproducibility in machine learning for
health research: Still a ways to go. Science Translational Medicine 13, 586 (2021), eabb1655. https://doi.org/10.1126/scitranslmed.abb1655

[44] D. McDuff, A. Karlson, A. Kapoor, A. Roseway, and M. Czerwinski. 2012. AffectAura: An Intelligent System for Emotional Memory. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Association for Computing Machinery, New York,
NY, USA, 849–858. https://doi.org/10.1145/2207676.2208545

[45] L. Meegahapola et al. 2023. Generalization and Personalization of Mobile Sensing-Based Mood Inference Models: An Analysis of College
Students in Eight Countries. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT). ACM.
https://dl.acm.org/doi/abs/10.1145/3569483

[46] L. Meegahapola, H. Hassoune, and D. Gatica-Perez. 2024. M3BAT: Unsupervised Domain Adaptation for Multimodal Mobile Sensing
with Multi-Branch Adversarial Training. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT/ Ubicomp) (2024).

[47] L. Meegahapola, A.R. Mader, and D. Gatica-Perez. 2024. Learning about Social Context from Smartphone Data: Generalization Across
Countries and Daily Life Moments. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI). To appear.

[48] Lakmal Meegahapola, Salvador Ruiz-Correa, Viridiana del Carmen Robledo-Valero, Emilio Ernesto Hernandez-Huerfano, Leonardo
Alvarez-Rivera, Ronald Chenu-Abente, and Daniel Gatica-Perez. 2021. One More Bite? Inferring Food Consumption Level of College

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 143. Publication date: September 2024.

https://doi.org/10.1002/mpr.1759
https://arxiv.org/abs/2108.07689
https://doi.org/10.2196/39425
https://doi.org/10.3390/s21227498
https://doi.org/10.1145/3648356
https://doi.org/10.1038/s41597-023-01234-6
https://doi.org/10.1038/s41597-023-01234-6
https://doi.org/10.1145/3351246
https://doi.org/10.1145/3491102.3517701
https://doi.org/10.1145/2663204.2663257
https://doi.org/10.1007/978-94-017-9088-8_2
https://doi.org/10.1007/978-94-017-9088-8_2
https://doi.org/10.1145/3397318
https://www3.nd.edu/~dwang5/documents/chi19extendedabstracts.pdf
https://doi.org/10.1126/scitranslmed.abb1655
https://doi.org/10.1145/2207676.2208545
https://dl.acm.org/doi/abs/10.1145/3569483


143:28 • Zhang et al.

Students Using Smartphone Sensing and Self-Reports. 5, 1, Article 26 (2021), 28 pages. https://doi.org/10.1145/3448120
[49] Abhinav Mehrotra and Mirco Musolesi. 2018. Using Autoencoders to Automatically Extract Mobility Features for Predicting Depressive

States. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 127 (sep 2018), 20 pages. https://doi.org/10.1145/3264937
[50] G. Mikelsons, M. Smith, A. Mehrotra, and M. Musolesi. 2017. Towards Deep Learning Models for Psychological State Prediction using

Smartphone Data: Challenges and Opportunities. In Proceedings of the NIPS Workshop on Machine Learning for Healthcare 2017 (ML4H
2017). https://doi.org/10.48550/arXiv.1711.06350

[51] V. Mishra, T. Hao, S. Sun, K. N. Walter, M. J. Ball, C. H. Chen, and X. Zhu. 2018. Investigating the Role of Context in Perceived Stress
Detection in the Wild. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and
Ubiquitous Computing and Wearable Computers (UbiComp ’18). Association for Computing Machinery, New York, NY, USA, Association
for Computing Machinery, New York, NY, USA, 1754–1759. https://doi.org/10.1145/3267305.3274147

[52] Varun Mishra, Gunnar Pope, Sarah Lord, Stephanie Lewia, Byron Lowens, Kelly Caine, Sougata Sen, Ryan Halter, and David Kotz. 2020.
Continuous Detection of Physiological Stress with Commodity Hardware. ACM Trans. Comput. Healthcare 1, 2, Article 8 (apr 2020),
30 pages. https://doi.org/10.1145/3361562

