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Motivation

Mountain climbing is popular

U.S, 2016
2.57 million

U.S, 2006
1.5 million

[Outdoor Recreation Participation Topline Report 2016]



Motivation

Sometimes a mountaineering accident occurs in climbing
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[American Alpine Club]



Motivation

Main cause of mountain accidents is ‘fall or slips on rock’

[US Mountaineering Accidents
By Immediate Cause 1951~2006]
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Fall or slip on rock
39.4%

Fall or Slip on rock : 39.4%




Motivation

Definition of Risky Trail

‘Risky Trail’

x>

[Rocky Trail] [More Fall and Slip]

* Information on risky trails is needed for beginners




Motivation

Risky Mountain Trail Information on Google Map

e Most used : Google Map
* Trail maps and trail length
* No trail surface information

[Google maps on mountain ]




Motivation

Collecting the Risky Trail Information

323

= Manual inspection method (send investigators to trail)
* Cost limitation, Coverage limitation ...
* Not practical in real world




Concept of TrailSense

New automatic system for collecting trail surface information

A (L

Crowdsensing
* Motion Sensing — From climbers’ smartphones
 Detect the risky trail segments by individual walking pattern
 Aggregate monitoring results to locate the risky trail segment




How TrailSense Classify Risky Trail Segments?

= |nferring trail surface via climbers’ motion data

“Climbers show normal walking patterns in this trail...”

Then non-risky trail segment

“Climbers show abnormal behaviors...”
Then risky trail segment

= Algorithm ‘learns’ normal stride patterns of a climber and
‘tells” whether current walking patterns are ‘normal’ or not



TrailSense Overview

[ Individual Sensing ] [Data aggregation |
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‘To learn the walking pattern and infer the riskiness’

*

Step 1 Step 2 Step 3 Step 4

Stride Feature Stride Windowing
segmentation Extraction Classification (Multiple strides)



Stride Segmentation

= Stride Segmentation (Step 1)

- Walking pattern analysis for learning normal stride pattern
* Peak detection is used for Stride Segmentation

[Accelerometer Y axis]

[Cyclic Walking pattern]
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Feature Extraction

= Feature Extraction (Step 2)

* Time domain features : absolute means, std, maximum
 Time-frequency features : Discrete Wavelet analysis

x(n) = X1 Trez d()PY(n — 27k) + iz ayp(n — 27k)

* Wavelet can be applied in non-stationary signal (Time-Frequency)

Wavelet
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Stride Classification

= Stride Classification (Step 3)

* One-Class SVM : Learns boundary of normal stride in feature space
* One-class classification does not require data from risky segments
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Boundary of normal stride

Feature Space



Windowing

= Windowing for robust classification (Step 4)

“Climbers show normal walking patterns in this trail...”

Then non-risky trail segment

“Climbers show abnormal behaviors...”

Then risky trail segment

* Check window of multiple strides
 Check the relative ratio of abnormal strides

[Window 1] : Non-risky trail segment

Normal Normal Normal Abnormal Normal

[Window 2] : Risky trail segment
Abnormal Normal Abnormal | Abnormal | Abnormal



Data Aggregation (After Individual Sensing)

= Aggregating results from the crowd

» GPS data collected by a smartphone have a 10 meter margin of errors
* False alarms can be generated

= Density based spatial clustering of applications with noise
(DBSCAN)

® Ground Truth

GPS coordinates



Data Aggregation (After Individual Sensing)

= Aggregating results from the crowd

» GPS data collected by a smartphone have a 10 meter margin of errors
* False alarm can be generated

= Density based spatial clustering of applications with noise
(DBSCAN)

Individual classification results

Measurement errors

O False Alarm

GPS coordinates



Data Aggregation (After Individual Sensing)

= Aggregating results from the crowd

» GPS data collected by a smartphone have a 10 meter margin of errors
* False alarm can be generated

= Density based spatial clustering of applications with noise
(DBSCAN)

DBSCAN algorithm results

#® " Ground Truth

Clustered

GPS coordinates



Evaluations

= Evaluation of one-class classification
 Comparison of one-class classification vs two-class classification

= System performance in different trail data

* |If the system accurately detects risky trails while maintaining
generality



Data Collection

Locations

* Gyeryongsan National Prak, Deajeon, South Korea

e Trail A (inter trail experiment) — 5 zones (149m, 109m, 125m, 47m, 27m)
e Trail B and Trail C (intra trail experiment) — 900m, 400m

Participants

e 14 participants (7males and 7 females) whose ages ranged from 22 to 32
years (Mean: 27.4, Std: 2.17)

Devices

* Smartphones with accelerometer sensor
e Cameras (for ground truth labeling)




Evaluation Result

Evaluation of one-class classification

One-Class SVM Two-Class SVM
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One-Class SVM shows higher test accuracy (F;-Score)
One-Class SVM achieves higher precision, which is critical for aggregation
Two-Class SVM is less practical (require training data in risky segments)



Evaluation Result

System performance in different trail data

Red : Ground truth Blue — Detected by individual
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After data aggregation, our algorithm can detect all 10 risky segments (red-points)
with the trained model from the other trail



Summary KAIST

* TrailSense can accurately identify risky trail segments by
using crowdsensing

TrailSense
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1. Sensor Data Collection

‘Risky Trail’

- Boundary of normal stride

3. Stride Classification 4. Crowd Data Aggregation



