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Affect Recognition via Physiological & Behavioral
Signals

Affective Computing Physiological & Behavioral
Signal
—> Affect indicators

Machine Learning Model

n A
L~
—> Affect Recognition

Valence, Stress
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Background

Personalized Affective Computing

TP ——— One-size-fits-all (generalized) model
—> Overlook individual differences

& Resulted in poor performance

Developing personalized models
—> Enhanced model performance
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Categories of Personalization Techniques

Creating separate models for

User-dependent each individual using only their own data

Hvbrid Creating separate models for using all users
yorl data, including each individual’s data
Re-training generalized model

Fine Tuning with a small amount of individual data

Creating separate models for groups classified

Cluster-specific based on certain criteria (e.g., gender, personality)

Learning multiple related tasks simultaneously
and sharing representations

Multi-task Learning

[1]J. Li, A. Waleed, and H. Salam, “A survey on personalized affective computing in human-machine interaction,” arXiv preprint arXiv:2304.00377, 2023.




No prior studies systematically evaluated the effectiveness of
diverse personalization techniques using multiple open datasets



Research Goal

Systematically evaluating personalization techniques
In affective computing

e Understand the differences among various personalized models
e Determine whether they truly outperform the generalized models
e For reproducibility, publicly share evaluation process
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Used Open Datasets

Multimodal open dataset designed to explore affect responses under controlled conditions

Dataset

Signal

Label

# of Ps

Profile Survey

IXVIETeR [1]

(2018)

EEG, ECG, EDA, ACC

Self-report based
(Arousal, Valence)

40

Big five inventory,
gender, age

(2016)

A [2]

ECG, EDA, ACC

Self-report based
(Arousal, Valence)

58

Big five inventory

[3]

(2018)

RESP, ECG, EDA, EMG,
TEMP, ACC

Stimulus based
(Stress)

15

Gender, age

[4]

(2019)

ECG, RESP, BVP, EDA,
TEMP, EMG

Self-report based
(Arousal, Valence)

30

Gender, age

[5]

(2020)

BVP, EDA, TEMP, ACC

Self-report based
(Arousal, Valence)

21

Gender, age

[1] J. A. Miranda-Correa, M. K. Abadi, N. Sebe, and I. Patras, “Amigos: A dataset for affect, personality and mood research on individuals and groups,” IEEE Transactions on Affective Computing, vol. 12, no. 2, pp. 479-493, 2018.

[2] R. Subramanian, J. Wache, M. K. Abadi, R.-L. Vieriu, S. Winkler, and N. Sebe, “ASCERTAIN: Emotion and personality recognition using commercial sensors,” [EEE Transactions on Affective Computing, vol. 9, no. 2, pp. 147-160, Nov. 2016.

[3] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laerhoven, “Introducing wesad, a multimodal dataset for wearable stress and affect detection,” in Proceedings of the 20th ACM international conference on multimodal interaction, pp. 400-408, 2018.
[4] K. Sharma, C. Castellini, E. L. van den Broek, A. Albu-Schaeffer, and F. Schwenker, “A dataset of continuous affect annotations and physiological signals for emotion analysis,” Scientific data, vol. 6, no. 1, p. 196, 2019.
[5] C. Y. Park, N. Cha, S. Kang, A. Kim, A. H. Khandoker, L. Hadjileontiadis, A. Oh, Y. Jeong, and U. Lee, “K-emocon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations,” Scientific Data, vol. 7, no. 1, p. 293, 2020.
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Preprocessing: Signal

=50
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* Winsorization
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i/ Segmentation

s N W
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1.

Winsorization
o  OQutliers in the upper and lower 3% range removed

Filtering

o  Butterworth low-pass filter with a 10 Hz cut-off
Downsampling

Normalization
o Min-max normalization

Segmentation
o  10-second window with a 5-second sliding interval

[1] M. Dzie zyc, M. Gjoreski, P. Kazienko, S. Saganowski, and M. Gams, “Can we ditch feature engineering? end-to-end deep learning for affect recognition from physiological sensor data,” Sensors, vol. 20, no. 22, p. 6535, 2020.
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Preprocessing: Labeling

1.
2.

