CHI 2024

Exploring Context-Aware Mental Health Self-Tracking Using Multimodal Smart Speakers in Home Environments

Jieun Lim*, Youngji Koh*, Auk Kim, Uichin Lee

* Equal contribution

Mental Health: A Rising Global Concern

1 in 8 people worldwide live with a mental health problem

Self-Tracking: A Method for Mental Health Monitoring

Support Self-Reflection

Help Clinical Decision-Making

Enhance self-awareness of mental health Bridge the information gap between healthcare stakeholders and patients

Mental Health Self-Tracking in Home Environments

People with mental health issues often stay indoors

Need for **mental health self-tracking technology in homes** is increasing

ESM for Mental Health Self-Tracking

Diversity of the Experience Sampling Method (ESM) Technologies

Wang et al. "StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones." Ubicomp '14 Wei et al. "Understanding user perceptions of proactive smart speakers" IMWUT '21

Mental Health Self-Tracking with Multimodal Smart Speakers

Mental Health ESM often requires visual-verbal tasks

(e.g., Image description task for diagnosing depression or cognitive impairment)

Mental Health Self-Tracking with Multimodal Smart Speakers

Mental Health ESM often requires visual-verbal tasks (e.g., Image description task for diagnosing depression or cognitive impairment)

Please describe a given image HCI studies are still to investigate user experiences of mental health self-tracking with multimodal speakers

Opportune Timing for ESM Design in Home Environments

Identifying opportune moments in previous studies

Adamczyk et al., "If not now, when? The effects of interruption at different moments within task execution.", CHI '04 Fischer et al., "Investigating episodes of mobile phone activity as indicators of opportune moments to deliver notifications.", MobileHCI '11

Opportune Timing for ESM Design in Home Environments

Identifying opportune moments in previous studies

No research has explored user interruptibility in response to ESM based on context transitions Sitting Standing Walking detected by IoT sensors in home environments Task Breakpoints User Activity Transitions besktop Environment in Mobile Environment

(Fischer et al., 2011)

in Desktop Environment (Adamczyk et al., 2004)

Adamczyk et al., "If not now, when? The effects of interruption at different moments within task execution.", CHI '04 Fischer et al., "Investigating episodes of mobile phone activity as indicators of opportune moments to deliver notifications.", MobileHCI '11

Context-Aware Self-Tracking System using Multimodal Speakers

Our System:

Context-Aware Self-Tracking System using Multimodal Speakers

Our System Prototype:

①-2 Speaker triggering app with wide-angle lens : Collect noise, brightness, and # of people

② Multimodal speaker
: Provide voice and touch interactions

Context-Aware ESM Scheduling

Determine opportune moments for ESM requests in home environments

Context-Aware ESM Scheduling

Determine opportune moments for ESM requests in home environments

- Detect user context transitions using sensors:
 - Auditory channel availability using Noise Sensor
 - **Proximity to smart speakers** using *Light Sensor, CO2 Sensor, Camera*

Context-Aware ESM Scheduling

Sensor-based trigger conditions were set according to home environments

Multimodal ESM Survey

ESM Task Steps and User Interface

(1) Start and Greeting

(2) Previous Activity

(3) Mental Health Survey

(4) Picture Card Description

Research Questions

- 1. How do users perceive proactive mental health self-tracking using multimodal speakers?
- 2. How do ESM compliance rates change across different context transitions?
- 3. What are the preferred interaction modalities for responding to multimodal speakers?

Field Study Methods

Participants (N=20)

- Recruitment criteria
 - People who were diagnosed with at least mild depression (a PHQ 9 score of 5 or higher)
 - People who had private spaces at home or were single-person households
 - People who spent a minimum of 5 hours daily in their room, excluding sleep time

Research Questions

- 1. How do users perceive proactive mental health self-tracking using multimodal speakers?
- 2. How do ESM compliance rates change across different context transitions?
- 3. What are the preferred interaction modalities for responding to ESM requests?

