

### Hooked on Smartphones: An Exploratory Study on Smartphone Overuse among College Students

Uichin Lee, Joonwon Lee, Minsam Ko, Subin Yang, Gahgene Gweon (KAIST, Knowledge Service Engineering)

Changhun Lee, Yuhwan Kim, Junehwa Song (KAIST, Computer Science)

Koji Yatani (Microsoft Research Asia) Kyong Mee Chung (Yeonsei University, Dept. of Psychology)



### Smartphone Overuse



### Smartphone Overuse

Excessive smartphone use can be pathological and addictive

Technological addiction: non-chemical (behavioral) addiction (Griffiths, 1995)

Human-machine interaction contains inducing and reinforcing features that promote addictive behaviors





### Related Work & Motivation

Psychology work mostly studies scale development, and psychological factors (Kim 2012, Carbonell 2012)

Usage measurement work analyzes general usage patterns (Falaki 2010, Böhmer 2011)

Recent HCI studies on smartphone overuse:

- College students' practices of managing overuse (Ames 2013)
- Habits of update checking (emails, friend availability sharing) (Oulasvirta 2012)

Yet, lack of understanding on detailed usage behaviors related to problematic usage of smartphones

### **Research Overview**

## Identify detailed usage behaviors related to problematic usage of smartphones



### Methodology: Participants

95 college students in a large univ. (Fall, 2012) (67 males; and 28 females)

Avg. age of participants: 20.6 (SD 1.7)

Avg. participation duration: 26.8 days (SD 9.5) (more than 60,000 hours of usage data)

### Methodology: Self-Report Data

Smartphone addiction scale (Kim et al., 2012)

| Interference | "My school grades (or work productivity) dropped due to excessive smartphone use."   |
|--------------|--------------------------------------------------------------------------------------|
|              | "Using a smartphone is more enjoyable than spending time with my family or friends." |
| Withdrawal   | "It would be distressing if I am not allowed to use my smartphone."                  |
| Tolerance    | "Even when I think I should stop, I continue to use my smartphone."                  |

(15 items, based on well-known DSM-IV's addiction factors)





### Methodology: Usage Logging

Developed SmartLogger, an unobtrusive logging tool, leveraging Android's accessibility service

Logging fine-grained usage data:

- System events (power on/off, screen on/off/unlock, battery status changes)
- App events (active/inactive apps; touch/text input events; web browsing URLs; notifications)
- Telephone events (call/SMS, ringer mode changes)



### Methodology: Usage Analysis



### Usage Difference Analysis



- 1. Overall usage pattern analysis
- 2. Category-specific usage pattern analysis



### Usage Difference Analysis



#### 1. Overall usage pattern analysis

#### 2. Category-specific usage pattern analysis

|                                   | Aggregated             | Usage time per day                           |  |  |
|-----------------------------------|------------------------|----------------------------------------------|--|--|
| Overall<br>Usage<br>Patterns<br>— | Usage                  | Session frequency per day                    |  |  |
|                                   | Session-level<br>Usage | Session time (usage time per session)        |  |  |
|                                   |                        | Inter-session time                           |  |  |
|                                   |                        | Number of apps used per session              |  |  |
|                                   |                        | Entropy of top-k apps' usage time/frequency  |  |  |
|                                   |                        | distributions (k = 5, 10, 50)                |  |  |
|                                   |                        | Usage time and frequency of top 1/2 apps     |  |  |
|                                   | Diurnal<br>Usage       | Usage time, session frequency, and session   |  |  |
|                                   |                        | time: night (0~6), morning (6~12), afternoon |  |  |
|                                   |                        | (12~18), and evening (18~24)                 |  |  |
|                                   |                        |                                              |  |  |

#### Overall Usage Differences Usage time & frequency

Daily usage amount: risk 253.0 vs. non-risk 207.4 (p=.011, Cohen's d=0.45)



Daily usage freq.: risk 111.5 vs. non-risk: 100.1 (p=.146, Cohen's d=0.31)



Risk group spent more time than non-risk group, tending to use devices more frequently & to engage in longer sessions

#### Overall Usage Differences Skewness of app usage

Usage of top-k apps skewed (exponential dist)

Notable differences found on usage of top-1/2 apps

- 1st app (risk 97.8 vs. non-risk 69.9 m, p=.003, Cohen's d=0.66)
- 2nd app (risk 47.4 vs. non-risk 37.5 m, p=.058, Cohen's d=0.43)

Entropy of top-5 apps differs (risk 1.85 vs. non-risk 1.96)

More skewed usage observed in the risk group users

#### Overall Usage Differences Diurnal usage differences



Diurnal usage difference exists: i.e., Risk group spent more time during morning/evening



### Usage Difference Analysis

#### 1. Overall usage pattern analysis

#### 2. <u>Category-specific usage pattern analysis</u>

| Category-<br>Specific<br>Usage<br>Patterns | Comm.          | Usage time and app frequency of communication, usage<br>time and freq. of {MIM, SMS, email, call}, inter-MIM time<br>Diurnal usage: usage time, app frequency, and session time<br>of communication apps: night (0~6), morning (6~12),<br>afternoon (12~18), and evening (18~24)<br>Internal vs. external sessions: number of sessions per day,<br>app sequence length per day, session duration per day/<br>session, app sequence length per session |
|--------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | Web<br>Browser | Usage time and app frequency of web, web content,<br>inter-web time<br>Diurnal usage: usage time, app frequency, and session time<br>of web-browsing apps: night (0~6), morning (6~12),<br>afternoon (12~18), and evening (18~24)                                                                                                                                                                                                                     |

### Category-specific Usage Difference



Category-specific usage: risk group tended to use longer, but significant difference observed only in web

# Comm. Usage Differences comm. app usage



Mobile instant messaging (MIM) is dominating

- KakaoTalk is the most popular MIM in Korea
- MIM usage time (Risk: 75.6 vs. Non-Risk: 65.8, n.s.)
- MIM usage freq (Risk: 91.2 vs. Non-Risk: 76.9, n.s.)