[53] Varun Mishra, Sougata Sen, Grace Chen, Tian Hao, Jeffrey Rogers, Ching-Hua Chen, and David Kotz. 2020. Evaluating the Reproducibility
of Physiological Stress Detection Models. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 4, Article 147 (dec 2020), 29 pages.
https://doi.org/10.1145/3432220

[54] Amir Muaremi, Bert Arnrich, and Gerhard Tröster. 2013. Towards Measuring Stress with Smartphones and Wearable Devices During
Workday and Sleep. Bionanoscience 3, 2 (2013), 172–183. https://doi.org/10.1007/s12668-013-0089-2

[55] K. Mundnich, B. M. Booth, M. L’Hommedieu, T. Feng, B. Girault, J. L’Hommedieu, M. Wildman, S. Skaaden, A. Nadarajan, J. L. Villatte,
T. H. Falk, K. Lerman, E. Ferrara, and S. Narayanan. 2020. TILES-2018, a longitudinal physiologic and behavioral data set of hospital
workers. Scientific Data 7 (2020). https://doi.org/10.1038/s41597-020-00630-y

[56] M. L. Pariat, A. Rynjah, M. Joplin, and M. G. Kharjana. 2014. Stress Levels of College Students: Interrelationship between Stressors and
Coping Strategies. IOSR Journal Of Humanities And Social Science (IOSR-JHSS) 19 (2014). Issue 8. www.iosrjournals.org

[57] C. Y. Park, N. Cha, S. Kang, A. Kim, A. H. Khandoker, L. Hadjileontiadis, A. Oh, Y. Jeong, and U. Lee. 2020. K-EmoCon: Amultimodal sensor
dataset for continuous emotion recognition in naturalistic conversations. Scientific Data 7, 1 (2020), 293. https://doi.org/10.1038/s41597-
020-00630-y

[58] Limor Peer and Vicky Rampin. 2021. Reproducibility Principles: Taking the Pulse. https://reproducibility.acm.org/2021/04/08/
reproducibility-principles-taking-the-pulse/ Accessed: 2024-03-25.

[59] Eugenia Politou, Efthimios Alepis, and Constantinos Patsakis. 2017. A survey on mobile affective computing. Computer Science Review
25 (2017), 79–100. https://doi.org/10.1016/j.cosrev.2017.07.002

[60] A. Pratap, D. C. Atkins, B. N. Renn, M. J. Tanana, S. D. Mooney, J. A. Anguera, and P. A. Areán. 2019. The accuracy of passive phone
sensors in predicting daily mood. Depression and Anxiety 36, 1 (2019), 72–81. https://doi.org/10.1002/da.22822

[61] Edward Raff. 2019. A Step Toward Quantifying Independently Reproducible Machine Learning Research. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 492, 5485–5495.
https://dl.acm.org/doi/10.5555/3454287.3454779

[62] E. L. Rosenberg and P. Ekman. 2005. Coherence Between Expressive and Experiential Systems in Emotion. Oxford University Press, 63–88.
https://doi.org/10.1093/acprof:oso/9780195179644.003.0004

[63] Akane Sano and Rosalind W. Picard. 2013. Stress Recognition Using Wearable Sensors and Mobile Phones. In 2013 Humaine Association
Conference on Affective Computing and Intelligent Interaction. IEEE. https://doi.org/10.1109/ACII.2013.117

[64] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and Kristof Van Laerhoven. 2018. Introducing WESAD, a Multimodal
Dataset for Wearable Stress and Affect Detection. In Proceedings of the 2018 on International Conference on Multimodal Interaction - ICMI
’18. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3242969.3242985

[65] A. Shaw, N. Simsiri, I. Deznabi, M. Fiterau, and T. Rahman. 2019. Personalized Student Stress Prediction with Deep Multitask Network.
In Proceedings of the 1st Adaptive & Multitask Learning Workshop (Long Beach, California).