\WA=9:\8) (Stimulus-based labeling)

AMIGOSBASCERTAINECASE! (Self-report based labeling)

o  Participant-specific threshold for binarization

O
q0

Il I — — — m
D = :DUD L L I_Il:l
0

[0 Participant 1 self-report data

Study Duration [l Participant 2 self-report data

[1] R. Dai, C. Lu, L. Yun, E. Lenze, M. Avidan, and T. Kannampallil, “Comparing stress prediction models using smartwatch physiological signals and participant self-reports,” Computer Methods and Programs in Biomedicine, vol. 208, p. 106207, 2021.
[2] Z. D. King, J. Moskowitz, B. Egilmez, S. Zhang, L. Zhang, M. Bass, J. Rogers, R. Ghaffari, L. Wakschlag, and N. Alshurafa, “Micro-stress ema: A passive sensing framework for detecting in-the-wild stress in pregnant mothers,” PACM IMWUT, vol. 3, no. 3, pp. 1-22, 2019.




Processed Signal Segment
Corresponding Affect Label

Non-personalized Model
Personalized Models

2. Fine Tuning
3. Cluster-specific i

—_— Affect Detection Models

4. Multi-task Learning




1. Fully Convolutional Network (FCN) Input Input

Signal 1 Signal n

a. nx[CL-CL-CL]-FC

2. Residual Network (ResNet)
a. nx|[ResBlock-...-ResBlock]-FC

3 Different
Architectures

3. Multi-Layer Perceptron with LSTM (MLP-LSTM) (FCN, Resnet,
a. nx[FC-...-FC-LSTM]-FC MLP-LSTM)

Late fusion: each signal is
independently processed and later

fused using fully connected layers to Output
generate the final outcome Affect State

[1] M. Dzie zyc, M. Gjoreski, P. Kazienko, S. Saganowski, and M. Gams, “Can we ditch feature engineering? end-to-end deep learning for affect recognition from physiological sensor data,” Sensors, vol. 20, no. 22, p. 6535, 2020.
[2] M. Maithri, U. Raghavendra, A. Gudigar, J. Samanth, P. D. Barua, M. Murugappan, Y. Chakole and U. R. Acharya, "Automated emotion recognition: Current trends and future perspectives,” Computer methods and programs in biomedicine, vol. 215, p. 106646, 2022.

n: number of signals, CL: convolutional layer, FC: fully connected layer, ResBlock: residual block with three CLs
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Non-Personalized Model

Leave-one-participant-out (LOPO) Evaluation

User Data
1 @ _
_ 4
8 _
Y
v U N

O iteratively hold out each individual

rain (N-1)

Example with N=5

Ds Da
P
% = =
N N—"
0 0
| Input Si | | Input S2
[ ) )
I ] f ]
I I
[ il /
; I| |1 /
I I
| Fusion
T




Method |

Personalized Model: Fine Tuning

1. Pre-train network with N-1 participants

2. Re-train network
using a small number of target participant data

o  Layers tuned: Entire layers vs. Only the final layer
o  Specific number of data from each label

3. For testing,
remaining data points of target is used

—> Repeat for all participants being the target

Example with N=5
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Example with N=5

Method |

Personalized Model: Fine Tuning

D2 Ds Das

T

1. Pre-train network with N-1 participants

A

2. Re-traln network N
using a small number of target participant data

o  Layers tuned: Entire layers vs. Only the final layer
o  Specific number of data from each label | Input S | | Input Sz |
[ [

<P
N o
-—r
~—

D1
o
-1
-
X

Model Mt
| Input S: | | Input S: |
I I

Layers tuned
o  Entire layers (All) vs. Only the final layer (Last)

LI A mount of target data for fine tuning

o 20%,30%, 40%, 50% of total data

o Initial sequence of data points
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Personalized Model: Cluster

Example with N=5

o ge D1 Ds
Specific - -
- -
Leveraging a model trained from users similar to the target = =
1. K-means clustering Clitiianl l l Train
using trait information of N-1 participants
g trart Inform particip o Model Mc1 Model Mcz
o  Trait info: Using the demographics or psychological info
| Input S: | | Input S2 | | Input S: | | Input S2 |
2. Forming distinct model for each cluster / : 11 : / : o :
o  Only use participants within the same cluster f 71 |t ] f 71 |t /
to train their respective models / . ARN . 7 / . ARN . 7
3. Identifying the target participant's cluster : : ' '
| Fusion | | Fusion |

using his/her trait information

4. Corresponding cluster model is used for testing U, belongs | Tp9A
to Cluster 1
—> Repeat for all participants being the target 2
=
~—