#### Comm. Usage Differences Externally-triggered session usage

Will externally-triggered session usage differ?

- Major external triggers: mobile instant messaging (KakaoTalk), SMS, calls, facebook (mostly comm. category)
- # potifications per day: Risk: 451.8 vs. non-risk: 378.5 (n.s.)



Here, if the subsequent session includes  $app_1$ , we assume that  $app_1$  triggered smartphone usage

#### Comm. Usage Differences Externally-triggered session usage

Significant differences on MIM-triggered sessions

- Aggregated app seq. length per day (risk: 88.7 vs. non-risk: 63.9, p=.031, Cohen's d=0.50)
- Aggregated session duration per day (s) (risk: 4978.9 vs. non-risk: 3661.5, p=.030, Cohen's d=0.50)

MIM acts as external cues for usage, causing overuse

### Web Usage Differences

Significant difference in usage amount (risk: 67.14 m vs. non-risk: 41.14 m, p=.012, Cohen's d=0.61)

Selected each user's top-10 visited sites and manually classified sites (e.g., portal, search, forums, news)

Significant differences in web portal usage and trending issue search (more frequent visits by risk group)

Excessive page visits by several risk group users (checking updates of online communities; e.g., 414, 166, 97 pages per day)

Risk group spent more time on the web consuming various types of online content

### Usage Difference Summary

#### Risk group usage



Spending more time with their smartphones Diurnal usage differs More skewed app usage More usage on MIM-trigged sessions (external cues)

Spending more time on online content consumption



To supplement usage analysis results and to gain better understanding about usage behavior related to smartphone overuse



Felt more compelled to check their smartphones

- **G** I keep paying attention, because I feel like new messages may have arrived.
- When I'm dating or hanging out with friends, KakaoTalk messages make me feel nervous.

"

Less conscious/structured smartphone usage behavior (showing lack of self-regulation)

It's not like I plan to use my smartphone, but I just turn on my smartphone unconsciously.

I once used my smartphone to wake myself up

in the morning. I got up at 9AM, but it turned

**ff** out it was already 11AM room thave any thoughts when using my

smartphone. ... At that moment,

[I'm] without any sense of time.

Less conscious/structured smartphone usage behavior (showing lack of self-regulation)

I use my smartphone for about 20 minutes before going to bed. I take care of messages piled up in KakaoTalk, and check Facebook, and webtoon updates at 11:30 PM. After checking that, I'm done! (Non-risk group user)

### Automatic Identification

Apply machine learning techniques to test the feasibility of the risk-group classification

Usage features:

- General set contained the general usage features such as the usage time/frequency, top-k entropies, and sequence length
- Temporal set included the diurnal usage features for aggregated usage and category-specific usage
- Category set included the category-level usage features (no temporal aspects)
- External set included all of the usage features for the external sessions

### Automatic Identification

## Category-specific usage patterns enable accurate identification of risk-group users

| Feature set     | Acc. (%) | Pre. | Rec. | F-score | Classifier |
|-----------------|----------|------|------|---------|------------|
| All             | 81.05    | .816 | .811 | .813    | DT         |
| General         | 72.63    | .723 | .726 | .724    | DT         |
| Category        | 87.37    | .874 | .874 | .874    | DT         |
| Temporal        | 78.95    | .792 | .789 | .790    | DT         |
| ExtCue          | 64.21    | .622 | .642 | .632    | NB         |
| ExcludeGeneral  | 85.26    | .863 | .853 | .858    | DT         |
| ExcludeCategory | 80.00    | .806 | .800 | .803    | NB         |
| ExcludeTemporal | 77.89    | .782 | .779 | .780    | DT         |
| ExcludeExtCue   | 81.05    | .816 | .811 | .813    | DT         |

Weka v3.6: Decision Tree (DT), Naive Bayes (NB), and Support Vector Machine (SVM) Feature selection: Information gain algorithm

### Conclusion

Identified usage patterns related to problematic usage

 Usage amount, skewness of top-k apps, diurnal usage, MIM-triggered usage, web usage

Uncovered common themes of problematic usage

- Compulsion of checking updates
- Limited self-regulation (less conscious/structured usage)

Demonstrated the feasibility of automatically identifying risk-group users via machine learning

• Category-specific usage enables accurate classification

Ongoing Work:

- Doing a comparative analysis of different datasets
- Designing intervention s/w for smartphone overuse

#### Hooked on Smartphones: An Exploratory Study on Smartphone Overuse among College Students



**Uichin Lee**, Joonwon Lee, Minsam Ko, Subin Yang, Gahgene Gweon (KAIST, Knowledge Service Engineering)

Changhun Lee, Yuhwan Kim, Junehwa Song (KAIST, Computer Science)

Koji Yatani (Microsoft Research Asia) Kyong Mee Chung (Yeonsei University, Dept. of Psychology)