[66] Thomas Stütz, Thomas Kowar, Michael Kager, Martin Tiefengrabner, Markus Stuppner, Jens Blechert, Frank H. Wilhelm, and Simon
Ginzinger. 2015. Smartphone Based Stress Prediction. In User Modeling, Adaptation and Personalization. UMAP 2015. Lecture Notes in
Computer Science(), Vol. 9146. Springer International Publishing, Cham, 240–251. https://doi.org/10.1007/978-3-319-20267-9_20

[67] S. Taylor, N. Jaques, E. Nosakhare, A. Sano, and R. Picard. 2020. Personalized Multitask Learning for Predicting Tomorrow’s Mood, Stress,
and Health. IEEE Transactions on Affective Computing 11, 2 (April-June 2020), 200–213. https://doi.org/10.1109/TAFFC.2017.2784832

[68] Ali Tazarv, Sina Labbaf, Amir Rahmani, Nikil Dutt, and Marco Levorato. 2023. Active Reinforcement Learning for Personalized Stress
Monitoring in Everyday Settings. In 2023 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies
(CHASE). Association for Computing Machinery, New York, NY, USA, 44–55. https://doi.org/10.1145/3580252.3586979

[69] A. Tazarv, S. Labbaf, S. M. Reich, N. Dutt, A. M. Rahmani, and M. Levorato. 2021. Personalized Stress Monitoring using Wearable Sensors
in Everyday Settings. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,
9630224.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 143. Publication date: September 2024.

https://doi.org/10.1145/3448120
https://doi.org/10.1145/3264937
https://doi.org/10.48550/arXiv.1711.06350
https://doi.org/10.1145/3267305.3274147
https://doi.org/10.1145/3361562
https://doi.org/10.1145/3432220
https://doi.org/10.1007/s12668-013-0089-2
https://doi.org/10.1038/s41597-020-00630-y
www.iosrjournals.org
https://doi.org/10.1038/s41597-020-00630-y
https://doi.org/10.1038/s41597-020-00630-y
https://reproducibility.acm.org/2021/04/08/reproducibility-principles-taking-the-pulse/
https://reproducibility.acm.org/2021/04/08/reproducibility-principles-taking-the-pulse/
https://doi.org/10.1016/j.cosrev.2017.07.002
https://doi.org/10.1002/da.22822
https://dl.acm.org/doi/10.5555/3454287.3454779
https://doi.org/10.1093/acprof:oso/9780195179644.003.0004
https://doi.org/10.1109/ACII.2013.117
https://doi.org/10.1145/3242969.3242985
https://doi.org/10.1007/978-3-319-20267-9_20
https://doi.org/10.1109/TAFFC.2017.2784832
https://doi.org/10.1145/3580252.3586979


A Reproducible Stress Prediction Pipeline with Mobile Sensor Data • 143:29

[70] Kobiljon Toshnazarov, Uichin Lee, Byung Hyung Kim, Varun Mishra, Lismer Andres Caceres Najarro, and Youngtae Noh. 2024. SOSW:
Stress Sensing With Off-the-Shelf Smartwatches in the Wild. IEEE Internet of Things Journal (2024), 1–1. https://doi.org/10.1109/JIOT.
2024.3375299

[71] L.C. Towbes and L.H. Cohen. 1996. Chronic stress in the lives of college students: Scale development and prospective prediction of
distress. Journal of Youth and Adolescence 25, 2 (1996), 199–217. https://doi.org/10.1007/BF01537344

[72] Fani Tsapeli and Mirco Musolesi. 2015. Investigating Causality in Human Behavior From Smartphone Sensor Data: A Quasi-Experimental
Approach. EPJ Data Science 4, 1 (2015), 24. https://doi.org/10.1140/epjds/s13688-015-0061-1

[73] J. Vamsinath, B. Varshini, T. Sandeep, V. Meghana, and B. Latha. 2022. Stress detection using non-semantic speech representation. In
2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA). 1–6. https://doi.org/10.1109/RADIOELEKTRONIKA54537.
2022.9764916