[1] D. A. Adler, F. Wang, D. C. Mohr, and T. Choudhury, “Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies,” PLOS ONE, 2022

[2] Y. S. Can, N. Chalabianloo, D. Ekiz, J. Fernandez-Alvarez, G. Riva, and C. Ersoy, “Personal stress-level clustering and decision-level smoothing to enhance the performance of ambulatory stress detection with smartwatches,” IEEE Access, 2020.
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Example with N=5

Personalized Model: Cluster

ol D D> D3 D4
Specific S &= ==
. . . . -~ - N -
Leveraging a model trained from users similar to the target = = = =
1. K-means clustering Clissicodl l

using trait information of N-1 participants
o  Trait info: Using the demographics or psychological info

Model Mci

L IlImpact of varying the number of clusters, K

o Fixed K values: 2to 5
o  Dynamically calculated K values using silhouette score

to Cluster 1

4. Corresponding cluster model is used for testing U, belongs ¢
Ds

—> Repeat for all participants being the target

-

-
~—
[1] D. A. Adler, F. Wang, D. C. Mohr, and T. Choudhury, “Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies,” PLOS ONE, 2022

[2] Y. S. Can, N. Chalabianloo, D. Ekiz, J. Fernandez-Alvarez, G. Riva, and C. Ersoy, “Personal stress-level clustering and decision-level smoothing to enhance the performance of ambulatory stress detection with smartwatches,” IEEE Access, 2020.
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Personalized Model: Multi-task Learning (MTL)

MTL : simultaneously trains on multiple similar tasks by sharing information between them

Shared Task-specific

Layers Layers
Lol ... Task 1
. wen —_— = —P nan TaSk 2 .
Task definition
for personalization:
—> Task 3 User-as-task vs.
Cluster-as-task
General knowledge Tailored learning
learning across tasks for each task

[1] R. Caruana, “Multitask learning,” Machine learning, vol. 28, pp. 41-75, 1997.

[2] B. Li and A. Sano, “Extraction and interpretation of deep autoencoder-based temporal features from wearables for forecasting personalized mood, health, and stress,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1-26, 2020.
[3] A. Saeed, T. Ozcelebi, J. Lukkien, J. B. van Erp, and S. Trajanovski, “Model adaptation and personalization for physiological stress detection,” in 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 209-216, IEEE, 2018.

[4] H. Yu, E. B. Klerman, R. W. Picard, and A. Sano, “Personalized wellbeing prediction using behavioral, physiological and weather data,” in 2019 I[EEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 1-4, IEEE, 2019.

[5] S. Taylor, N. Jaques, E. Nosakhare, A. Sano, and R. Picard, “Personalized multitask learning for predicting tomorrow’s mood, stress, and health,” IEEE Transactions on Affective Computing, vol. 11, no. 2, pp. 200-213, 2017.
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Example with N=5
D4

Personalized Model: MTL

User-as-task

1. Train all layers with N-1 participants : : :
except the last FC layer and the output layer i '

Ill)g
’!!)9
111)9

i

2. Train the last FC layer and output layer : | Inpl.lt > | | Inpl.lt > |
using each participant’s data Lavors - [ ARy ]
(N-1 users) - L / L /
3. Find the participant who is the most similar to target : | . AR, . 7
o Using the demographics or psychological information . I / I /

4. Corresponding participant’s weights Vm Y

are used for testing Task | Fusion | | Fusion | | Fusion | | Fusion |
Specific I
. . . L
— Repeat for all participants being the target Poniil Output| [Output| | Output| | Output |
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Example with N=5

D: D2 Ds D4
° S S o
Personalized Model: MTL S E S E
- - - X
0 050
Cluster-as-task
Cluster 1 5 -
1. K-means clustering ] >
using trait information of N-1 participants
o  Trait info: the demographics or psychological info
o Determine K using silhouette score Shared | Inpl,lt St | | Inpl,lt 52 |
Layers
2. Train all layers with N-1 participants WL ¢ 5/ ;"l 5/ 54
except the last FC layer and the output layer : | . 11 |/ . 7
3. Train the last FC layer and output layer Y A Y
using each cluster data Task : X
Sp::iﬁc | Fusion | | Fusion |
4. Identify the target participant's cluster Layers Output —m
o Using the demographics or psychological info (e Clusten P =P
U, belongs ¢ Test
5. Corresponding cluster’s weights are used for testing T
o
—> Repeat for all participants being the target =
—~—