RQ1: Overall User Experience of Proactive Mental Health Self-Tracking using Multimodal Smart Speakers

Positive Aspects: Proactive system helped users to gauge mental health status

"I don't usually get a chance to ask myself these questions (related to mental health). But every hour or two, the system asks you how you're feeling or how stressed you are, and <u>it gives me more opportunities to think about whether I've just gotten</u> <u>stressed</u>." - P18

"Before, I had no idea about my moods. But when I got a chance to think about it (through the survey), I was like, <u>'I see ... what was happening' and could relieve negative emotions</u>." -P19

RQ1: Overall User Experience of Proactive Mental Health Self-Tracking using Multimodal Smart Speakers

Positive Aspects: Human-like factors made users engaging in system

"I was more focused on the question because the <u>speaker asked</u> <u>questions verbally</u>. Also, there's only one question on the screen. <u>It makes me concentrate on each question.</u>" - P12

"I felt like it's a person because the timing was not exactly regular. It's usually unpredictable when someone will contact you. So, <u>the timing of the speaker talking to me made me feel like a</u> <u>person.</u>" - P13

RQ1: Overall User Experience of Proactive Mental Health Self-Tracking using Multimodal Smart Speakers

Negative Aspects: Machine-like interaction style led to boredom

"The questions and pictures are repeated over and over again. <u>As the experiment progressed</u>, <u>I felt bored</u> <u>because the system became more habitual and</u> <u>predictable</u>." - P15

"I think it was annoying to keep asking the same questions over and over again. So, <u>there was a decrease</u> <u>in the sincerity of responses</u>." - P17

Research Questions

- 1. How do users perceive proactive mental health self-tracking using multimodal speakers?
- 2. How do ESM compliance rates change across different context transitions?
- 3. What are the preferred interaction modalities for responding to ESM requests?

RQ2: ESM Response Rates across Different Context Transition

ESM response rates were lower in the time-out trigger condition and morning

Trigger type	Num. responses	Num. requests	Response rate
Maximum time interval	1,502	2,815	53.4%
CO ₂	164	272	60.3%
Human	364	549	66.3%
Light	157	206	76.2%
Noise	14	21	66.7%
Total	2,201	3,863	57.0%

Time of day	Num. responses	Num. requests	Response rate
Dawn (2:00~7:59)	35	64	54.7%
Morning (8:00~13:59)	549	1049	52.3%
Afternoon (14:00~19:59)	767	1388	55.3%
Night (20:00~01:59)	850	1362	62.4%
Total	2,201	3,863	57.0%

RQ2: ESM Response Rates across Different Context Transition

Responded more to ESM in the afternoon and night than in the morning

Predictors	B (SE)	z-statistic	95% CI for odds ratio			
			Lower	Odds ratio	Upper	p-value
(Intercept)	-0.04 (0.20)	-0.20	0.66	0.96	1.41	0.84
Time of day						
Dawn (2:00-7:59)	0.50 (0.31)	-1.61	0.90	1.64	3.00	0.11
Afternoon (14:00–19:59)	0.24 (0.09)	2.58	1.06	1.27	1.53	0.01
Night (20:00-1:59)	0.43 (0.10)	4.54	1.28	1.54	1.86	< 0.001
Trigger type						
CO ₂	0.60 (0.15)	3.95	1.35	1.80	2.42	<0.001
Human	0.92 (0.12)	7.98	2.01	2.52	3.16	< <mark>0.001</mark>
Light	1.24 (0.19)	6.65	2.39	3.44	4.95	<0.001
Noise	0.35 (0.49)	0.72	0.55	1.42	3.71	0.47

RQ2: ESM Response Rates across Different Context Transition

Responded more to ESM when users were near the speakers (CO2, Human, Light)