[74] J. Vamsinath, B. Varshini, T. Sandeep, V. Meghana, and B. Latha. 2023. A Survey on Stress Detection Through Speech Analysis Using
Machine Learning. International Journal of Scientific Research in Science and Technology 9, 4 (2023), 326–333. https://doi.org/10.32628/
IJSRST229436

[75] Gideon Vos, Kelly Trinh, Zoltan Sarnyai, and Mostafa Rahimi Azghadi. 2023. Generalizable Machine Learning for Stress Monitoring
from Wearable Devices: A Systematic Literature Review. International Journal of Medical Informatics 173 (May 2023).

[76] R. Wang, M. S. H. Aung, S. Abdullah, R. Brian, A. T. Campbell, T. Choudhury, M. Hauser, J. Kane, M. Merrill, E. A. Scherer, V. W. S. Tseng,
and D. Ben-Zeev. 2016. CrossCheck: Toward passive sensing and detection of mental health changes in people with schizophrenia.
In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Association for Computing
Machinery, New York, NY, USA, 886–897. https://ubicomplab.cs.washington.edu/pdfs/crosscheck.pdf

[77] R.Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev, and A. T. Campbell. 2014. StudentLife: AssessingMental Health,
Academic Performance and Behavioral Trends of College Students using Smartphones. In Proceedings of the ACMConference on Ubiquitous
Computing. Association for Computing Machinery, New York, NY, USA, 3–14. https://studentlife.cs.dartmouth.edu/ubicomp2014.pdf

[78] Tong Xia, Jing Han, Abhirup Ghosh, and Cecilia Mascolo. 2023. Cross-Device Federated Learning for Mobile Health Diagnostics: A First
Study on COVID-19 Detection. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
1–5. https://doi.org/10.1109/ICASSP49357.2023.10096427

[79] Xuhai Xu, Xin Liu, Han Zhang, Weichen Wang, Subigya Nepal, Yasaman Sefidgar, Woosuk Seo, Kevin S. Kuehn, Jeremy F. Huckins,
Margaret E. Morris, Paula S. Nurius, Eve A. Riskin, Shwetak Patel, Tim Althoff, Andrew Campbell, Anind K. Dey, and Jennifer Mankoff.
2023. GLOBEM: Cross-Dataset Generalization of Longitudinal Human Behavior Modeling. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 6, 4, Article 190 (jan 2023), 34 pages. https://doi.org/10.1145/3569485

[80] X. Xu, R. Wang, F. Chen, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev, and A. T. Campbell. 2022. GLOBEM Dataset: Multi-Year Datasets
for Longitudinal Human Behavior Modeling Generalization. arXiv preprint arXiv:2202.07051 (2022). https://arxiv.org/abs/2202.07051

[81] Kangning Yang, Benjamin Tag, Chaofan Wang, Yue Gu, Zhanna Sarsenbayeva, Tilman Dingler, Greg Wadley, and Jorge Goncalves.
2023. Survey on Emotion Sensing Using Mobile Devices. IEEE Transactions on Affective Computing 14, 4 (2023), 2678–2696. https:
//doi.org/10.1109/TAFFC.2022.3220484

[82] J. C. Yau, B. Girault, T. Feng, K. Mundnich, A. Nadarajan, B. M. Booth, E. Ferrara, K. Lerman, E. Hsieh, and S. Narayanan. 2022.
TILES-2019: A longitudinal physiologic and behavioral data set of medical residents in an intensive care unit. Scientific Data 9 (2022).
https://doi.org/10.1038/s41597-022-01234-6

[83] Xue Ying. 2019. An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series 1168, 2 (feb 2019), 022022.
https://doi.org/10.1088/1742-6596/1168/2/022022

[84] Han Yu and Akane Sano. 2023. Semi-Supervised Learning for Wearable-based Momentary Stress Detection in the Wild. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 7, 2 (2023), Article 80. https://doi.org/10.1145/3596246

A Appendix

A.1 Data & Code
The K-Emophone dataset is accessible through Zenodo1, and the new dataset can be found on the public GitHub
page2. Code for personalization experiments (similar-user models and multi-task leaning) on both datasets

1https://zenodo.org/records/7606611
2https://bit.ly/3whIEb2
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is hosted in an anonymized repository3. Additional experiment codes are divided between two anonymized
repositories: one for the K-EmoPhone dataset4 and another for the DeepStress dataset5.

