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Abstract—The automated recognition of human emo-
tions plays an important role in developing machines with
emotional intelligence. Major research efforts are dedicated
to the development of emotion recognition methods. How-
ever, most of the affective computing models are based
on images, audio, videos and brain signals. Literature
lacks works that focus on utilizing only peripheral signals
for emotion recognition (ER), which can be ideally imple-
mented in daily life settings. Therefore, this paper present
a framework for ER on the arousal and valence space,
based on using multi-modal peripheral signals. The data
used in this work were collected during a debate between
two people using wearable devices. The emotions of the
participants were rated by multiple raters and converted
into classes in correspondence to the arousal and valence
space. The use of a dynamic threshold for ratings conver-
sion was investigated. An ER model is proposed that uses
a Long Short-Term Memory (LSTM)-based architecture for
classification. The model uses heart rate (HR), temperature
(T), and electrodermal activity (EDA) signals as its inputs
with emotional cues. Additionally, a post-processing pre-
diction mechanism is introduced to enhance the recogni-
tion performance. The model is implemented to study the
use of individual and different combinations of the periph-
eral signals, as well as utilizing annotations from differ-
ent ratings. Additionally, it is employed for classification
of valence and arousal in an independent and combined
fashion, under subject dependent and independent sce-
narios. The experimental results have justified the efficient
performance of the proposed framework, achieving classi-
fication accuracy >96% and >93% for the independent and

Manuscript received 1 February 2022; revised 28 August 2022 and
2 October 2022; accepted 20 November 2022. Date of publication 29
November 2022; date of current version 6 February 2023. This work
was supported by a funded project [8474000408 (CIRA 2021-051)] from
Khalifa University. (Corresponding author: M. Sami Zitouni.)

M. Sami Zitouni is with the College of Engineering and IT, University of
Dubai, 14143 Dubai, United Arab Emirates (e-mail: mzitouni@ud.ac.ae).

Cheul Young Park and Uichin Lee are with the Graduate School of
Knowledge Service Engineering, Korea Advanced Institute of Science
and Technology, Daejeon 34141, South Korea (e-mail: cheuly@kse.
kaist.ac.kr; uclee@kaist.edu).

Leontios J. Hadjileontiadis is with the Department of Biomedical En-
gineering, Khalifa University of Science and Technology, Abu Dhabi
127788, United Arab Emirates, and also with the Department of Elec-
trical and Computer Engineering, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece (e-mail: leontios.hadjileontiadis@ku.ac.
ae).

Ahsan Khandoker is with the Department of Biomedical Engineering,
Khalifa University of Science and Technology, Abu Dhabi 127788, United
Arab Emirates (e-mail: ahsan.khandoker@ku.ac.ae).

Digital Object Identifier 10.1109/JBHI.2022.3225330

combined classification scenarios, accordingly. The com-
parison of the achieved performance against the baseline
methods shows the superiority of the proposed framework
and the ability to recognize arousal-valance levels with high
accuracy from peripheral signals, in real-life scenarios.

Index Terms—Affective computing, arousal, emotion
recognition, LSTM, physiological signals, valence.

I. INTRODUCTION

HUMAN emotions are complex processes that are caused
by physiological and psychological reaction to an interac-

tion (with human, object, or machine) or to a situation. Moreover,
emotions can lead to having bodily changes, feelings, thoughts,
and behaviors and can be affected by the human personality,
mood, motivation, and temperament [1]. Emotions are essential
for humans’ communication in their daily life. They can be ex-
pressed through facial expressions, gestures, and vocal traits, or
verbally by using emotional vocabulary [2]. Moreover, they have
a direct effect on human cognition including decision-making,
human interaction, perception, and human intelligence [3].

Emotion recognition (ER) plays a major role in many areas,
such as healthcare, education, rehabilitation, and robotics. ER
is a demanding process, as emotions’ mechanisms and origin
are still mysteries, and the different feelings that can be experi-
enced can not be clearly defined [4]. The increasing presence of
mobile and wearable devices in our daily lives and their use for
shopping, gaming, social media, and healthcare leads to more
human-computer interactions. However, the deficiency of the
current human-computer interaction systems in understanding
and processing the human’s emotional cues is evident. This
lack of emotional intelligence causes them to be unreliable in
identifying the human emotional state and execute the proper
actions, accordingly [5].

Conventional approaches mainly depend on visible mani-
festations, such as facial expressions, gestures, and speech to
recognize emotional states in human-computer interactions sys-
tems. This facilitates emotion annotations since most humans
respond to emotional stimuli with similar manifestations. How-
ever, a major uncertainty arises from using methods that rely
on such external manifestations, since they can be consciously
regulated, as humans can conceal their feeling, or are naturally
suppressive [1]. This makes such methods of ER somehow
subjective, which leads to inconsistent performance and serious
implications in certain applications. Privacy also could be a
major concern to many people, and therefore they may object to
sharing their images, videos, or audios with local machines or
remote cloud databases [6].
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Alternatively, emotions can be identified based on the phys-
iological signals (biosignals), which are electrical, thermal, or
mechanical signals measured from the human body over time.
The most commonly used types of physiological signals include
electrocardiogram (ECG), electroencephalogram (EEG), heart
rate (HR), electrodermal activity (EDA), temperature (T), gal-
vanic skin response (GSR), mechanomyogram (MMG), blood
volume pressure (BVP), respiration rate (RR), Electrooculo-
gram (EOG), electromyography (EMG) and Photoplethysmo-
gram (PPG). Traditionally, the diagnostic information of these
signals is used in clinical practice for disease diagnosis and
symptoms progression. However, as these biosignals are cap-
tured as outputs from the human body status and functionality,
they also are affected by the current human emotional state
and convey valuable information about it [7]. The main ad-
vantage of using physiological signals for ER is that they are
involuntary reactions, caused by changes in the nervous system
and endocrine system, making them difficult to be controlled
and masked through subjective consciousness. Thus, a more
objective and reliable ER can be achieved [8].

