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DTN Multicast Routing

s Delay tolerant networking:
Suitable for non-interactive, delay tolerant apps

Ranging from connected wireless nets to wireless mobile nets with
disruptions (delay tolerant networks)

s Provides reliable data multicast even with disruptions

= DTN multicast routing methods:
Tree/mesh (+ mobility), ferry/mule, epidemic dissemination

= DTN multicast questions: Throughput/delay/buffer bounds?
s Focus: dissemination; upper bound of all cases
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DTN Model

s Pair-wise inter-contact time: interval between two contact

points
T2 T3 Contact points between two nodes: i and j
T1 l T (1) l T..(2) l T..(3) l
® | | | >
Tk b tme
‘ T,.(n): pair-wise inter-contact time

= Common assumption: exponential inter-contact time
Random direction, random waypoint, etc.
Real world traces also have “exponential” tails [Karagiannis07]
s EXxponential inter-contact time [ Inter-contact rate: A
~ speed X radio range [Groenevelt05]

= Assumption: n nodes in 1x1 unit area; radio range:
O(1/n) and speed: O(1/4n) <= meeting rate: A=O(1/n)




" S
2-Hop Relay: DTN Unicast Routing

s Each source has a random destination (n source-destination pairs)
= 2-hop relay protocol:

1. Source sends a packet to a relay node

2. Relay node delivers a packet to the corresponding receiver

2-hop Relay by
Grossglauser and Tse

. Source
O Relay

. Destination Source is also mobile
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2-Hop Relay: Throughput/Delay

s [hroughput is determined by aggregate meeting rate

[Src <=> relay nodes], [Dest <= relay nodes]
= 2-hop relay throughput: ©(nA)

G&T’s results: O(nA)=0(1) for A=1/n (i.e., speed=radio=1/vn)
s 2-hop relay delay: O(1/A)

Avg. time for a relay to meet a dest (~exp dist!): 1/A

Ex) For A=1/n, avg. delay is ©(n) (Neely&Modiano)
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RelayCast: DTN Multicast Routing

s 2-hop relay based multicast:
1. Source sends a packet to a relay node
2. Relay node delivers the packet to ALL multicast receivers
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are also mobile [ RelayCast: 2-hop relay based multicast ]
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RelayCast: Throughput Analysis

= RelayCast throughput: ©(nA/n )
n_ srcs, each of which associated with n g random

dests
Multiple srcs may choose the same node as a dest

Avg. # of competing sources per receiver: n
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RelayCast: Delay Analysis

= Relay node delivers a packet to ALL destinations
= n_competing srcs per dest: individual rate is split to A/n_
= RelayCast avg. delay: O(n /A(log n +y))

where y = Euler constant
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RelayCast: Buffer Requirement

n Little’s law: buffer = (rate) x (delay)

= Buffer per source = O(nn,)
Avg. sub-queue length: A/n_*n /A = O(1) by Little’s law
Each src has n, dest: packet is replicated to n, copies
Per src buffer at a relay = O(n ) [1 n relays: buffer = ©(nn,)

» Buffer upper bound per source = ©(n?)
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Comparison with Previous Results

= Assumptions; n fixed, and r = Vlogn/n for G&K; r=1/\n for 2¥h§p relay;
= Throughput scaling with n_ = ©(n); n_=n_n /n = n <> RelayCast = ©(1/n )
mn Better throughput than conventional multl-hop multlcastgw/ r= ognln)
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Simulation Results
RelayCast throughput with varying # of relay nodes

= DTN with fixed A: throughput linearly increases
RelayCast throughput = O(nA) for n.n, < n

a As # node increases, interference comes in; throughput
Is tapered off
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Simulation Results
Comparison with conventional multicast protocol

s RelayCast is scalable; ODMRP’s throughput decreases

significantly, as # sources increases

= But delay has significantly increased; RelayCast ~ 2000s
vs. ODMRP < 1s
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Simulation Results
Average delay with varying # of receivers

= RelayCast delay = O(n /A(log n +v))
s Delay increases as # of receivers increases
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Conclusion
x RelayCast:

Provides reliable multicast even with disruption
Achieves the maximum throughput bound of DTN
multicast routing
s DTN routing protocol design and comparison
must consider throughput/delay/buffer trade-offs

s Future work
Analysis of other DTN routing strategies

Impact of correlated motion patterns: i.e., power-law
head and exponential tail inter-contact time
distribution