A.2 Figures & Tables

TimeLabel
timestamp

Sequence Length

Data samples

TimeLabel 
timestamp

Sequence Length

Data samples

Continuously collected sensor data Event log data

Fig. 9. Data Type Challenges for End-to-end Deep Learning

Fig. 10. K-EmoPhone Stress Label Distribution

3https://anonymous.4open.science/r/IndependentReproducibility_MTL-D1BC/
4https://anonymous.4open.science/r/IndependentReproducibility-E7BF/
5https://anonymous.4open.science/r/DeepStressReproducibility-D08F/
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Table 13. Feature Extraction - Reasoning & Data Source

Type Reasoning Raw Data

Social interaction [2] Change in social activities is one of the main stressors for college
students

Call event, Message event

Physical activity [56] Exercise is regarded as one of the positive coping strategies to
relieve stress [56]

Accelerometer [54], Physical activity event, Steps,
Distance, Calories

Context [51] Contextual features have an effect on the users’ perceived stress
levels [51]

Location, Time Information, UltraViolet, Ambient
light

Phone usage [16, 66]
[38]

Phone usage including app usage patterns could be a good pre-
dictor of EMA stress level [16, 66]

App usage, Installed app, Screen event, OnOf-
fEvent, Network connectivity, Battery event, Data
traffic, WiFi events, Media events, System events

Physiological data
[54] [53, 63]

Physiological data such as HRV and GSR are believed to be good
predictors of stress levels [54, 63]

Skin temperature, RRInterval, Heart rate, EDA

Sleep [2] Changes in sleep could be a good predictor of stress Screen event

Table 14. Feature Extraction - Preprocessing

Type Raw Data Preprocessing [35]

Social interaction [2] Call event Filter negative and 0 duration
Message event Encode the categorical events to 1 as numeric values

Physical activity [56] Accelerometer [56] Calculate the magnitude of accelerometer data
Steps Calculate the step count between consecutive pedometer data recordings
Distance Calculate the distance between consecutive data recordings
Calories Calculate the calories consumed between consecutive data recordings

Context [51] Location Calculate haversine distance between consecutive GPS recordings; Cluster the
GPS data for each user using poi clustering; Label clusters using semantic labels
( home, work, google map API labels, and none) [72]

UltraViolet Calculate UV exposure between consecutive UV recordings

Phone usage [16, 66]
[38]

App usage Recategorize apps into predefined categories [66], calculate app usage duration
for each app usage session

Installed app Calculate jaccard similarity index between consecutive installed app name
Screen event Calculate screen on duration for each screen on event session for each user
WiFi events Calculate cosine, euclidian, and manhattan distance between consecutive wifi

rssi; calculate jaccard similarity index between consecutive wifi bssid
Media events Encode the categorical video, image, and all types events to 1 as numeric values

Physiological data [54]
[53, 63]

Skin temperature Remove outliers and conduct z-score normalization for each user

RRInterval Remove outliers and conduct z-score normalization for each user [53]
Heart rate Remove heart rate bigger than 220 bpm and smaller than 30 bpm; remove outlier

using statistical method and normalization for each user [53]
EDA Calculate skin conductance from raw EDA data; apply median filter and min-

max normalization for each user; decomposing EDA into phasic and tonic EDA
[53]

Sleep [2] Screen event Filter out screen-on events caused by notifications (session shorter than 30
seconds); Calculate screen off duration for each screen off session for each user;
Discard screen-off patterns that do not start between 9PM to 7AM (next day)
[1]
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Table 15. Feature Extraction - Extracted Features

Type Raw Data Information being aggregated into features Features [35]

Social interac-
tion [2]

Call event Call duration and previous times contacted of the contact person Numeric features, call fre-
quency

Message event Message sent, received, and all events including both sent and received
events.