In this context, this work aims at investigating the challenge
of classifying emotions based on the arousal-valence space
using multi-modal peripheral signals that can be collected in
non-invasive manner and monitored in the daily life. To this end,
we present a framework that uses a convolutional LSTM network
at its core, to classify people’s emotions into affective levels of
arousal and valence. It was proven in the literature, methods
using LSTM networks were able to achieve good and robust
performances when used in classification tasks of sequences
from physiological signals [8], [9], [10]. Further, We consider the
naturalistic conversation scenarios, since there are many social
activities where multiple people take turns and they interact with
one another. A naturalistic conversation is a conversation that
people would actually conduct in real life settings, which is
neither scripted nor affected by external influences. Thus, we
argue that ER in such scenario must carefully consider two as-
pects: 1) emotion label diversity, 2) inter-person variations, and
3) temporal variations of emotion labels. The main contributions
of the work are:

- The proposed ER framework archives robust and accurate
performance using non-invasive peripheral physiological sig-
nals, that can be continuously obtained via wearable devices.

- A cumulative prediction mechanism is introduced to infer
for the predicted emotion class by combining both current and
past network prediction scores.

- A multi-perspective assessment scheme is involved in the an-
notations for training, considering self-, partner- and combined-
ratings, and the effects on data distribution at the arousal-valence
space as in Russell’s circumplex model of affect [11], and
on the network’s classification performance are explored, in
addition to introducing dynamic thresholding for affective rating
conversion.

- Emotion labels diversity and their temporal variations, as
well as inter-person variations are considered simultaneously,
and their effect on the recognition is demonstrated and discussed.

The used physiological signals are collected in real-life set-
tings during naturalistic conversations in a form of a debate
between participants, capturing their social interactions. We
first perform the training and classification based on two levels
of arousal and balance. Then, we extend it into a four class
problem based on the four quadrants of the arousal-valence
space. Extensive experiments are conducted to demonstrate
the performance and robustness of the proposed framework in

subject dependent as well as independent tests, and show the
superiority in comparison to baseline classification.

II. RELATED WORK

A considerable amount of research is being conducted in inter-
disciplinary fields, including biomedical engineering, computer
science, psychology, and AI, to develop emotion classification
schemes that enable machines to detect, analyze, and interpret
human emotions [12]. Some of such schemes are based on
single-modal data, where emotion information is extracted from
one type of signal. Other methods are based on multi-modal
data, where the cues from multiple physiological signals are
used to achieve higher accuracy and robustness in distinguishing
between different emotions. Additionally, the emotions can be
classified based on how they are conceived, as discrete emo-
tions (e.g., happiness, sadness, surprise, anger, fear, etc.) [13],
pleasantness state (pleasant, unpleasant, neutral) [14], or as
dimensional emotions (combination of two parameters: arousal
and valence) [15], [16], [17]. In classifying discrete emotional
state, discrete emotion model is considered to recognize the
groups of emotions, whereas the others refer to circumplex ER.
This study focuses on dimensional emotions and the recognition
of the arousal-valence state.

A. Peripheral Signals-Based Methods

Many studies in the literature demonstrated that ER can be
achieved, using single or multi modal peripheral physiological
signals. The major advantage here is the easiness of continu-
ously obtaining such signals using daily life wearable devices.
This is highly desirable as it allows continuous monitoring
of person’s emotional states for healthcare applications, and
human-machine interactions.

1) Single-Modal Methods: Shukla et al. [18] performed a
study on feature selection for ER, where 40 EDA features from
time, frequency, and time-frequency domains were implemented
on AMIGOS dataset [19]. In this study, feature selection meth-
ods including Conditional Mutual Information Maximization,
Joint Mutual Information, and Double Input Symmetrical Rel-
evance, as well as machine learning techniques were used in
the experiments [18]. It was concluded that similar numbers
of features are needed to achieve optimal average accuracy for
arousal (85.75%) and valence (83.9%) recognition, in a subject
dependent scenario. Additionally, results obtained in subject in-
dependent tests were much inferior. Agrafioti et al. [1] proposed
a method that used ECG signals to detect dynamically evolving
emotion patterns based on the empirical mode decomposition.
Instantaneous frequency and the local oscillation were utilized to
extract features for classification. This work considered active,
as well as passive arousal, while suggesting that active induc-
tion method yields more ECG reactivity. The average accuracy
achieved for two class arousal classification is 76.19%.

2) Multi-Modal Methods: A method that utilized nonlin-
ear features extracted for the assessment of emotional re-
sponses from ECG, EDA, and RR signals was proposed by
Valenza et al. [20]. In this work, 35 participants were presented
with images from the International Affective Picture Systems
(IAPS) [21], and the signals were acquired simultaneously con-
sidering five levels of arousal and valence including neutral ones.
It was shown that the classification performance based on a
quadratic discriminant classifier, was improved when features
were extracted from nonlinear dynamic methods compared to
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standard features. Wiem and Lachiri [16] presented a frame-
work to classify emotional statements according to arousal and
valence model using ECG, RR, T and GSR signals collected
in the MAHNOB-HCI multi-modal tagging database [22]. Pre-
possessing was performed to remove artefacts and noise, and
169 features were extracted. Emotional states were classified
by SVM. It was deduced that ECG and RR signals are the
key determinants for recognizing human’s feelings. Accuracy
of 64.23% and 68.75% was achieved for arousal and valance
level classification, respectively. Zhang et al. [23] introduced
a few-shot learning algorithm to rapidly converge on a small
amount of training data for fine-grained valence and arousal
recognition. Tests achieved an averaged accuracy of 76.04%
(arousal), 76.62% (valence), and 57.62% (four quadrant with
neutral). Additionally, Zhang et al. [24] proposed a method based
on deep multiple instance learning, to recognize emotions at
a finer granularity level when trained with post-stimuli labels,
where instances are weakly-supervised in training stage. In
Elalamy et al. [25] work, recurrence plots were used to obtain
2D representations of physiological activity, to get less subject
dependent and better suited representation for non-stationary
signals such as EDA, in conjunction with ECG and PPG.