Results

Results - Personalized Model: Fine Tuning

For each dataset-architecture pair, we can find fine-tuned models with higher AUROC
No consistent performance patterns across different deep learning architectures

0.75 1 = e e — - - -
0.95 e L hd .
0.7 0.9 ——— FCN
0.85
o 06 08 ---- MLP-LSTM
8 0.6 0.75
8 D7 ———————————— | ———————————— B
2 Giee ResNet
0.55 0.6
0.55
0:3 0.5
0.45 T T T T T T . - - 045 T T T T . . - : :
Without All All All All Last Last Last Last Without All All All All Last Last Last Last
Tuning = (20%)  (30%)  (40%)  (50%) (20%) (30%)  (40%)  (50%) Tuning  (20%)  (30%)  (40%)  (50%)  (20%)  (30%)  (40%)  (50%)
Tune all layers Tune only last layers
0.75 0.75
/ 0.7
0.7
_______________________________ 0.65
3 o
4 0.6 )
2 0.5
0.55 . 0.45
05 .__..—0———0-" s =-.- - - — = — — —g-—-~——9 0.4
0.35
0.45 T T T T T T T T T 0.3 T T T T T T T T T
Without All All All All Last Last Last Last Without All All All All Last Last Last Last
Tuning  (20%)  (30%)  (40%)  (50%)  (20%) (30%) (40%)  (50%) Tuning  (20%)  (30%)  (40%)  (50%) (20%) (30%)  (40%)  (50%)
Baseline Baseline
Performance CASE Performance K-EmOCon

20%, 30%, 40%, 50% of total data
All layers vs. Last layers
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Results - Personalized Model: Cluster-specific

Cluster-specific models mostly show lower AUROC compared to non-personalized one
Cluster-specific models: optimal cluster number (K) varied

0.65 0.9 —_— FCN
0.85
g 06 08 ---- MLP-LSTM
€ oss 0675
2 o e ResNet
05 08
0.45 0.55

0.4 T T T T T T T T T T T T
Without Silhouette Fixed Fixed Fixed Fixed Without Silhouette Fixed Fixed Fixed Fixed
Clustering Score (K=2) (K=3) (K=4) (K=5) Clustering Score (K=2) (K=3) (K=4) (K=5)
# of clusters