Numeric features

Physical activ-
ity [56]

Accel. [56] X, Y, Z values, and magnitude Numeric features

Physical activ-
ity transition
events

ENTER_WALKING, ENTER_STILL, ENTER_IN_VEHICLE, EN-
TER_ON_BICYCLE, ENTER_RUNNING events

Categorical features

Physical activ-
ity event

Confidence of unknown, OnFoot, Walking, InVehicle, OnBicycle, Run-
ning, and Titling

Numeric features

Steps Steps count Numeric features
Distance Distance traveled, motions, speed and pace Numeric features
Calories Calories consumed Numeric features

Context [51] Location Distance traveled, location cluster, and location cluster semantic label Numeric features for distance,
categorical features for location
cluster and cluster label, num-
ber of locations visited

Time Informa-
tion

Label timestamp Day of week, weekend or not,
hour name

UltraViolet UV exposure, intensity Numeric features
Ambient light Ambient light brightness Numeric features

Phone usage
[16, 38, 66]

App usage Different types of app usage events and their duration Categorical features for app
events and numeric features for
usage duration

Installed app Jaccard similarity index between consecutive installed app name Numeric features
Screen event Screen events and screen on duration Categorical features for screen

events while numeric features
for screen_on duration

OnOffEvent Phone power on off events Categorical features
Network con-
nectivity

Network connected events Categorical features

Battery event Battery level, status, and temperature Numeric features for battery
level and temp. while categor-
ical features for battery status

Data traffic Received and sent data in kbytes Numeric features
WiFi events Three types of distances between consecutive rssi and jaccard similarity

index between consecutive bssid
Numeric features

Media events Video, image, and all types of events Numeric features
System events Ringer mode types, power save event types, and mobile charge event

types
Categorical features

Physiological d-
ata [53, 54, 63]

Skin tempera-
ture

Skin temperature level Numeric features

RRInterval Interval between the consecutive heart-beat Mean, median, max, min,
std, kurt, skw, slope, per-
centile_20/80, and rmssd

Heart rate Heart rate variability Numeric features
EDA Skin conductance, phasic and tonic skin conductance Mean, max, min, std,

num_peaks, and AUC

Sleep [2] Screen event Screen off duration and corresponding start timestamp Longest duration is sleep dura-
tion; its start time is sleep onset
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Fig. 11. Confusion Matrix for High and Low Performance Users

Fig. 12. Feature Importance for High and Low Performance Users

Table 16. Results for Baseline on New Dataset

Experiment Type Accuracy F1-Score (pos. label) Macro F1-Score AUC-ROC Precision Recall

Baseline 1 0.704 0.124 0.468 0.522 0.518 0.506
Baseline 2 (removing 1st day’s data) 0.700 0.128 0.468 0.523 0.513 0.506
Baseline 3 (using 50% data for testing) 0.710 0.125 0.470 0.524 0.511 0.509
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Fig. 13. Label Distribution for High and Low Performance Users

Table 17. Results for Preprocessing, Feature Extraction & Preparation on New Dataset

Experiment Type Details Accuracy F1-Score (pos. label) Macro F1-Score AUC-ROC Precision Recall

Removing Neutral States 0.649 0.160 0.461 0.511 0.518 0.507
Removing Extreme Users 0.521 0.284 0.455 0.554 0.520 0.522
Label binarization
(mean 4 all users) 0.555 0.296 0.476 0.540 0.532 0.523G1: Label Processing
Label binarization
(mean 4 each user) 0.530 0.352 0.485 0.533 0.521 0.514

Previous survey label data only 0.803 0.422 0.638 0.640 0.636 0.640
Pre-experiment survey only 0.456 0.113 0.279 0.500 0.228 0.500
Sensor + Pre-experiment
survey only 0.668 0.146 0.460 0.554 0.515 0.530G2: Using Different Feature Types
Sensor + Previous survey
label data 0.752 0.254 0.546 0.616 0.590 0.568