B. Brain Signals-Based Methods

A major part of the work conducted in the field is based on
detecting emotions from brain (EEG) signals, especially with the
popularity of datasets, such as DEAP dataset [2], and the strong
evidence of them containing determinant emotion information.
However, the setup and devices needed for collecting the signals
make it less suitable for daily life applications (e.g., health and
mental state monitoring).

1) Single-Modal Methods: Several single-modal state-of-
the-art methods were developed based on the EEG data
from DEAP dataset [26], [27], [28]. Other methods based on
single-modal brain signals that utilize LSTM networks are [9].
Additionally, Sourina et al. [29] presented a study that per-
formed classification using SVM in a subject dependent manner.
Petrantonakis and Hadjileontiadis presented a study for ER
that used hybrid adaptive filtering with higher order crossings
analysis [30], and a method for evaluating the emotion elicitation
procedures using frontal brain asymmetry theory, where classi-
fication was performed using SVM in subject dependent and
independent manners [31]. Further, Aydin et al. [32] presented
a method for detection of emotional dysfunctions through esti-
mating the level of nonlinear inter-hemispheric synchronization
using wavelet correlation.

2) Multi-Modal Methods: The following studies used brain
signals in conjunction with peripheral signals. A study to detect
the arousal level of participants through three types of stimulus
was conducted by Anderson et al. [33]. Signals including EEG,
ECG, GSR, EOG, and PPG were collected while participants
were exposed to exciting and relaxing videos and music before
playing Tetris and Minesweeper. Machine learning techniques
were used for analysis achieving arousal classification accuracy
of 88.9% with SVM. It was concluded that it is possible to
determine the type of stimuli used by analysing the biosig-
nals. Liao et al. [8] proposed a method where a Convolutional
Neural Network (CNN) was utilized to learn multi-channel
EEG spatial representations and an LSTM was used to learn
temporal representations of other signals including EOG, GSR,
RR, BVP, T, and EMG. For arousal and valence classification, ac-
curacy of 63.06% and 62.41% was achieved, respectively, using

peripheral signals representation, and 93.06% and 91.95% by
combining both EEG and peripheral representation, accordingly.
Saffaryazdi et al. [34] presented a study for recognizing emotions
in a face-to-face conversation using hand-crafted features from
EEG, GSR, and PPG signals. Classification results achieved
F-score of 77.6% and 80% for arousal and valence, respectively,
in subject-dependent tests, while 68% and 64% where achieved
in subject-independent tests.

Despite considerable attempts in this area, emotions and ER
have remained largely unexplored. Specifically, there is a lack
of works that focus on detecting emotions with physiological
data collected only from wearable devices in naturalistic sce-
narios. Most of the state-of-the-art studies (as deduced from this
section) either use brain signals, which require delicate setups
for capturing, or involve specific preparation and conditioning,
refraining them from daily life use. This motivate us to develop
a framework based on a naturalistic dataset to efficiently provide
ER, in terms of high robustness and accuracy in its performance.

III. DATASET AND ANNOTATIONS

A. Dataset Overview

In this work, the K-EmoCom [35] database was adopted,
which is a publicly available emotion dataset comprised of
multi-modal affective information, including facial expressions,
conversation audios, and physiological signals acquired from
32 participants engaging in 10-minute long paired debates on a
social issue. Although the dataset involves a social discussion
on a single topic to standardize a protocol, it is a dynamic
topic for debate since it is about a very controversial subject,
in which a conversation can induce wide range of emotions.
It enables studying emotions in the context of naturalistic
conversations, in particular recognizing continuous emotional
states from physiological signals acquired from commercial-
grade wearable devices. The dataset consists of annotations of
emotions observed during debates at the interval of 5-seconds.
Emotions were annotated from three unique perspectives, i.e.,
of subjects themselves, corresponding debate partners, and ex-
ternal observers. K-EmoCon, according to our knowledge, is
the first dataset accommodating multi-perspective assessment
of emotions during naturalistic social interactions.

B. Data Selection

Participants were randomly paired to engage in a dyadic
face-to-face debate on the Jeju Yemeni refugee issues. Sixteen
debates, which sum to 172.92 minutes (M = 10.8 min, SD =
1.04 min), were conducted. All data collection sessions were
arranged in a room with controlled temperature and illumination,
where two participants sat across a table facing each other with
cameras in the middle recording their facial expressions, upper
body gestures, and speech audios (see Fig. 1). Throughout a
session, participants wore a set of wearable devices for the
collection of physiological signals. Table I summarizes the list
of devices and respective sampling rates and ranges for signals
used in the presented work.

In the proposed framework, we are focusing on signals from
the dataset obtained from wearable devices as described in
Table I, that have similar low sampling rates (1 or 4 Hz). This
will allow us to seamlessly use sensor data in a single, fast,
multi-modal detection system. Thus, the signals that are being
used in this work include two HR signals (denoted as HR for the
signal acquired with the Empatica E4 wristband, and HRp for
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Fig. 1. Two participants in a debate during data collection session for
K-EmoCon dataset [35].

TABLE I
DATA COLLECTION DEVICES AND ACQUIRED SIGNALS USED IN THE

PRESENTED FRAMEWORK

the signal acquired with polar H7 sensor, as in Table I), EDA,
and T. Data from 21 out of the 32 participants were used in this
work, due to unavailability of one or more of these four signals
corresponding to 11 participants in the dataset.