AMIGOS WESAD

0.7 0.7
0.65 .\k‘ 0.65
~~~~~~~ .- - IPPTYRRTIT 3
o 0861 eI evreerTIy = 0.6
o
& 0.55 0.55
=
< s SRR — — — - - * - - - - —-— - e --=-=-=-=- ° 0.5
0.45 0.45
0.4 T T T T T T 0.4 T T T T T T
Without Silhouette Fixed Fixed Fixed Fixed Without Silhouette Fixed Fixed Fixed Fixed
Clustering Score (K=2) (K=3) (K=4) (K=5) Clustering Score (K=2) (K=3) (K=4) (K=5)

Baseline  SAGE rertormence K-EmoCon

Performance
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Results - Personalized Model: Multi-task Learning

Most cases, multi-task learning models (both user-as-task or cluster-as-task)
show lower AUROC compared to non-personalized one
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Results

Results - Comparative Evaluation

Dataset Arclistectuxe Personalization Techniques
¢ Non-Personalized  Fine Tuning Hybrid Cluster Specific Multi-task Learning
AMIGOS FCN 0.500 (0.100) 0.505 (0.159) | 0.512 (0.122) 0.506 (0.122) 0.499 (0.038)
{asoiisal) MLP-LSTM 0.504 (0.100) 0.538 (0.140)  0.476 (0.107) 0.514 (0.129) 0.500 (0.000)
ResNet 0.490 (0.115) 0.546 (0.147) 0518 (0.136) 0.521 (0.078) 0.506 (0.044)
AMIGOS ECN 0.518 (0.131) 0502 (0.159)  0.494 (0.145) 0.531 (0.125) 0.499 (0.021)
(Valence) MLP-LSTM 0.476 (0.109) 0.528 (0.132)F | 0511 (0.142) 0.515 (0.134) 0.500 (0.000)
ResNet 0.493 (0.106) 0.546 (0.147)  0.515(0.112) 0.513 (0.124) 0.489 (0.058)
ASCERTAIN FCN 0.511 (0.071) 0.521(0.078)  0.508 (0.067) 0.517 (0.071) 0.502 (0.026)
vzl MLP-LSTM 0.498 (0.035) 0.513 (0.073) 0.491 (0.056) 0.517 (0.071) 0.500 (0.000)
ResNet 0.506 (0.070) 0.511 (0.075) 0.505 (0.085) 0.521 (0.078) 0.505 (0.028)
ASCERTAIN FCN 0.514 (0.060) 0.515(0.075) 0.505 (0.075) 0.520 (0.073) 0.501 (0.009)
(Valenice) MLP-LSTM 0.496 (0.047) 0.495 (0.060) 0.499 (0.035) 0.507 (0.073) 0.500 (0.000)
ResNet 0.520 (0.064) 0.512(0.079) 0.515 (0.066) 0.518(0.082) 0.502 (0.029)
FCN 0.915 (0.203) 0.973 (0.089)  0.976 (0.074) 0.849 (0.303) 0.911 (0.199)
WESAD MLP-LSTM 0.922 (0.195) 0.983 (0.053)  0.913 (0.212) 0.874 (0.266) 0.895 (0.222)
ResNet 0.906 (0.196) 0.969 (0.076) | 0.979 (0.066) 0.857 (0.308) 0.945 (0.120)
CASE FCN 0.646 (0.165) 0.709 (0.173) = 0.655 (0.197) 0.613 (0.159) 0.589 (0.150)
CAsoised) MLP-LSTM 0.508 (0.069) 0.532 (0.105)  0.520 (0.106) 0.510 (0.100) 0.500 (0.021)
ResNet 0.648 (0.155) 0.695 (0.162)  0.646 (0.168) 0.617 (0.150) 0.574 (0.142)
CASE FCN 0.651 (0.159) 0.688 (0.203) 0.655 (0.217) 0.649 (0.132) 0.591 (0.139)
(Valence) MLP-LSTM 0.548 (0.134) 0.494 (0.038) 0.506 (0.089) 0.543 (0.134) 0.527 (0.094)
ResNet 0.620 (0.169) 0.676 (0.176) " 0.651 (0.200) 0.633 (0.154) 0.584 (0.159)
KiEmoCon TN 0.505 (0.176) 0.594 (0.188)  0.509 (0.358) 0.528 (0.152) 0.501 (0.146)
i MLP-LSTM 0.523 (0.173) 0.672 (0.369)  0.650 (0.373) 0.522 (0.172) 0.519 (0.139)
ResNet 0.487 (0.188) 0.659 (0.215)*  0.594 (0.312) 0.501 (0.136) 0.499 (0.142)
K-EmoCon  FCN 0.507 (0.147) 0.546 (0.229)  0.443 (0.202) 0.519 (0.174) 0.534 (0.158)
ilos MLP-LSTM 0.520 (0.174) 0619 (0.232) | 0.752 (0.255)" 0.526 (0.154) 0.513 (0.120)
ResNet 0.508 (0.130) 0.602(0.295)  0.643 (0.349) 0.528 (0.119) 0.523 (0.130)




Discussion

Discussion - Personalized Model: Fine Tuning

O AEEILE Significant performance improvement in most cases
[ IPrevious studies also showed improvements

o Katahen et al.[1]
[ Tuning the last two layers led to an improvement in the performance of depression prediction and forecasting using
contextual data
o VYuetal[2]
[ Tuning the last two layers required only 10% of data, while tuning the entire model required more than 30% of data
to outperform non-personalized models
o  Behinaein et al. [3]
[ ] Using the WESAD dataset, tuning the entire model with 1%, 5%, and 10\% of individual data increases f1-score by
0.1%, 11.1%, 14.3%, respectively

[1] A. Kathan, M. Harrer, L. K Uster, A. Triantafyllopoulos, X. He, M. Milling, M. Gerczuk, T. Yan, S. T. Rajamani, E. Heber, et al., “Personalised depression forecasting using mobile sensor data and ecological momentary assessment,” Frontiers in Digital Health, vol. 4, p. 964582, 2022.
[2] H. Yu and A. Sano, “Passive sensor data based future mood, health, and stress prediction: User adaptation using deep learning,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5884-5887, IEEE, 2020.
[3] B. Behinaein, A. Bhatti, D. Rodenburg, P. Hungler, and A. Etemad, “A transformer architecture for stress detection from ecg,” in Proceedings of the 2021 ACM International Symposium on Wearable Computers, pp. 132—134, 2021.




Discussion

Discussion - Personalized Model: Cluster-specific