5 mins 0.707 0.139 0.476 0.525 0.515 0.515
10 mins 0.699 0.135 0.472 0.527 0.517 0.518
30 mins 0.699 0.131 0.470 0.530 0.515 0.515

G3: Using different time window sizes
for immediate past time window

45 mins 0.690 0.125 0.463 0.527 0.506 0.503
Current + immediate past
+ sleep NA NA NA NA NA NA

Current + immediate past
+ today epochs 0.710 0.132 0.474 0.535 0.513 0.513

Current + immediate past
+ yesterday epochs 0.724 0.129 0.477 0.542 0.524 0.511

Current + immediate past
+ today whole time window
(aggregated over all epochs)

0.688 0.171 0.483 0.544 0.526 0.520
G4: Using extended past features

Current + immediate past
+ yesterday whole time window
(aggregated over all epochs)

0.710 0.141 0.479 0.527 0.525 0.509

G5: Feature Normalization Standard normalization for each user 0.432 0.317 0.373 0.530 0.533 0.513
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Table 18. Results for Feature Selection, Data Splitting, Oversampling & Undersampling, and Model Training on New Dataset

Experiment Type Details Accuracy F1-Score (pos. label) Macro F1-Score AUC-ROC Precision Recall

Remove 0 variance features
+ LASSO only 0.708 (0.126) 0.140 (0.086) 0.477 (0.052) 0.539 (0.074) 0.519 (0.037) 0.522 (0.044)

Remove features with high
pairwise correlation
+ LASSO only

0.695 (0.125) 0.134 (0.091) 0.469 (0.043) 0.535 (0.07) 0.512 (0.035) 0.506 (0.024)

G6: Feature selection Remove 0 variance features
+ Remove features with high
pairwise correlation + LASSO

0.697 (0.126) 0.135 (0.092) 0.470 (0.044) 0.536 (0.07) 0.514 (0.036) 0.508 (0.025)

Group k fold 0.704 0.140 0.480 0.503 0.489 0.494
Time-series k fold 0.727 0.289 0.559 0.636 0.589 0.565
k fold 0.803 0.471 0.675 0.764 0.713 0.657
loso + random 50% test user 0.789 0.277 0.565 0.636 0.596 0.565
loso + stratified 50% test user 0.782 0.256 0.553 0.634 0.573 0.556
loso + first 50% test user 0.715 0.179 0.492 0.573 0.524 0.517
loso + first 10% test user 0.696 0.158 0.480 0.552 0.527 0.528
loso + first 30% test user 0.701 0.158 0.479 0.540 0.525 0.526
loso + first 70% test user 0.737 0.155 0.511 0.539 0.551 0.523

G7&G8: Data splitting

loso + first 90% test user 0.769 0.203 0.535 0.579 0.552 0.545
Original distribution 0.741 0.062 0.451 0.529 0.481 0.501
Random oversampling 0.680 0.168 0.479 0.533 0.533 0.522G9: Oversampling &

Undersampling Random undersampling 0.533 0.223 0.433 0.507 0.505 0.493
Multi-task learning 0.625 0.201 0.461 0.483 0.495 0.493G10: Using different levels

of personalization Similar-user model 0.604 0.181 0.445 0.505 0.501 0.498
RandomForest 0.727 0.103 0.467 0.529 0.500 0.505
SVM 0.689 0.154 0.475 0.563 0.527 0.528
Logistic Regression 0.663 0.196 0.484 0.548 0.523 0.522
KNN 0.458 0.297 0.416 0.523 0.513 0.519
Decision Tree 0.597 0.231 0.474 0.503 0.508 0.503
Naïve Bayes classifier 0.356 0.321 0.323 0.518 0.509 0.500

G10: Model training using
different machine
learning models

MLP 0.650 0.194 0.479 0.546 0.517 0.519
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