IV. METHODOLOGY

A. Physiological Signals

The signals in this work are normalized before being used
in the ER system. Based on the data collection protocol, all
subjects were introduced to a relaxing video for 2 minutes before
starting the debate to measure the baseline of their neutral state.
This accounts for individual biases and reduce the effect of
previous emotional states. Thus, we use the signals collected
within this period as a reference to the subject neutral state. The
segmentation of these signals is based on the data collection
time stamps. Each participant’s signals are normalized based
on their personal neutral state, using the last 1.5 minutes of the
baseline data. The normalization is done to remove the bias from
each participant, leaving mainly the changes in the signal that
correspond to the emotional state of the participant during the
debate session. This is done by applying the following equation:

Sn = S −mean(Sr), (1)

whereS is the signal in the debate period, andSr is the signal col-
lected during the relaxing period. Normalization is commonly
used in machine learning, where the data is either scaled or
transformed, to allow equal contributions and minimize the bias
of features whose numerical contribution is higher in discrimi-
nating classes [36]. Thus, since this framework is multi-modal,
and the data belong to various subjects, the preliminary tests
showed that this proposed mean centered based normalization
approach enhances the performance of the proposed recognition
model.

B. Emotion Classes & Ratings

Emotions are classified based on the level of arousal and
valence (affective dimensional emotional model [11]). Both

TABLE II
CONVERSION OF THE ANNOTATORS RATINGS (R) INTO THE CORRESPONDING

AROUSAL AND VALENCE CLASS

Fig. 2. Distribution of labels in each type annotation.

arousal and valence were categorized into two classes, i.e., low
(L) and high (H). Further, the emotions are recognized as belong-
ing to one of four affective classes representing the quadrants
of the arousal and valence space. These classes include: low
arousal low valence (LALV), low arousal high valence (LAHV),
high arousal low valence (HALV), and high arousal high valence
(HAHV). Taking into consideration label diversity for emotional
class generation, we perform the analysis and comparisons by
considering the self annotations and partner annotations from
the dataset. Further, combined annotations of both ratings are
considered, which give equal weights to both self and partner
labels so that we can have a unified model for prediction. The
category of arousal and valence is determined based on the
ratings of the annotators and the level is assigned according
to a mid value (threshold). For self annotations and partner
annotations, if the rating is below 3 (mid point), then it is
considered low, otherwise it is high. On the other hand, for the
combined annotations, the rating of both self and partner are
added; then, if it is below 6 it is considered as low; otherwise it
is high. Table II summarizes the conversion of the annotators’
ratings into the corresponding class. Finally, the combinations of
the levels of both arousal and valence determine which quadrant
the emotion belongs to. Fig. 2 shows the distributions of the
labels along the affective classes in each type of annotation.

This way of ratings conversion, however, does not take into
account the individual differences between the raters, such as
their perspectives and biases, since the same middle value is
used to represent the neutrality. Nevertheless, in reality, this is
not accurate. For example, in our setup, one rater may provide
all his ratings between 3 and 5, and another one may give rates
of 1 and 2 only. With the use of the mid value as a threshold, all
the ratings of the first one will be converted into high, and all the
ratings of the second one into low. Therefore, taking a different
conversion threshold for each rater may more accurately reflect
their annotations, as one’s low may be considered other’s high.
To that end, we introduced a dynamic threshold for ratings
(DTR) to minimize the resultant effect of label diversity, where
the conversion is done based on a changing threshold according
to the rater’s values distribution throughout the session. The DTR
is determined as follows,

DTR = round(mean(Σm
1 ri))− 0.5, (2)

where ri is the corresponding rating value for the ith instance
across the total m instances.
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Fig. 3. Block diagram illustrating the proposed ER model with temporal prediction enhancement.

C. Proposed ER Model

Fig. 3 shows a block diagram of the proposed ER system.
First, raw physiological signals are used including HR, Hrp,
EDA, and T. Before feeding these signals to the network, they
are normalized (see Section IV-A) and interpolated. The inter-
polation is done based on the nearest-neighbor. Then, the signals
are segmented into segments of size w × Fsmax, where Fsmax

is the highest sampling frequency of the used signals, and w is
the sampling period of an emotion annotation. Here,w = 5 (i.e.,
one in every five seconds). All the data obtained from the signals
are standardized as follows:

Sd =
Sn −mean(Sn)

SD(Sn)
, (3)

where SD(Sn) is the standard deviation of the normalized
signal.

Standardization is performed on training and testing data as it
can noticeably improve the network performance specially since
we are using signals obtained from different sources and have
different ranges of values.

Then, the signals are fed to an LSTM network. The LSTM
network proposed here consists of a sequence input layer, two
bidirectional LSTM (BiLSTM) layers, two dropout layers, a
fully connected layer, a softmax layer, and a classification layer.
First, the input layer has a size of four (as we are using four
signals) and takes the standardized segmented sequences. The
first BiLSTM layer contains 50 hidden units and returns a
sequence with the same size as the input sequence. A drop layer
with a probability of 0.2 is then used to reduce the occurrence
of over-fitting [28]. Then, another BiLSTM layer is used that
has 20–50 hidden units (different number of hidden units used
for various tests), and this BiLSTM layer returns the last state.
Another dropout layer with 0.2 probability is used to avoid
over-fitting. After that, a fully connected layer is fed with the
output, and then a softmax layer is used for activation. Finally,

Fig. 4. Visualization of the BiLSTM layers activations.

the classification output has two or four values, based on the
usage of the network, whether the system is used for classifying
arousal and valence levels into high or low, or it is used to
classify the emotion into one of the four quadrants (LALV,
LAHV, HALV, and HAHV). Fig. 4 displays visualization of the
BiLSTM layers activations’ to provide interpretability of the
learned features, where the heatmaps show how strongly each
hidden unit activates and highlights how the activations change
over time.

1) Temporal Prediction Enhancement: For the emotion clas-
sification where the annotations were performed at short periods
of time (5 seconds in our dataset), we argue that it is not usual
for emotions to change dramatically within such a short period.
Additionally, this results in increase in the temporal variability
of emotion labels. To accommodate this variability, we propose
a Temporal Prediction Enhancement (TPE), a mechanism where
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a prediction of the emotion at a certain time can take into
consideration the predictions at previous periods. This is done
by introducing an additional step before deciding the class based
on the scores of the classifier, which could significantly improve
performance in continuous social interaction scenarios.