Predictors	B (SE)	z-statistic	95% CI for odds ratio			
			Lower	Odds ratio	Upper	p-value
(Intercept)	-0.04 (0.20)	-0.20	0.66	0.96	1.41	0.84
Time of day						
Dawn (2:00–7:59)	0.50 (0.31)	-1.61	0.90	1.64	3.00	0.11
Afternoon (14:00–19:59)	0.24 (0.09)	2.58	1.06	1.27	1.53	0.01
Night (20:00-1:59)	0.43 (0.10)	4.54	1.28	1.54	1.86	< 0.001
Trigger type						
CO ₂	0.60 (0.15)	3.95	1.35	1.80	2.42	< 0.001
Human	0.92 (0.12)	7.98	2.01	2.52	3.16	< 0.001
Light	1.24 (0.19)	6.65	2.39	3.44	4.95	< 0.001
Noise	0.35 (0.49)	0.72	0.55	1.42	3.71	0.47

Research Questions

- 1. How do users perceive proactive mental health self-tracking using multimodal speakers?
- 2. How do ESM compliance rates change across different context transitions?
- 3. What are the preferred interaction modalities for responding to ESM requests?

Most users **preferred to respond with GUI** over VUI for multiple choice questions

Reasons for Using a GUI

Limitation of VUI & Familiarity with GUI

Reasons for Using a VUI

Situations when hands are occupied

Using media and studying/working were frequent activities before responding ESM

VUI/MIXED was more frequent than GUI in doing chores and personal hygiene

Summary of Key Findings

- RQ1: Overall User Experience
 - **Proactive self-tracking** can increase **self-reflection** regarding mental health
 - Human-likeness helped users engaging in answering mental health questions
- RQ2: ESM Response Rates across Different Context Transition
 - User response rates improved when ESM are requested in context transitions
- RQ3: Interaction Modality Preferences based on User Context
 - Users' previous contexts influenced their interaction modality selection

Discussion

Context Awareness for Modality Selection and Adaptation

Detect user contexts and **adaptively select** an appropriate **interaction modality**

Sensor Selection in Home Environments

Use sensors that are capable of **detecting multiple users**

Design Implications

Consideration for ESM System Design

Consider **context-sensing** in the **multimodal** ESM interaction design Consideration for Engaging ESM Interaction Design

Vary the tone and content as in **context-tailored adaptations**

CHI 2024

Exploring Context-Aware Mental Health Self-Tracking Using Multimodal Smart Speakers in Home Environments

Youngji Koh, KAIST youngji**@**kaist.ac.kr

Takeaway Notes

- **Context-awareness** improves user compliance of ESM surveys and makes user feel it like human
- HCI studies continue to investigate context-tailored adaptations for making user engaging in ESM

VUI/MIXED was more preferred than GUI when user's hand were occupied

Duadiatana	D (CE)	z-statistic	95% CI	n value		
Fredictors	D (3E)		Lower	Odds ratio	Upper	p-value
(Intercept)	-3.08 (0.25)	-12.29	0.03	0.05	0.08	<0.001
Previous Activity C	ontexts					
Doing Chores	0.95 (0.34)	-1.61	1.32	2.58	5.05	< 0.001
Eating	0.24 (0.09)	0.23	0.66	1.25	2.37	0.49
Leaving/Returning	-0.02 (0.54)	-0.04	0.34	0.98	2.82	0.97
Miscellaneous	0.91 (0.78)	1.17	0.54	2.48	11.33	0.24
Personal Hygiene	1.42 (0.36)	4.00	2.06	4.13	8.30	< 0.001
Resting	0.12 (0.35)	0.34	0.57	1.13	2.22	0.73
Self-caring	0.04 (0.63)	0.07	0.31	1.05	3.58	0.94
Sleeping	-0.40 (0.41)	-0.95	0.30	0.67	1.53	0.34
Social Interactions	-1.89 (1.01)	-1.87	0.02	0.15	1.10	0.06
Studying/Working	0.21 (0.29)	0.74	0.70	1.24	2.17	0.46
Working Out	0.35 (1.07)	0.32	0.17	1.41	11.47	0.75