O EEHILE No significant performance improvement in most cases
(IPrevious studies showed mixed findings|

o Canetal [1]
| Cluster-specific models based on Perceived Stress Scale (PSS) scores led to an improvement in stress detection
performance using physiological data
o Kathan et al. [2]
| Gender-based cluster-specific models slightly improved performance in depression prediction and forecasting using
contextual data
o  Tervonen et al. [3]
| Using the WESAD dataset, cluster-specific models showed slightly lower stress detection performance

[1]Y. S. Can, N. Chalabianloo, D. Ekiz, J. Fernandez-Alvarez, G. Riva, and C. Ersoy, “Personal stress-level clustering and decision-level smoothing to enhance the performance of ambulatory stress detection with smartwatches,” IEEE Access, vol. 8, pp. 38146-38163, 2020.
[2] A. Kathan, M. Harrer, L. K Uster, A. Triantafyllopoulos, X. He, M. Milling, M. Gerczuk, T. Yan, S. T. Rajamani, E. Heber, et al., “Personalised depression forecasting using mobile sensor data and ecological momentary assessment,” Frontiers in Digital Health, vol. 4, p. 964582, 2022
[3] J. Tervonen, S. Puttonen, M. J. Sillanp @ 3, L. Hopsu, Z. Homorodi, J. Ker anen, J. Pajukanta, A. Tolonen, A. L'ams &, and J. M antyj arvi, “Personalized mental stress detection with self-organizing map: From laboratory to the field,” Computers in Biology and Medicine, vol. 124, p. 103935, 2020.




Cluster-specific personalization mostly fEilEdOlMPrOVeICIasSIcCatioN PEHOrMance

Possible Explanations

IR -GllileETidreduction of data amount usedi{eliE sl g 1A =T laF

2. Differences in |jlplells-glInllETy participants to the target

o Can et al. : stress scores = stress detection model
o Ours : age and gender — arousal and stress detection model



Discussion

Discussion - Personalized Model: Multi-task Learning

O EEHILE No significant performance improvement in most cases
[ BB ut previous studies reported improvements

o Saeed et al. [1]
| Personalized stress detection model using physiological data and a user-as-task MTL models showed an average
increase of 2.87% in AUROC
o VYuetal[2]
[ Personalized wellbeing detection using physiological, behavioral, and contextual data along with user-as-task and
cluster-as-task MTL CNN and LSTM models increased f1-score with an average of 9.83%
o Taylor et al. [3]
| Cluster-as-task models on wellbeing detection showed an increase in AUROC values ranging from 11% to a
maximum of 21%

[1] A. Saeed, T. Ozcelebi, J. Lukkien, J. B. van Erp, and S. Trajanovski, “Model adaptation and personalization for physiological stress detection,” in 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 209-216, IEEE, 2018.
[2] H. Yu, E. B. Klerman, R. W. Picard, and A. Sano, “Personalized wellbeing prediction using behavioral, physiological and weather data,” in 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 1-4, IEEE, 2019.
[2] S. Taylor, N. Jagues, E. Nosakhare, A. Sano, and R. Ficard, “Personalized muititask learning for predicting tomorrow's mood, stress, and heaith,” IEEE Transactions on Affective Computing,vol. 11, no. 2, pp. 200-213, 2617.




e  Previous studies: [SIgelEIelgle[Elgli training & evaluation for MTL
Ours: SEEIGeETN el training & evaluation for MTL (target user’s data were not used for training)

But Li & Sano (2020) showed significant improvements even in user-independent setting

e Li& Sano (2020): wellbeing prediction (mood, health, stress) clustering based on gender and personality
information, with a large number of of participants (N=239)
e  With a larger dataset, it was possible to participants to target

[1] B.Liand A. Sano, “Extraction and interpretation of deep autoencoder-based temporal features from wearables for forecasting personalized mood, health, and stress,” PACM IMWUT vol. 4, no. 2, pp. 1-26, 2020.



Discussion

Takeaways in Personalized Affective Computing

Result #1: Fine-tuning worked well (but requiring some use of unseen target users’ labels)

* How to adaptively find the optimal label amount necessary for effective personalization?
* How will other domain adaptation techniques (e.g., few-shot learning) work in general?

Result #2: Cluster-specific or multi-task learning failed in user-independent setting

* What are the better approaches to find “similar users” to the target users?
- Trait-driven (current): demographics or psychological traits
- Data-driven: similarity in data, or hybrid (trait + data) towards domain generalization?