First, the current scores of the classification performed us-
ing the ER model are obtained for the current period (5 sec-
onds). Then, the scores obtained from instantaneous classi-
fication results of the previous periods are fetched. Depend-
ing on how many of the past predictions are desired to be
considered, the scores needed are determined. Thus, scores
at t− 1, t− 2, . . . , t− n are used accordingly, where t is the
current instantaneous prediction time, and n is the number of
past predictions. For example, if it is desired to use predictions at
last 10 seconds, scores at t− 1 and t− 2 are used, and for last 20
seconds t− 1, t− 2, t− 3, and t− 4. Therefore, for prediction
using the pastα× n seconds, scores up till t− n are used, where
α is the annotation period.

Classifier scores range from 0 to 1. We decided to remove past
predictions that do not have a score corresponding to one class
with a value above 0.6. This is to ensure that any uncertainty in
the past emotion predictions will not be carried on to the current
prediction. The remaining scores are then accumulated and the
emotion prediction at the current instant is determined based on
the overall score. In the experiments where this mechanism is
used, it was applied to the ground truth as well, which was used
to measure the performance to have an appropriate assessment.
This was done by giving a score of 1 to the correct class, and 0
to the others before the combination.

D. Implementation Setup

The proposed approach was implemented in Matlab 2020a.
For training, we tried to balance between the number of epochs
and the minimum sequence length, in order to have a decent
training speed, and enough iterations to achieve high accuracy.
Several tests were performed where the number of epochs was
set to be between 200 and 500, while the minimum sequence
length is either 20 (equal to the input sequences length) or its
multiplication (40, 60, and 80). Additionally, scheduled learning
rate was used, where initially the learning rate started at 0.005
and then dropped by a factor of 0.2 at half the way through the
epochs.

E. Baseline Setup

Five classifiers, i.e., three heuristic voters (random, majority,
and class ratio), Gaussian Naive Bayes (GNB)—a simple proba-
bilistic classifier, and XGBoost [37], a popular high-performance
yet efficient tree boosting system, were trained to establish a
comparable baseline to evaluate the performance of proposed ER
model. The aforementioned classifiers were chosen in particu-
lar to replicate experimental procedures previously employed
in well-known works in the field, to evaluate performances
of classifiers trained with emotion databases with imbalanced
class distributions, against baseline models [2], [22], [38]. For
the training of the classifiers, 30 features were extracted from
25-seconds long segments, with each segment containing BVP,
EDA, T, and HR measurements. As emotions during debates
were annotated every 5-seconds, physiological signals acquired
during debates were first divided into 5-second segments such
that each segment matches with an (arousal, valence) tuple. Five
such 5 s segments within a 25-second moving window were

TABLE III
CLASSIFICATION ACCURACY (%) BASED ON DIFFERENT BIOSIGNALS

COMBINATIONS WITH SELF ANNOTATIONS

then concatenated, with a 20-second overlap between windows.
Features extracted are as shown in the list below:

BVP: mean BVP; HRV (standard deviation); mean inter-beat
interval (IBI); multiscale entropy (MSE) at 5 levels; power spec-
tral density (PSD): spectral power in 0.0–0.1 Hz, 0.1–0.2 Hz,
0.2–0.3 Hz, 0.3–0.4 Hz, and spectral power ratio between 0.0–
0.08 Hz and 0.15–0.5 Hz bands; and tachogram power: lower
frequency spectral power (LFSP) below 0.08 Hz, medium fre-
quency spectral power (MFSP) in 0.08–0.15 Hz, high frequency
spectral power (HFSP) in 0.15–0.5 Hz, and energy ratio between
MFSP and (LFSP + HFSP).

EDA: number of peaks exceeding 100Ω per second, mean
peak amplitude from the saddle point preceding the peak, mean
rise time for the signal to reach its peak from the saddle point in
seconds, mean GSR, and standard deviation of GSR.

T: statistical moments [mean, stdev., kurtosis, skew], and
spectral power in [0.0–0.1 Hz, 0.1–0.2Hz].

HR: mean and standard deviation.
Features used in the baseline classification were selected from

the set of features initially proposed by Soleymani et al. in
Toolbox for Emotional feAture extraction from Physiological
signals (TEAP) [38]. A Python script to replicate baseline classi-
fication with K-EmoCon is available on K-EmoCon supplemen-
tary codes GitHub repo, which directly depends on the Python
implementation of TEAP (PyTEAP) package [39].

V. RESULTS

A. Subject-Dependent Classification

1) Arousal & Valence Classification: Table III shows the ex-
perimental results, in terms of emotion classification accuracy
(%) of arousal and valence based on the self-annotations, when
each physiological signal is considered alone or combined with
the others. The individual signal that provides the highest clas-
sification accuracy is EDA (arousal: 75.75%, valence: 82.50%).
The use of the four signals together for classification achieves the
highest accuracy (arousal: 88.82%, valence: 92.91%). Table IV
contains the emotion classification accuracy values for binary
levels of arousal and valence. First are the 5 seconds (the anno-
tations period in the used dataset) classification results, where
the prediction is applied instantaneously at the output of the ER
system’s classifier. Additionally, the performance of the pro-
posed approach while using the TPE is also tabulated. Here the
results are demonstrated using normal rating conversion, as well
as the proposed DTR (see (2)). Various tests’ results are shown
taking into consideration various numbers of past predictions
(n = {2, 8}). In all experiments, the accuracy increases when
TPE is used to deal with temporal variability of the emotions.
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TABLE IV
EMOTION CLASSIFICATION ACCURACY (%) FOR TWO LEVELS

INSTANTANEOUSLY (n = 0) AND USING TPE WITH VARIOUS (n)

Fig. 5. Confusion matrices of (a) arousal and (b) valence classifica-
tion according to the tests with bold values in TABLE IV. (a) Arousal
(b) Valence.

TABLE V
EMOTION CLASSIFICATION ACCURACY (%) FOR FOUR CLASSES
INSTANTANEOUSLY (n = 0) AND USING TPE WITH VARIOUS (n)

This is also due to the fact that TPE deals with the instability issue
of the emotion labeling. Taking into consideration label diversity
influence, the highest performance is achieved for both arousal
and valence classification when using partner annotations. The
highest accuracy for arousal classification is 94.89% (using past
20 s (n = 4)), while it is 96.78% for valence classification (using
past 40 s (n = 8)). When using the self annotations, the best
values obtained are 92.67% (using past 30 s (n = 6)) and 95.23%
(using past 10 s (n = 2)) for arousal and valence, respectively.
On the other hand, when using the combined annotations, a
slightly lower performance is achieved at 92.36% (using past
40 s (n = 8)) and 93.34% (using past 40 s (n = 8)) for arousal
and valence, respectively. Fig. 5 displays the confusion matrices
for (a) arousal and (b) valence classification respectively.

2) Four Quadrants Classification: Table V demonstrates the
emotion classification accuracy for the four classes of LALV,
LAHV, HALV, and HAHV, using the three annotation types. As

in the previous experiments, the classification is performed first
without considering the TPE technique, then multiple tests are
presented taking into consideration temporal variability. A simi-
lar observation to the case of the binary arousal and valence clas-
sification can be made here, where for each type of annotation,
all the results obtained while using the prediction mechanism
are superior. Considering label diversity, the highest accuracy
is achieved when using the partner annotations, then comes
the self annotations and the combined annotations which is the
lowest. For partner and self annotations, the best performances
are achieved with the use of past 30 s (n = 6), where the resultant
accuracy is 93.67% and 89.12%, respectively. For combined
annotations, the highest accuracy is obtained using past 40 s
(n = 8), which is 89.12%. Fig. 6 depicts the confusion matrices
of the four quadrants classification results corresponding to the
tests which values are in bold in Table V. The amount of data
belonging to the HAHV class is the largest, which is expected,
as, normally, human beings tend to be in a state of high arousal
and valence. Comparing between the confusion matrices, it
can be deduced that the one corresponding to the combined
annotations has less biased data against the other two. In Fig. 7,
plots of ROC curves are shown for arousal, valence, and four
quadrants emotion classification. Each plot contains curves that
correspond to ER performed using different types of annotations.
Area under the ROC Curve (AUC) with 95% confidence interval
(CI) values are estimated. For arousal classification, the highest
AUC achieved is 0.8454 with CI of 0.7907–0.8838 using partner
annotations, while the highest AUC for valence classification
is 0.8615 with CI of 0.8017–0.8985 using self annotations.
Moreover, the four classes experiments achieved an AUC of
0.8037 with CI of 0.7590–0.8404 with partner annotations.

B. Baseline Classification Results

Table VI shows the baseline classification results for arousal,
valence, and four quadrants in comparison with the proposed
method, as well as state-of-the-art methods implemented on the
K-EmoCon dataset [17], [40]. Accuracy (Acc.) and F1-score
averaged across 4-fold cross validation are reported for each
classifier as the model’s performance for both majority and
minority classes is a pertinent issue given the imbalanced dataset.
In all test cases, the proposed approach produces the highest
performances, followed by XGBoost [37] which achieved a
classification accuracy of 76.45%–83.18% for arousal, 78.75%–
85.19% for valence, and 66.28%–72.88% for four classes. The
lowest results achieved in all tests were when using the simplistic
Random voter classifier.

C. Subject Independent Classification

To further study the impact of inter-personal variations in
ER modeling, subject independent experiments were performed
for arousal and valence classification. A leave-one-subject-out
(LOSO) validation scheme was implemented, where each time
training is performed using data from participants except the
one on whom emotion prediction is applied. Thus, no prior
knowledge of the testing participant exists in the network since
none of their data is used in training phase. This experiment was
performed using all three types of annotations.

Fig. 8 shows plots of arousal and valence classification accu-
racy values obtained from the LOSO test for each participant,
using different annotations. In the self annotations case, the
arousal classification accuracy values range between 38.52%
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Fig. 6. Confusion matrices of four classes classifications using different types of annotations according to the tests with bold values in Table V.

TABLE VI
BASELINE CLASSIFICATION ACCURACY (%) AND F1 SCORE COMPARISON FOR AROUSAL, VALENCE, AND FOUR QUADRANTS CLASSIFICATION

(P4) and 100% (P21), while for valence they range between
41.03% (P8) and 98.64% (P16), with an overall accuracy of
67.9% (SD: 0.1476) and 75.98% (SD: 0.1521) for arousal and
valence classification, respectively. On the other hand, using
partner annotations achieves accuracy values between 34.69%
(P16) and 93.94% (P11) for arousal classification with overall
64.43% (SD: 0.1884), and accuracy values between 26.9% (P12)
and 95.31% (P20) for valence classification with overall 67.68%
(SD: 0.1615). Finally, when combined annotations are used, the
accuracy of arousal classification ranges from 49.57% (P8) to
93.75% (P20) with an overall of 65.34% (SD: 0.1236), while for
valence classification it ranges from 33.79% to 89.80% with an
overall of 65.5% (SD: 0.1527).