* Will dataset scaling (increasing # participants) work? (but requires large-scale open datasets)
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Background

General Process of Affect Recognition Systems
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Background-

Another Research Gap

Only 1 or 2 datasets for evaluation
e  Unpublished

Lack of analysis code and detailed descriptions

—> Evaluation using Multiple Open Datasets

—> Openly sharing Evaluation Process

Releasing dataset and code

Reproducibility| <

Cross-dataset evaluation of models

[1] M. B. McDermott, S. Wang, N. Marinsek, R. Ranganath, L. Foschini, and M. Ghassemi, “Reproducibility in machine learning for health research: Still a ways to go,” Science Translational Medicine, vol. 13, no. 586, p. eabb1655, 2021.




Research Goal & Direction |

Research Direction

Open datasets
e Controlled setting
e Rich in physiological and behavioral signal data

1. Uniform data preprocessing
a. End-to-end learning for deep learning models

2. Build non-personalized (i.e., one-size-fits-all) and personalized affect recognition models

3. Compare performances
a. Evaluate the efficacy of each personalization technique across datasets

Publicly available




Method

Personalized Model: Cluster Specific

A group of ‘similar’ users that the target belongs to = leverage trained models from similar users

e Defining similar users based on demographics or psychological information
o  Age, gender, personality traits

e K-Means Clustering
o Value of K (= # clusters)
m Fixed value
m Highest mean silhouette score

[1]1 D. A. Adler, F. Wang, D. C. Mohr, and T. Choudhury, “Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies,” Plos one,vol. 17, no. 4, p. 0266516, 2022

[2] Y. S. Can, N. Chalabianloo, D. Ekiz, J. Fernandez-Alvarez, G. Riva, and C. Ersoy, “Personal stress-level clustering and decision-level smoothing to enhance the performance of ambulatory stress detection with smartwatches,” IEEE Access, vol. 8, pp. 38146-38163, 2020.

[3] A. Kathan, M. Harrer, L. K Uster, A. Triantafyllopoulos, X. He, M. Milling, M. Gerczuk, T. Yan, S. T. Rajamani, E. Heber, et al., “Personalised depression forecasting using mobile sensor data and ecological momentary assessment,” Frontiers in Digital Health, vol. 4, p. 964582, 2022.

[4] J. Tervonen, S. Puttonen, M. J. Sillanp a3, L. Hopsu, Z. Homorodi, J. Ker anen, J. Pajukanta, A. Tolonen, A. L ams 3, and J. M antyj arvi, “Personalized mental stress detection with self-organizing map: From laboratory to the field,” Computers in Biology and Medicine, vol. 124, p. 103935, 2020.
[5] B. Li and A. Sano, “Extraction and interpretation of deep autoencoder-based temporal features from wearables for forecasting personalized mood, health, and stress,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1-26, 2020.




Research Goal & Direction |

Research Direction

User-dependent approach

User Data
1 o I —
2 e —
v 2 e —

Train Test




Research Goal & Direction

Research Direction

User-independent approach

User Data
1 S —
_ Y
O
4
v U

O iteratively hold out each individual

Building User-independent Personalized Models

Assuming “similar people or groups”

Fine tuning Cluster specific Multi-task learning
Fine tuning using Building separate Building a unified multi-task
unseen user’s data models for each group model

(e.g., gender, personality) (e.g., user/cluster as a task)




Method |

Used Open Datasets

Multimodal open dataset designed to explore affect responses under controlled conditions

Video Watching
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Method |

Evaluation
C I VE-Yellfixed hyperparameters

o  Referring to previous paper on DL for time series classification [1]

e Metrics
o Accuracy
o  Macro f1-score
o INVXele:
m  Used mainly for comparing the performance [2]

[1] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning for time series classification: a review,” Data mining and knowledge discovery, vol. 33, no. 4, pp. 917-963, 2019.
[2] M. Hossin and M. N. Sulaiman, “A review on evaluation metrics for data classification evaluations,” International journal of data mining & knowledge management process, vol. 5, no. 2, p. 1, 2015. 32




Results |

Results
e [terative testing e Repetition with different random seeds
YN o  Mean of results are reported
.|| @] |®
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Overview
1. Non-personalized model
2. Each of 3 personalization techniques
3. Compare personalized models against non-personalized