VI. DISCUSSION

Experiments were conducted to test the proposed framework
for classifying binary classes of arousal and valence, as well four
emotion classes corresponding to their combination, using the
three annotation variations in addition to using DTR. The initial
tests performed highlighted the improvement obtained from us-
ing multi-modal peripheral signals against single-modal, which
is up to 20.94% increase in accuracy (see Table III). Then, in
the next experiments for ER, high and satisfactory classification
accuracy was achieved in all tests (Arousal 85.38–94.89%, Va-
lence 86.60–96.78%, see Table IV, four classes 80.95–93.65%,
see Table V), and noticeable improvements were shown when

using the proposed TPE. It can be noticed that when using DTR,
the accuracy obtained is slightly lower. Since DTR tends to more
accurately represent the annotation of the emotion level, com-
pared to the static thresholding, for several participants’ data,
using DTR resulted in a lower number of low annotations for
arousal and valence. Since detecting the low cases is more crit-
ical, having a similar overall accuracy with less number of low
annotations is actually an improvement. Furthermore, subject-
independent experiments were performed to further challenge
the system in a LOSO setup. For many participants/annotations,
the results were very promising (up to 100%). Nonetheless, the
results on some others were not very satisfactory (27% in P19),
due to significant inter-person variation. Finally, a comparison
with baseline methods was demonstrated, which showed the
superiority of the framework presented in this paper.

A. Temporal Variations of Emotions

There are many factors regarding the data and participants that
have an impact on the ER system including the emotion stability
and variability of the participants, which indicate how long the
emotion state remains unchanged, and how many times an emo-
tion alteration occurs, respectively. This is reflected in the emo-
tion annotations and mainly affected by the rater perspective,
the participants emotional expressions, and their personalities.
For the 21 participants from whom the data are collected, where
emotions were rated each 5 s, the average stability of the arousal
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Fig. 7. ROC curves showing classification performance and AUC val-
ues with 95% confidence interval.

and valence levels is estimated to be 115 s according to self
annotations, and 130 s according to partner annotations. A no-
ticeable observation is that the positive emotion level is sustained
for much longer average duration against the negative emotion
level. From the self annotations, we estimated that the positive
emotion average stability is 175 s against 50 s for the negative
emotion, and from the partner annotations, it is 200 s against 70 s.
Compared to the annotations frequency (5 s periods), the emo-
tions usually remain unchanged much longer, which explains the
enhancement obtained when using the proposed TPE technique,
which takes longer time windows into consideration to produce
the prediction, as it was demonstrated in Tables IV and V. Never-
theless, over increasing the prediction time window will result in
miss-detecting impulsive and short-term emotional alterations,
especially in the negative emotional states, which are more
critical to detect and have shorter stability periods. Furthermore,
to investigate the emotions variability of the participants, we

TABLE VII
STABILITY (BY AVERAGE DURATION) AND VARIABILITY (NUMBER OF

ALTERATIONS PER SESSION) OF PARTICIPANTS EMOTIONS

estimated the average number of alterations in the arousal and va-
lence levels according to self and partner annotations per record-
ing session (approximately 10 minutes for each participant). Ac-
cordingly, an average of 5.6 and 4.8 alterations per session were
estimated from self and partner perspectives, respectively. How-
ever, the variability can drastically vary depending on the rater’s
perspective, and the participants themselves, as it can be seen in
the annotations examples in Fig. 9. More detailed estimations
of emotion stability and variability can be found in Table VII.

B. Label Diversity

In fact, annotations used in training and testing the ER
model can have great differences when raters with different
perspectives are involved, which is investigated in this frame-
work. Participants, by rating their own emotion, may interpret
their feelings in a different way than the one observers of
their emotional expression follow. Additionally, people express
their emotions in different ways and intensity, as well as raters
can perceive such expressions in various ways when they are an-
notating others’ emotions. These differences are very noticeable
in the naturalistic K-EmoCon dataset, since in each recording
session, different couple of people rate (annotate) each other.
In Fig. 9, annotations for P19 and P32 are shown, comparing
the self and partner perspectives. Therefore, a sequence of data
from the same participant can represent a different emotion level
when fed into the model, based on the rater. This can affect the
recognition performance when such annotation is inconsistent
between participants. However, in our framework, this does
not seem to be an issue when data from all participants with
the respective annotations are used to train the model, as it is
shown in the results of Tables IV and V. On the other hand,
such inconsistencies can have a major effect on the performance
when no data from the testing subject are used in training, as
it is seen in some cases some cases of LOSO experiments (see
Fig. 8). For example, valence classification test of P19 achieved
27% with partner annotations, against 98% with self annotations.
The same observation can be seen in P32 valence classification
test which achieved 36% with partner annotations against 100%
with self annotations. This concludes that in these cases, the
self annotation is more consistent with other participants than
the partner. Looking at the exact annotations in Fig. 9, we can
see that the valance state is rated high all the time by self, and
low almost all the time by partner, which is the same case in
the arousal annotations of P32, showing how much differences
annotations can have, and, thus, possibly affecting the systems
performance when applied on new participants.

C. Inter-Personal Variation

Another important discussion point is the variation of sig-
nals distributions and emotional responses between participants
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Fig. 8. Subject independent test results showing the accuracy of classification on each participant for arousal and valence levels. The performed
is a leave one out using different annotations.

Fig. 9. Arousal and valence level annotation by self and partner raters
for participants 19 and 32.

according to elements, such as age and gender, and how it can
impact the ER model, especially when transferring it to different
environments. The 21 participants followed a gender distribution
of 12/9 Male (M)/Female (F), paired with M/M (5), F/F (1) and
M/F (8), and their ages were between 19 and 30. In preliminary

experiments, we used raw data, without normalization or stan-
dardization, from different groups of the participants to verify the
system, which resulted in inconsistent and lower performances
compared to the reported in Section V. This was mainly due to
the differences in signals distributions across the participants, as
well as the scales of the signals values. The effect of gender and
age on the performance of the proposed approach was examined
using a linear regression model. The implementation of the
normalization using data from relaxation period of the recording
sessions, and the standardization resulted in all p-values > 0.9.
This explains the beneficial effect of the data pre-processing that
was also reflected in an average improvement of classification
accuracy of more than 10%, as well as more consistent perfor-
mances across data from different groups of participants (based
on age and gender), rectifying the impact of such inconsistencies
in the data. Preliminary experiments on different groups’ only
showed around 2% of variations in performance. It is interesting
to note that the proposed approach was tested on young adult
subjects (19–30 years old). It is expected that older adults express
their emotions differently from the young ones. For example,
older adults can exhibit higher levels of subjective arousal in
negative emotions and tenderness while young adults often show
higher levels of physiological arousal in these emotions [41].
Moreover, a variability in the acquired physiological signals
is foreseen due to ageing (e.g., for T [42]). Nevertheless, as
the proposed ER framework is based on physiological signals
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that are normalized and standardized in the resting state, it is
anticipated that it could easily be adapted to the characteris-
tics of the physiological signals that are captured from older-
adults emotional expression, considering proper annotations and
moderate alterations. Additionally, the data collected using Em-
patica E4 Wristband for P31 and P32 session turned out to
be very noisy. Thus, we prelimenarily tested the model by
both including and excluding P31 and P32 data, to verify the
effect of noisy signals on the model. The resultant performances
were similar with no noticeable differences, concluding that
the proposed model can tolerate noisy input signals, given that
they contain the correct information. This makes it very suitable
when used in different environments, where data collected from
wearable devices are expected to be noisy to a certain extent.

D. Applications

It is highly desirable for modern human-computer interac-
tion systems to be able to detect emotional cues and synthe-
size appropriate emotional responses. This can be achieved
by equipping machines with robust, accurate, and adaptable
ER systems. Having intelligent systems that are emotionally
aware can revolutionize various areas including e-health, smart
learning, smart homes, online gaming, and neuromarketing.
With the recent increase of attention towards the importance
of mental health, more work is being dedicated to recognize
people emotions in order to monitor the mental health state and
be able to intervene when needed [5]. Therefore, an emotionally
aware healthcare system should provide real time monitoring of
patients’ physical and mental states, allowing appropriate ther-
apy and diagnosis to be offered accordingly. Additionally, the
presented framework can be used for e-health applications such
as using wearable devices and mobile applications for health and
fitness self-monitoring [43]. The availability of such technology
allows a continuous, uninterrupted collection of data, enabling
frequent emotional assessment. Therefore, incorporating ER
into health monitoring systems, along with the utilization of
cloud computing, can enhance personalized medical assessment
and preventive solutions [44].

Cognitive and behavioral therapies aims to help patients to
cope with their mental health issues by successive imaginary,
mediated, or in-vivo exposures, and the efficiency of such
psychotherapy has been recognized for the past years. In this
context, affective computing and ER techniques, specifically
when using the arousal and valence model which covers a large
spectrum of emotions and is widely used in psychology, can
be used to improve the therapeutic process since automatic
recognition of the arousal and valence components of affective
reactions can provide significant information [45]. Further, in
psychotherapy, ER offers great help to psychiatrists and patients
in supporting early diagnosis of psychiatric diseases. Mid to long
term emotional characterization can be used in psychiatry and
in conjunction with medical trials. For patients with psychiatric
diseases, ER offers the therapists with more insights into the
daily variations of the patients mental and emotional state [46].

Learning can be enhanced through an educational system with
emotionally aware human-computer interaction that uses the
subject response to exercises, its personality, and emotions to
adapt the study material and teaching velocity. Additionally,
entertainment recommendation systems can utilize ER to ob-
tain emotional responses to adapt music, movie, or TV series
recommendation to the user’s preferences. This can enhance the

user’s experience and thus improving the marketing aspect of the
service provider. The importance of ER extends beyond human-
computer interaction into fields such as psychology, where it
could help psychologists identify patients who are unable to
express their emotions. For example, ER could be beneficial for
patients with autism spectrum disorder or patients diagnosed
with the locked-in-syndrome. Moreover, there is increasing in-
terest of utilizing artificial intelligence and its applications in
the healthcare system, such as having a virtual avatar that is
able read and adjust according to the patients’ emotions, can
improve their motivation for treatment. Also, this can lead to
a faster and higher recovery success in rehabilitation, which
enhance the quality of life. Additionally, emotions monitoring
can allow establishing an individual profile, which helps to
identify causes of depression, anxiety, stress, or chronic diseases,
where it can either be shared with professionals or kept for self
awareness [47].

Although the proposed framework showed very satisfactory
performance in the experiments conducted, the physiological
signals were recorded in the laboratory setting which lacks the
real life scenarios when people experience emotional changes
without even interacting with other people. Further, the results
show that the system achieves a consistent performance in
subject dependent tests, which is not always the case in subject
independent experiments due to inter-personal variations. This
issue is still a challenge faced by any of the existing ER methods.
To further improve our system, it is required to have a larger
sample size of participants in various daily life routines.

VII. CONCLUSION

A framework for ER on the arousal-valence space was pre-
sented. We primarily focused on using peripheral physiological
signals as the source of emotion information. In this study,
the data used were collected during a debate between pairs
of participants where the emotions were rated by both parties
mutually. Thus we investigated the use of annotations based
on participants themselves, their partners, and combining both
ratings for training the recognition system. Additionally, the
conversion of the ratings to emotion classes was done based on a
mid point following the literature, as well as a proposed dynamic
thresholding, which allows us to effectively deal with indi-
vidual differences in emotion rating tendencies. The proposed
LSTM-based ER model was demonstrated. Additionally, TPE, a
mechanism based on post processing of the past resultant scores
of the classifier, was introduced. Experiments were conducted
to demonstrate the performance of the proposed framework,
where classification accuracies of up to 96.11% for arousal,
96.78% for valence, and 93.65% for four classes were achieved.
Finally, future works should consider validating the findings of
this work by using the new datasets possibly collected from
a longitudinal, large-scale experience sampling method for an
in-the-wild study of ER in the realistic scenario involving many
users from different ages, educational level and cultural settings,
while employing multi-task learning.
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